
Supplementary Material to \Optimal linear
discriminant analysis for high-dimensional

functional data"

1 Notations

First we recall the basic notations used throughout the paper. For every j � pn, consider

the diagonal matrices or structures

Λj = diagf!j1; !j2; : : : g; Λ
(1)
j = diagf!j1; : : : ; !jsng; Λ

(2)
j = diagf!j,sn+1; !j,sn+2; : : : g;

Λ̂j = diagf!̂j1; !̂j2; : : : g; Λ̂
(1)
j = diagf!̂j1; : : : ; !̂jsng; Λ̂

(2)
j = diagf!̂j,sn+1; !̂j,sn+2; : : : g;

we then denote several block matrices or structures as

Λ = diagfΛj : j � png; Λ(1) = diagfΛ(1)
j : j � png; Λ(2) = diagfΛ(2)

j : j � png;

ΛT = diagfΛj : j 2 Tg; Λ
(1)
T = diagfΛ(1)

j : j 2 Tg; Λ
(2)
T = diagfΛ(2)

j : j 2 Tg;

Λ̂ = diagfΛ̂j : j � png; Λ̂(1) = diagfΛ̂(1)
j : j � png; Λ̂(2) = diagfΛ̂(2)

j : j � png;

Λ̂T = diagfΛ̂j : j 2 Tg; Λ̂
(1)
T = diagfΛ̂(1)

j : j 2 Tg; Λ̂
(2)
T = diagfΛ̂(2)

j : j 2 Tg:

Similar to the constructions of �(1) and �
(1)
T , we let �(2) = (�̃

(2)′

1 ; : : : ; �̃
(2)′
pn )′ with sub-vectors

�̃
(2)
j = (�j,sn+1; �j,sn+2; : : : )

′, and �
(2)
T as stacking f�̃(2)j : j 2 Tg in a column. Given index

sets T and N , we define several covariance matrices and structures as

Σ
(1)
TT = var(�

(1)
T ); Σ

(1)
NN = var(�

(1)
N ); Σ

(1)
TN = cov(�

(1)
T ; �

(1)
N ); Σ

(1)
NT = cov(�

(1)
N ; �

(1)
T );

Σ
(2)
TT = var(�

(2)
T ); Σ

(2)
NN = var(�

(2)
N ); Σ

(2)
TN = cov(�

(2)
T ; �

(2)
N ); Σ

(2)
NT = cov(�

(2)
N ; �

(2)
T );

Σ
(1,2)
TT = cov(�

(1)
T ; �

(2)
T ); Σ

(1,2)
NN = cov(�

(1)
N ; �

(2)
N ); Σ

(1,2)
TN = cov(�

(1)
T ; �

(2)
N );

Σ
(1,2)
NT = cov(�

(1)
N ; �

(2)
T ); Σ

(2,1)
TT = cov(�

(2)
T ; �

(1)
T ); Σ

(2,1)
NN = cov(�

(2)
N ; �

(1)
N );

Σ
(2,1)
TN = cov(�

(2)
T ; �

(1)
N ); Σ

(2,1)
NT = cov(�

(2)
N ; �

(1)
T ):
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Similar to the constructions of the vectors �
(1)
T , �

(1)
1,T , �

(1)
2,T , and �

(1)
T , we define �

(1)
i,T , �̂

(1)
1,T ,

�̂
(1)
2,T , and �̂

(1)
T as restricting the vectors �

(1)
i , �̂

(1)
1 , �̂

(1)
2 , and �̂(1) to the discriminant set T .

Given index sets T and N , we define several sample covariance matrices as

S(1) = f(n1 � 1)S
(1)
1 + (n2 � 1)S

(1)
2 g=(n� 2);

S
(1)
TT = f(n1 � 1)S

(1)
1,TT + (n2 � 1)S

(1)
2,TTg=(n� 2);

S
(1)
NT = f(n1 � 1)S

(1)
1,NT + (n2 � 1)S

(1)
2,NTg=(n� 2);

where

S
(1)
1 =

X
i∈H1

(�
(1)
i � �̂

(1)
1 )(�

(1)
i � �̂

(1)
1 )′=(n1 � 1);

S
(1)
2 =

X
i∈H2

(�
(1)
i � �̂

(1)
2 )(�

(1)
i � �̂

(1)
2 )′=(n2 � 1);

S
(1)
1,TT =

X
i∈H1

(�
(1)
i,T � �̂

(1)
1,T )(�

(1)
i,T � �̂

(1)
1,T )′=(n1 � 1);

S
(1)
2,TT =

X
i∈H2

(�
(1)
i,T � �̂

(1)
2,T )(�

(1)
i,T � �̂

(1)
2,T )′=(n2 � 1);

S
(1)
1,NT =

X
i∈H1

(�
(1)
i,N � �̂

(1)
1,N)(�

(1)
i,T � �̂

(1)
1,T )′=(n1 � 1);

S
(1)
2,NT =

X
i∈H2

(�
(1)
i,N � �̂

(1)
2,N)(�

(1)
i,T � �̂

(1)
2,T )′=(n2 � 1):

Similar to the definitions of �
(1)
1 , �

(1)
2 , �(1), �

(1)
1,T , �

(1)
2,T , and �

(1)
T , we denote for any ‘ = 1; 2,

�
(2)
` = E(�(2)jY = ‘) = (�̃

(2)′

`1 ; : : : ; �̃
(2)′

`pn
)′;

�̃
(2)
`j = E(�̃

(2)
j jY = ‘) = (�`j,sn+1; �`j,sn+2; : : : )

′ 2 R∞; j = 1; : : : ; pn;

�
(2)
`,T : formed by stacking f�̃(2)

`j : j 2 Tg in a column,

�(2) = �
(2)
2 � �

(2)
1 ; �

(2)
T = �

(2)
2,T � �

(2)
1,T :
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Similar to the constructions of �(1) and �
(1)
T , we denote �∗(1), �

∗(1)
T , �∗(2), and �

∗(2)
T as

�∗(1) = (�
∗(1)′
1 ; : : : ; �∗(1)

′

pn
)′ with each �

∗(1)
j = (�∗j1; : : : ; �

∗
jsn

)′;

�
∗(1)
T : formed by stacking f�∗(1)j : j 2 Tg in a column,

�∗(2) = (�
∗(2)′
1 ; : : : ; �∗(2)

′

pn
)′ with each �

∗(2)
j = (�∗j,sn+1; �

∗
j,sn+2; : : : )

′;

�
∗(2)
T : formed by stacking f�∗(2)j : j 2 Tg in a column.

In the next section, we present the proofs of the main results, Theorems 1-2 and Corollary 1.

2 Proofs of Theorems 1-2 and Corollary 1

Proof of Theorem 1: Under conditions (A1) and (A2), property (i) holds directly from

Lemma 1. To show property (ii), first note that

∆ =(�∗
′

T ∗ΣT ∗T ∗�
∗
T ∗)

1/2 = f(Λ1/2
T ∗ �

∗
T ∗)
′(Λ
†1/2
T ∗ ΣT ∗T ∗Λ

†1/2
T ∗ )(Λ

1/2
T ∗ �

∗
T ∗)g1/2

�c1/21 kΛ
1/2
T ∗ �

∗
T ∗k2 = c

1/2
1 (

X
j∈T ∗

∞X
k=1

!jk�
∗2
jk)1/2:

Together with condition (A3), it can be seen that

∆!1; as n!1: (1)

Hence, property (ii) holds from (6) in the main paper and (1). To show property (iii), first

note that

∆(1) = f1 + o(r−1n ) + o(r−1/2n �1/2
n )g∆!1; (2)

by Lemma 1 and (1). Moreover, by definition, it is not hard to verify that

R(�∗)=R◦(�(1)) = (�1 + �2Ω1)(�1 + �2Ω2)
−1Ω3; (3)
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where

Ω1 = Φ(�∆=2 + log(�1=�2)=∆)=Φ(�∆=2 + log(�2=�1)=∆);

Ω2 = Φ(�∆(1)=2 + log(�1=�2)=∆
(1))=Φ(�∆(1)=2 + log(�2=�1)=∆

(1));

Ω3 = Φ(�∆=2 + log(�2=�1)=∆)=Φ(�∆(1)=2 + log(�2=�1)=∆
(1)):

For the term Ω1, it can be rewritten as

Ω1 = Φ(�%1/2n (1 + #n))=Φ(�%1/2n ); (4)

where %n = f∆=2 � log(�2=�1)=∆g2 and #n = 4 log(�2=�1)=f∆2 � 2 log(�2=�1)g. Since

%n !1 and %n#n ! log(�2=�1) under (1), we immediately conclude that

Ω1 ! �2=�1; (5)

by applying Lemma 1 of Shao et al. (2011) to (4). Similar argument leads to

Ω2 ! �2=�1: (6)

For the term Ω3, it can be expressed as

Ω3 = Φ(�%̃1/2n (1 + #̃n))=Φ(�%̃1/2n ); (7)

where %̃n = f∆(1)=2�log(�2=�1)=∆
(1)g2 and #̃n = [f∆∆(1)+2 log(�2=�1)g(∆�∆(1))]=f∆∆(1)2�

2 log(�2=�1)∆g. Based on (2) and (A3), one can show that

%̃n !1; %̃n#̃n ! 0:

Together with (7) and Lemma 1 of Shao et al. (2011), it can be concluded that

Ω3 ! 1:

Together with (3), (5) and (6), we have R(�∗)=R◦(�(1))! 1, which completes the proof.
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Remark: Although not part of the proof, it is important to justify that the ideal classifier

in (3) of the main article is really the optimal rule. By definition, we have

�jY = 1 � N(�1;Σ); �jY = 2 � N(�2;Σ);

which implies

Σ†1/2�jY = 1 � N(Σ†1/2�1; I); Σ†1/2�jY = 2 � N(Σ†1/2�2; I):

Therefore, the conditional density functions of z = Σ†1/2� take the form:

fz(zjY = i) / expf�2−1(z � Σ†1/2�i)
′(z � Σ†1/2�i)g; for i = 1; 2:

By change of variables, the conditional density functions of � = Σ



where v̂T is defined in (16) of the main paper and

ṽT = fn1n2n
−1(n� 2)−1gf1 + �n�̂

(1)′

T S
(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )g

�
1+

fn1n2n
−1(n� 2)−1g�̂(1)

′

T S
(1)−1
TT �̂

(1)
T

�−1
S
(1)−1
TT �̂

(1)
T � �nS

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T ):

To prove property (i), based on (8), (9) and the Karush-Kuhn-Tucker conditions, it is

sufficient to show that there exist positive constants c5; c6 > 0 such that

P
�
fn1n2n

−1(n� 2)−1g�̂(1)T � fS
(1)
TT + n1n2n

−1(n� 2)−1�̂
(1)
T �̂

(1)′

T gṽT =

�nΛ̂
(1)1/2
T sgn(ṽT )

�
� 1� c5[f(pn � qn)sng−1 + (qnsn)−1 + flog(n)g−1+

exp(�n�1=12) + exp(�n�2=12)]; (10)

and

P
�Λ̂

(1)−1/2
N

�
fn1n2n

−1(n� 2)−1g�̂(1)N � fS
(1)
NT + n1n2n

−1(n� 2)−1�̂
(1)
N �̂

(1)′

T g

� ṽT
�
∞ � �n

�
� 1� c6[f(pn � qn)sng−1 + (qnsn)−1 + flog(n)g−1+

exp(�n�1=12) + exp(�n�2=12)]: (11)

Note that the random quantity S
(1)
NT can be expressed as S

(1)
NT = f(n1 � 1)S

(1)
1,NT + (n2 �

1)S
(1)
2,NTg=(n � 2), where S

(1)
1,NT =

P
i∈H1

(�
(1)
i,N � �̂

(1)
1,N)(�

(1)
i,T � �̂

(1)
1,T )′=(n1 � 1) and S

(1)
2,NT =P

i∈H2
(�

(1)
i,N� �̂

(1)
2,N)(�

(1)
i,T � �̂

(1)
2,T )′=(n2�1). Since ṽT is the solution to the convex optimization

problem specified in Lemma 2, the first order condition together with Lemma 11 yields (10)

immediately. To show (11), we first note that

Λ̂
(1)−1/2
N

�
fn1n2n

−1(n� 2)−1g�̂(1)N � fS
(1)
NT + n1n2n

−1(n� 2)−1� (12)

�̂
(1)
N �̂

(1)′

T gṽT
�
∞ �

�
1 + kΛ̂(1)−1/2

N Λ
(1)1/2
N � I(pn−qn)snkmax

�
� kΨk∞;

where Ψ = Λ
(1)−1/2
N

�
fS(1)

NT + n1n2n
−1(n � 2)−1�̂

(1)
N �̂

(1)′

T gṽT � fn1n2n
−1(n � 2)−1g�̂(1)N

�
. By
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definition, conditional on any nonempty set fYi = yigni=1 \Mn,

(n� 2)Λ(1)−1/2S(1)Λ(1)−1/2jfYi = yigni=1 \Mn

�Wishart(n� 2jΛ(1)−1/2Σ(1)Λ(1)−1/2): (13)

where the set Mn = f�1=2 � n1=n � 3�1=2g \ f�2=2 � n2=n � 3�2=2g is defined in

Lemma 3. Moreover, conditional on any nonempty fYi = yigni=1 \Mn,

(n� 2)Λ(1)−1/2S(1)Λ(1)−1/2 ? �̂(1);

where the symbol ? means independent of. Together with (13), it can be concluded that

there exists a collection fZlgn−2l=1 of n� 2 random vectors in Rpnsn satisfying (14) to (16) as

follows.

(n� 2)Λ(1)−1/2S(1)Λ(1)−1/2 =
n−2X
l=1

ZlZ
′
l : (14)

Conditional on any nonempty set fYi = yigni=1 \Mn,

fZlgn−2l=1 ? �̂(1): (15)

Conditional on any nonempty set fYi = yigni=1 \Mn,

ZljfYi = yigni=1 \Mn
i.i.d� N(0;Λ(1)−1/2Σ(1)Λ(1)−1/2); l = 1; : : : ; n� 2: (16)

For each l = 1; : : : ; n � 2, we write the vector Zl = (Z̃ ′l1; : : : ; Z̃
′
lpn

)′ 2 Rpnsn with sub-

vectors Z̃lj = (Zlj1; : : : ; Zljsn)′ 2 Rsn . Similarly, for each l = 1; : : : ; n � 2, we let Zl,T =

(Z̃ ′l1; : : : ; Z̃
′
lqn

)′ 2 Rqnsn and Zl,N = (Z̃ ′l,qn+1; : : : ; Z̃
′
lpn

)′ 2 R(pn−qn)sn . Accordingly, we denote

ZT =[Z1,T ; : : : ; Zn−2,T ] 2 Rqnsn×(n−2);

ZN =[Z1,N ; : : : ; Zn−2,N ] 2 R(pn−qn)sn×(n−2); (17)

Z =[Z ′T ; Z
′
N ]′ = [Z1; : : : ; Zn−2] 2 Rpnsn×(n−2):
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It follows from (15) and (17) that conditional on nonempty set fYi = yigni=1 \Mn,

Z ? �̂(1): (18)

Based on (14) and (17), it can be observed that

(n� 2)Λ
(1)−1/2
N S

(1)
NTΛ

(1)−1/2
T = ZNZ

′
T = Λ

(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T ZTZ

′
T

+(ZN � Λ
(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T ZT )Z ′T : (19)

The terms ZN � Λ
(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T ZT and ZT can be expressed as

ZN � Λ
(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T ZT =[WZ1; : : : ;WZn−2];

ZT =[W ∗Z1; : : : ;W
∗Zn−2]; (20)

where

W = [�Λ
(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T ; I(pn−qn)sn ] 2 R(pn−qn)sn×pnsn ;

W ∗ = [Iqnsn ; 0qnsn×(pn−qn)sn ] 2 Rqnsn×pnsn :

Based on (16) and (20), it can be deduced that264WZl

W ∗Zl

375 ���fYi = yigni=1 \Mn
i.i.d� (21)

N

 
0pnsn×1;

2666666664
Λ

(1)−1/2
N (Σ

(1)
NN � Σ

(1)
NTΣ

(1)−1
TT Σ

(1)
TN)Λ

(1)−1/2
N 0(pn−qn)sn×qnsn

0qnsn×(pn−qn)sn Λ
(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
T

3777777775
!
;

for l = 1; : : : ; n � 2. Hence, by combining (16), (20) with (21), it can be concluded that

conditional on any nonempty set fYi = yigni=1 \Mn,

ZT ? ZN � Λ
(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T ZT : (22)
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Note that (18) entails that conditional on any nonempty set fYi = yigni=1 \Mn,

�̂
(1)
T ? fZT ; ZN � Λ

(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T ZTg;

�̂
(1)
T ? ZN � Λ

(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T ZT ; (23)

�̂
(1)
T ? ZT :

Piecing (22) and (23) together yields that conditional on any nonempty set fYi = yigni=1 \

Mn,

f�̂(1)T ; ZTg ? ZN � Λ
(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T ZT : (24)

In a similar fashion, the quantity Λ
(1)−1/2
N �̂

(1)
N can be decomposed into

Λ
(1)−1/2
N �̂

(1)
N = Λ

(1)−1/2
N (�̂

(1)
N � Σ

(1)
NTΣ

(1)−1
TT �̂

(1)
T ) + Λ

(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT �̂

(1)
T : (25)

It is not difficult to verify that conditional on any nonempty set fYi = yigni=1 \Mn,2666666664
Λ

(1)−1/2
N (�̂

(1)
N � Σ

(1)
NTΣ

(1)−1
TT �̂

(1)
T )

Λ
(1)−1/2
T �̂

(1)
T

3777777775
�����fYi = yigni=1 \Mn � N

 
2666666664

Λ
(1)−1/2
N (�

(1)
N � Σ

(1)
NTΣ

(1)−1
TT �

(1)
T )

Λ
(1)−1/2
T �

(1)
T

3777777775
;

(26)

nn−11 n−12

2666666664
Λ

(1)−1/2
N (Σ

(1)
NN � Σ

(1)
NTΣ

(1)−1
TT Σ

(1)
TN)Λ

(1)−1/2
N 0(pn−qn)sn×qnsn

0qnsn×(pn−qn)sn Λ
(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
T

3777777775
!
;

which further entails that conditional on any nonempty set fYi = yigni=1 \Mn,

�̂
(1)
T ? �̂

(1)
N � Σ

(1)
NTΣ

(1)−1
TT �̂

(1)
T : (27)
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Based on (18), it is seen that conditional on any nonempty set fYi = yigni=1 \Mn,

ZT ? f�̂(1)T ; �̂
(1)
N � Σ

(1)
NTΣ

(1)−1
TT �̂

(1)
T g;

ZT ? �̂
(1)
N � Σ

(1)
NTΣ

(1)−1
TT �̂

(1)
T ; (28)

ZT ? �̂
(1)
T :

Together with (27) yields that conditional on any nonempty set fYi = yigni=1 \Mn,

f�̂(1)T ; ZTg ? �̂
(1)
N � Σ

(1)
NTΣ

(1)−1
TT �̂

(1)
T : (29)

Moreover, using (19) and (25), elementary algebra yields that

Ψ = Π1 � Π2 � Π3 � Π4; (30)

with

Π1 = (n� 2)−1(ZN � Λ
(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T ZT )Z ′TΛ

(1)1/2
T ṽT ;

Π2 = #̂Λ
(1)−1/2
N (�̂

(1)
N � Σ

(1)
NTΣ

(1)−1
TT �̂

(1)
T );

Π3 = �nΛ
(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T (Λ

(1)−1/2
T Λ̂

(1)1/2
T � Iqnsn)sgn(�

(1)
T );

Π4 = �nΛ
(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T );

where

#̂ =fn1n2n
−1(n� 2)−1gf1 + �n�̂

(1)′

T S
(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )g�

1 + fn1n2n
−1(n� 2)−1g�̂(1)

′

T S
(1)−1
TT �̂

(1)
T

�−1
:

Similar arguments as in the proof of Lemma 11 indicates that there exist universal constants

c7 > 0 and c9 > c8 > 0 such that with probability at least 1 � c7[(qnsn)−1 + flog(n)g−1 +

exp(�n�1=12) + exp(�n�2=12)],

c8f�(1)
′

T Σ
(1)−1
TT �

(1)
T g

−1 � #̂ � c9f�(1)
′

T Σ
(1)−1
TT �

(1)
T g

−1: (31)
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For the term Π1, it can be decomposed into

Π1 = Υ1 �Υ2; (32)

where

Υ1 = #̂(n� 2)−1(ZN � Λ
(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T ZT )Z ′TΛ

(1)1/2
T S

(1)−1
TT �̂

(1)
T ;

Υ2 = �n(n� 2)−1(ZN � Λ
(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T ZT )Z ′TΛ

(1)1/2
T S

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T ):

At this point, we denote fejg(pn−qn)sn

j=1 as the standard basis in R(pn−qn)sn . Moreover, ac-

cording to (20), (21) and (24), it can be deduced that conditional on any nonempty set

fYi = yigni=1 \Mn \ f�̂(1)T ; ZTg and for any j � (pn � qn)sn,

(ZN � Λ
(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T ZT )′ej

��fYi = yigni=1 \Mn \ f�̂(1)T ; ZTg

� N
�
0(n−2)×1; fe′jΛ

(1)−1/2
N (Σ

(1)
NN � Σ

(1)
NTΣ

(1)−1
TT Σ

(1)
TN)Λ

(1)−1/2
N ejgIn−2

�
;

which implies that conditional on any nonempty set fYi = yigni=1\Mn\f�̂(1)T ; ZTg and for

any j � (pn � qn)sn,

e′jΥ1

��fYi = yigni=1 \Mn \ f�̂(1)T ; ZTg � N(0;Γj);

with each

Γj = #̂2(n� 2)−1fe′jΛ
(1)−1/2
N (Σ

(1)
NN � Σ

(1)
NTΣ

(1)−1
TT Σ

(1)
TN)Λ

(1)−1/2
N ejg�̂(1)

′

T S
(1)−1
TT �̂

(1)
T

� #̂2(n� 2)−1�̂
(1)′

T S
(1)−1
TT �̂

(1)
T :

Together with the maximal inequality, we have that for any t � 0,

P
�
kΥ1k∞ � t

��fYi = yigni=1 \Mn \ f�̂(1)T ; ZTg
�

�2(pn � qn)sn exp
�
� 4−1#̂−2f�̂(1)

′

T S
(1)−1
TT �̂

(1)
T g

−1nt2
�
:

11





with each

Ξj =�2n(n� 2)−1fe′jΛ
(1)−1/2
N (Σ

(1)
NN � Σ

(1)
NTΣ

(1)−1
TT Σ

(1)
TN)Λ

(1)−1/2
N ejgfsgn(�

(1)
T )′

Λ̂
(1)1/2
T S

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )g

��2n(n� 2)−1fsgn(�
(1)
T )′Λ̂

(1)1/2
T S

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )g:

Together with maximal inequality, we have that for any t � 0,

P
�
kΥ2k∞ � t

��fYi = yigni=1 \Mn \ f�̂(1)T ; ZTg
�

�2(pn � qn)sn exp
�
� 4−1�−2n fsgn(�

(1)
T )′Λ̂

(1)1/2
T S

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )g−1nt2

�
:

Setting t = [8�2nfsgn(�
(1)
T )′Λ̂

(1)1/2
T S

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )g logf(pn� qn)sng=n]1/2 in the above

inequality yields

P
�
kΥ2k∞ � [8�2nfsgn(�

(1)
T )′Λ̂

(1)1/2
T S

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )g]1/2

[logf(pn � qn)sng=n]1/2
���fYi = yigni=1 \Mn \ f�̂(1)T ; ZTg

�
� 1� 2f(pn � qn)sng−1:

Together with similar reasoning as in (34), one has

P
�
kΥ2k∞ � [8�2nfsgn(�

(1)
T )′Λ̂

(1)1/2
T S

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )g]1/2

[logf(pn � qn)sng=n]1/2
�

�1� c13[f(pn � qn)sng−1 + exp(�n�1=12) + exp(�n�2=12)];

for some universal constant c13 > 0. Then, it follows from the above inequality and

Lemma 9 that there exist universal constants c14; c15 > 0 such that with probability at

least 1� c14[f(pn � qn)sng−1 + (qnsn)−1 + flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)],

kΥ2k∞ � c15[qnsn logf(pn � qn)sng=n]1/2�n:

13





For the term Π3, it follows from condition (C2) and Lemma 5 that there exist universal

constants c21; c22 > 0 such that with probability at least 1�c21f(qnsn)−1 +exp(�n�1=12)+

exp(�n�2=12)g, we have kΠ3k∞ � c22fqnsn log(qnsn)=ng1/2�n. Together with (37), (36)

and (30), there exists a universal constant c23 > 0 such that with probability at least

1� c23[f(pn� qn)sng−1 + (qnsn)−1 + flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)], we have

kΨk∞ � (1� =2)�n. Together with (12) and Lemma 6, the assertion (11) holds trivially,

which completes the proof of property (i). To show property (iii), we recall that ṽ =

(ṽ′T ; 0
′)′ 2 Rpnsn , where ṽT is defined in Lemma 2. Together with (9), we have that there

exists a universal constants c24 > 0 such that with probability at least 1� c24f(qnsn)−1 +

flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)g,

R�(v̂) = R�(ṽ) = �1Ω1 + �2Ω2; (38)

where

Ω1 = Φ
��
� ṽ′T (�̂

(1)
1,T � �

(1)
1,T )� 2−1ṽ′T �̂

(1)
T + fṽ′TS

(1)
TT ṽTgfṽ

′
T �̂

(1)
T g

−1flog(n2=n1)g
�

fṽ′TΣ
(1)
TT ṽTg

−1/2
�
;

Ω2 = Φ
��
� ṽ′T (�

(1)
2,T � �̂

(1)
2,T )� 2−1ṽ′T �̂

(1)
T � fṽ

′
TS

(1)
TT ṽTgfṽ

′
T �̂

(1)
T g

−1flog(n2=n1)g
�

fṽ′TΣ
(1)
TT ṽTg

−1/2
�
:

Also recalling from (11) of the main paper that

R◦(�(1)) = �1Ω
∗
1 + �2Ω

∗
2; (39)

with

Ω∗1 = Φ
�
� 2−1f�(1)

′

T Σ
(1)−1
TT �

(1)
T g

1/2 + log(�2=�1)f�(1)
′

T Σ
(1)−1
TT �

(1)
T g

−1/2
�
;

Ω∗2 = Φ
�
� 2−1f�(1)

′

T Σ
(1)−1
TT �

(1)
T g

1/2 � log(�2=�1)f�(1)
′

T Σ
(1)−1
TT �

(1)
T g

−1/2
�
:
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We denote an, bn, Xn and Un as

an = 4−1�
(1)′

T Σ
(1)−1
TT �

(1)
T ; bn = log(�2=�1)f�(1)

′

T Σ
(1)−1
TT �

(1)
T g

−1/2;

Xn = f2ṽ′T (�̂
(1)
1,T � �

(1)
1,T ) + ṽ′T �̂

(1)
T gfṽ

′
TΣ

(1)
TT ṽTg

−1/2f�(1)
′

T Σ
(1)−1
T 1/



For the term ṽ′TS
(1)
TT ṽT , using (42), we have

ṽ′TS
(1)
TT ṽT = #̃2�

(1)′

T Σ
(1)−1
TT �

(1)
T + I1 + I2 + I3; (44)

where I1 = #̂2�̂
(1)′

T S
(1)−1
TT �̂

(1)
T � #̃2�

(1)′

T Σ
(1)−1
TT �

(1)
T , I2 = �2nsgn(�

(1)
T )′Λ̂

(1)1/2
T S

(1)−1
TT

Λ̂
(1)1/2
T sgn(�

(1)
T ), I3 = �2#̂�n�̂

(1)′

T S
(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T ). For the term I1, since jI1j �

#̂2j�̂(1)
′

T S
(1)−1
TT �̂

(1)
T ��

(1)′

T Σ
(1)−1
TT �

(1)
T j+j#̂�#̃j�(2j#̂j+j#̂�#̃j)��

(1)′

T Σ
(1)−1
TT �

(1)
T , it follows from Lem-

ma 4, (31), (41), and (43) that there exist constants c27; c28 > 0 such that with probability

at least 1� c27[(qnsn)−1 + flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)],

jI1j �c28f�(1)
′

T Σ
(1)−1
TT �

(1)
T g

−1[qnsn=n+ flog log(n)=ng1/2] + c28�nf�(1)
′

T Σ
(1)−1
TT �

(1)
T g

−1/2�

[(qnsn)3/2=n+ fqnsn log(qnsn)=ng1/2 + fqnsn log log(n)=ng1/2]:

To bound the term I2, since jI2j . �2nqnsn
�
1 +

��fsgn(�
(1)
T )′Λ̂

(1)1/2
T S

(1)−1
TT Λ̂

(1)1/2
T

sgn(�
(1)
T )g � fsgn(�

(1)
T )′Λ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )g−1 � 1

���, it follows from Lemma 9 that

there exist universal constants c29; c30 > 0 such that with probability at least 1�c29[(qnsn)−1+

flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)],

jI2j � c30�
2
nqnsn:

For the term I3, since jI3j � 2�nj#̂j � j�̂(1)
′

T S
(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )� �(1)

′

T Σ
(1)−1
TT Λ

(1)1/2
T

sgn(�
(1)
T )j + 2j#̂j � f�n�(1)

′

T Σ
(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )g, it follows from Lemma 10, (93) and (31)

that there exist constants c31; c32 > 0 such that with probability at least 1� c31[(qnsn)−1 +

flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)],

jI3j � c32(�
2
nqnsn)1/2f�(1)

′

T Σ
(1)−1
TT �

(1)
T g

−1/2:

By combining the above three inequalities with (44), we have that there exist universal

constants c33; c34 > 0 such that with probability at least 1 � c33[(qnsn)−1 + flog(n)g−1 +
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exp(�n�1=12) + exp(�n�2=12)],

jṽ′TS
(1)
TT ṽT � #̃

2�
(1)′

T Σ
(1)−1
TT �

(1)
T j � c34(�

2
nqnsn)1/2f�(1)

′

T Σ
(1)−1
TT �

(1)
T g

−1/2: (45)

Since jṽ′TS
(1)
TT ṽT�ṽ′TΣ

(1)
TT ṽT j � �max(Λ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T )kΛ(1)−1/2

T (Σ
(1)
TT�S

(1)
TT )Λ

(1)−1/2
T k2ṽ′TS

(1)
TT ṽT ,

it follows from Lemma 7 and Lemma 8 that there exist constants c35; c36 > 0 such that

with probability at least 1� c35f(qnsn)−1 + exp(�n�1=12) + exp(�n�2=12)g,

jṽ′TS
(1)
TT ṽT � ṽ

′
TΣ

(1)
TT ṽT j � c36fq2ns2n log(qnsn)=ng1/2ṽ′TS

(1)
TT ṽT : (46)

For the term ṽ′T �̂
(1)
T , using (42) again, it has the form

ṽ′T �̂
(1)
T = #̃�

(1)′

T Σ
(1)−1
TT �

(1)
T + V1 + V2; (47)

where V1 = #̂�̂
(1)′

T S
(1)−1
TT �̂

(1)
T � #̃�

(1)′

T Σ
(1)−1
TT �

(1)
T and V2 = ��n�̂(1)

′

T S
(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T ). S-

ince jV1j � j#̂j � j�̂(1)
′

T S
(1)−1
TT �̂

(1)
T � �

(1)′

T Σ
(1)−1
TT �

(1)
T j + j#̂ � #̃j � �(1)

′

T Σ
(1)−1
TT �

(1)
T , it follows from

Lemma 4, (31), (43) and (41) that there exist universal constants c37; c38 > 0 such that

with probability at least 1� c37[(qnsn)−1 + flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)],

jV1j �c38[qnsn=n+ flog log(n)=ng1/2] + c38�nf�(1)
′

T Σ
(1)−1
TT �

(1)
T g

1/2

� [(qnsn)3/2=n+ fqnsn log(qnsn)=ng1/2 + fqnsn log log(n)=ng1/2]:

Since jV2j � �nj�̂(1)
′

T S
(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )��(1)

′

T Σ
(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )j+�n�(1)

′

T Σ
(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T ),

it holds from Lemma 10, (93), and (41) that there exist constants c39; c40 > 0 such that

with probability at least 1� c39[(qnsn)−1 + flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)],

jV2j � c40(�
2
nqnsn)1/2f�(1)

′

T Σ
(1)−1
TT �

(1)
T g

1/2:

By combining the above two inequalities with (47), we conclude that there exist universal

constants c41; c42 > 0 such that with probability at least 1 � c41[(qnsn)−1 + flog(n)g−1 +

exp(�n�1=12) + exp(�n�2=12)],

jṽ′T �̂
(1)
T � #̃�

(1)′

T Σ
(1)−1
TT �

(1)
T j � c42(�

2
nqnsn)1/2f�(1)

′

T Σ
(1)−1
TT �

(1)
T g

1/2: (48)
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Moreover, using (31), (45), (46), (48), and the fact that �2nqnsn�
(1)′

T Σ
(1)−1
TT �

(1)
T = o(1), ele-

mentary calculation indicates that

2a1/2n (Un � bn) = op(1): (49)

For the term ṽ′T (�̂
(1)
1,T � �

(1)
1,T ), it follows from (42) and Holder’s inequality that

jṽ′T (�̂
(1)
1,T � �

(1)
1,T )j � kΛ(1)−1/2

T (�̂
(1)
1,T � �

(1)
1,T )k∞

�
qnsn�max(Λ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T )

	1/2��
j#̂j � f�̂(1)

′

T S
(1)−1
TT �̂

(1)
T g

1/2 + �nfsgn(�
(1)
T )′Λ̂

(1)1/2
T S

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )g1/2

�
:

Together with Lemma 4, Lemma 8, Lemma 9 and (31), it can be deduced that there

exist universal constants c43; c44 > 0 such that with probability at least 1� c43[(qnsn)−1 +

flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)],

jṽ′T (�̂
(1)
1,T � �

(1)
1,T )j � c44(qnsn)1/2f�(1)

′

T Σ
(1)−1
TT �

(1)
T g

−1/2kΛ(1)−1/2
T (�̂

(1)
1,T � �

(1)
1,T )k∞: (50)

To bound the term kΛ(1)−1/2
T (�̂

(1)
1,T � �

(1)
1,T )k∞, note that

Λ
(1)−1/2
T (�̂

(1)
1,T � �

(1)
1,T )
��fYi = yigni=1 \Mn � N(0; n−11 Λ

(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
T ):

Union bound inequality and the concentration inequality imply that for any t � 0,

P
�
kΛ(1)−1/2

T (�̂
(1)
1,T � �

(1)
1,T )k∞ � t

��fYi = yigni=1 \Mn

	
� 2qnsn expf�(�1=4)nt2g:

Plugging t = c45flog(qnsn)=ng1/2 with c45 = (8=�1)
1/2 into the above yields P

�
kΛ(1)−1/2

T (�̂
(1)
1,T�

�
(1)
1,T )k∞ � c45flog(qnsn)=ng1/2

��fYi = yigni=1 \ Mn

�
� 1 � 2(qnsn)−1. Together with

Lemma 3, it can be deduced that P
�
kΛ(1)−1/2

T (�̂
(1)
1,T � �

(1)
1,T )k∞ � c45flog(qnsn)=ng1/2

�
�

1�2f(qnsn)−1 +exp(�n�1=12)+exp(�n�2=12)g. Together with (50), there exist universal

constants c46; c47 > 0 such that with probability at least 1 � c46[(qnsn)−1 + flog(n)g−1 +

exp(�n�1=12) + exp(�n�2=12)],

jṽ′T (�̂
(1)
1,T � �

(1)
1,T )j � c47f�(1)

′

T Σ
(1)−1
TT �

(1)
T g

−1/2fqnsn log(qnsn)=ng1/2:
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Together with (31), (45), (46), (48), and conditions (C2)–(C5), it is seen that 4anXn =

op(1). Together with (49), (41), (40), and Lemma 12, it can be concluded that

Ω1=Ω
∗
1

p! 1; Ω∗1 ! 0: (51)

Similar argument leads to Ω2=Ω
∗
2

p! 1, Ω∗2 ! 0. Together with (38), (39), and (51), it holds

that R�(v̂)=R◦(�(1))
p! 1, R◦(�(1))! 0, which completes the proof.

Proof of Corollary 1: It follows directly from Theorems 1 and 2.

In the next section, we present all the auxiliary lemmas with their proofs.

3 Auxiliary lemmas with their proofs

Lemma 1. Assume the following conditions (a){(b):

(a) c1 � �min(Λ†1/2ΣΛ†1/2) � �max(Λ
†1/2ΣΛ†1/2) � c2,

c1 � �min(Λ(1)−1/2Σ(1)Λ(1)−1/2) � �max(Λ
(1)−1/2Σ(1)Λ(1)−1/2) � c2,

for some universal constants 0 < c1 < c2.

(b)
P

j∈T ∗
P∞

k=sn+1 !jk�
∗2
jk = o(minj∈T ∗

Psn

k=1 !jk�
∗2
jk).

Then we have the following properties:

1) N � N∗ and T ∗ � T .

2) ∆(1)2 = f1 + o(r−1n ) + o(r
−1/2
n �

1/2
n )g∆2,

where the parameter �n = (�
∗(1)′
T Σ

(1,2)
TT Σ

(2)†
TT Σ

(2,1)
TT �

∗(1)
T )=(�

∗(1)′
T Σ

(1)
TT�

∗(1)
T ) � 1.
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Proof of Lemma 1: First of all, we note that the equation Σ�∗ = � is equivalent to2666666666666666666664

Σ
(1)
TT Σ

(1)
TN Σ

(1,2)
TT Σ

(1,2)
TN

Σ



Together with the triangle inequality, we have

kΛ(1)−1/2
N (Σ

(1)
NN � Σ

(1)
NTΣ

(1)−1
TT Σ

(1)
TN)�

∗(1)
N k2

�kΛ(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Σ

(1,2)
TT �

∗(2)
T k2 + kΛ(1)−1/2

N Σ
(1,2)
NT �

∗(2)
T k2+

kΛ(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Σ

(1,2)
TN �

∗(2)
N k2 + kΛ(1)−1/2

N Σ
(1,2)
NN �

∗(2)
N k2;

which further implies that

kΛ(1)−1/2
N (Σ

(1)
NN � Σ

(1)
NTΣ

(1)−1
TT Σ

(1)
TN)�

∗(1)
N k

2
2

.kΛ(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Σ

(1,2)
TT �

∗(2)
T k

2
2 + kΛ(1)−1/2

N Σ
(1,2)
NT �

∗(2)
T k

2
2+

kΛ(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Σ

(1,2)
TN �

∗(2)
N k

2
2 + kΛ(1)−1/2

N Σ
(1,2)
NN �

∗(2)
N k

2
2: (54)

Based on condition (a) and Lemma 14, it is trivial to show that

�min

�
Λ

(1)−1/2
N (Σ

(1)
NN � Σ

(1)
NTΣ

(1)−1
TT Σ

(1)
TN)Λ

(1)−1/2
N

�
=�−1max

�
Λ

(1)1/2
N (Σ

(1)
NN � Σ

(1)
NTΣ

(1)−1
TT Σ

(1)
TN)−1Λ

(1)1/2
N

�
� c1: (55)

for the universal constant c1 > 0 defined in condition (a). Hence, for the term kΛ(1)−1/2
N (Σ

(1)
NN�

Σ
(1)
NTΣ

(1)−1
TT Σ

(1)
TN)�

∗(1)
N k22, we have

kΛ(1)−1/2
N (Σ

(1)
NN � Σ

(1)
NTΣ

(1)−1
TT Σ

(1)
TN)�

∗(1)
N k

2
2

�c1�max

�
Λ

(1)1/2
N (Σ

(1)
NN � Σ

(1)
NTΣ

(1)−1
TT Σ

(1)
TN)−1Λ

(1)1/2
N

�
� f(Σ(1)

NN � Σ
(1)
NTΣ

(1)−1
TT Σ

(1)
TN)�

∗(1)
N g

′

� Λ(1)−1/2
N Λ

(1)−1/2
N f(Σ(1)

NN � Σ
(1)
NTΣ

(1)−1
TT Σ

(1)
TN)�

∗(1)
N g

�c1(Λ(1)1/2
N �

∗(1)
N )′fΛ(1)−1/2

N (Σ
(1)
NN � Σ

(1)
NTΣ

(1)−1
TT Σ

(1)
TN)Λ

(1)−1/2
N g(Λ(1)1/2

N �
∗(1)
N )

�c21kΛ
(1)1/2
N �

∗(1)
N k

2
2; (56)

where the first inequality is by (55), and the last inequality is also based on (55). According

22



to condition (a) and Lemma 14 again, we have

�min

�
Λ

(1)1/2
N Σ

(1)−1
NN Λ

(1)1/2
N

�
= �−1max

�
Λ

(1)−1/2
N Σ

(1)
NNΛ

(1)−1/2
N

�
� c−12 ; (57)

�min

�
Λ

(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
T

�
� c1; (58)

�max

�
Λ

(1)−1/2
T Σ

(1)
TNΣ

(1)−1
NN Σ

(1)
NTΛ

(1)−1/2
T

�
� �max

�
Λ

(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
T

�
� c2; (59)

�max

�
Λ

(2)†1/2
T Σ

(2,1)
TT Σ

(1)−1
TT Σ

(1,2)
TT Λ

(2)†1/2
T

�
� �max

�
Λ

(2)†1/2
T Σ

(2)
TTΛ

(2)†1/2
T

�
� c2; (60)

for the universal constants c1 and c2 defined in condition (a). Thus, for the term

kΛ(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Σ

(1,2)
TT �

∗(2)
T k22, we have

kΛ(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Σ

(1,2)
TT �

∗(2)
T k

2
2

�c2�min

�
Λ

(1)1/2
N Σ

(1)−1
NN Λ

(1)1/2
N

�
(Σ

(1)
NTΣ

(1)−1
TT Σ

(1,2)
TT �

∗(2)
T )′(Λ

(1)−1/2
N Λ

(1)−1/2
N )(Σ

(1)
NTΣ

(1)−1
TT Σ

(1,2)
TT �

∗(2)
T )

�c2(Σ(1)
NTΣ

(1)−1
TT Σ

(1,2)
TT �

∗(2)
T )′Σ

(1)−1
NN (Σ

(1)
NTΣ

(1)−1
TT Σ

(1,2)
TT �

∗(2)
T )

�c2�max

�
Λ

(1)−1/2
T Σ

(1)
TNΣ

(1)−1
NN Σ

(1)
NTΛ

(1)−1/2
T

�
kΛ(1)1/2

T Σ
(1)−1
TT Σ

(1,2)
TT �

∗(2)
T k

2
2

�c22(Σ
(1)−1
TT Σ

(1,2)
TT �

∗(2)
T )′(Λ

(1)1/2
T Λ

(1)1/2
T )(Σ

(1)−1
TT Σ

(1,2)
TT �

∗(2)
T )

�c22c−11 �min

�
Λ

(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
T

�
(Σ

(1)−1
TT Σ

(1,2)
TT �

∗(2)
T )′(Λ

(1)1/2
T Λ

(1)1/2
T )(Σ

(1)−1
TT Σ

(1,2)
TT �

∗(2)
T )

�c22c−11 �max

�
Λ

(2)†1/2
T Σ

(2,1)
TT Σ

(1)−1
TT Σ

(1,2)
TT Λ

(2)†1/2
T

�
kΛ(2)1/2

T �
∗(2)
T k

2
2

�c32c−11 kΛ
(2)1/2
T �

∗(2)
T k

2
2;

where the first inequality is by (57), the fourth inequality follows from (59), the fifth

inequality is based on (58), and the last inequality is according to (60). Likewise, for the

term kΛ(1)−1/2
N Σ

(1,2)
NT �

∗(2)
T k22, we have

kΛ(1)−1/2
N Σ

(1,2)
NT �

∗(2)
T k

2
2 � c22kΛ

(2)1/2
T �

∗(2)
T k

2
2:

In a similar fashion, for the term kΛ(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Σ

(1,2)
TN �

∗(2)
N k22, we have

kΛ(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Σ

(1,2)
TN �

∗(2)
N k

2
2 � c32c

−1
1 kΛ

(2)1/2
N �

∗(2)
N k

2
2:
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In addition, for the term kΛ(1)−1/2
N Σ

(1,2)
NN �

∗(2)
N k22, one has

kΛ(1)−1/2
N Σ

(1,2)
NN �

∗(2)
N k

2
2 = (Σ

(1,2)
NN �

∗(2)
N )′(Λ

(1)−1/2
N Λ

(1)−1/2
N )(Σ

(1,2)
NN �

∗(2)
N )

�c2�min

�
Λ

(1)1/2
N Σ

(1)−1
NN Λ

(1)1/2
N

�
(Σ

(1,2)
NN �

∗(2)
N )′(Λ

(1)−1/2
N Λ

(1)−1/2
N )(Σ

(1,2)
NN �

∗(2)
N )

�c2(Λ(2)1/2
N �

∗(2)
N )′(Λ

(2)†1/2
N Σ

(2,1)
NN Σ

(1)−1
NN Σ

(1,2)
NN Λ

(2)†1/2
N )(Λ

(2)1/2
N �

∗(2)
N )

�c2�max

�
Λ

(2)†1/2
N Σ

(2,1)
NN Σ

(1)−1
NN Σ

(1,2)
NN Λ

(2)†1/2
N

�
kΛ(2)1/2

N �
∗(2)
N k

2
2

�c2�max

�
Λ

(2)†1/2
N Σ

(2)
NNΛ

(2)†1/2
N

�
kΛ(2)1/2

N �
∗(2)
N k

2
2

�c
N2)′



where the third equality follows from T ∗ � T . For the term �
∗(2)′
T Σ

(2)
TT�

∗(2)
T , we have

�
∗(2)′
T Σ

(2)
TT�

∗(2)
T � �max

�
Λ

(2)†1/2
T Σ

(2)
TTΛ

(2)†1/2
T

�
kΛ(2)1/2

T �
∗(2)
T k

2
2

�c2
X
j∈T ∗

∞X
k=sn+1

!jk�
∗2
jk � c2o(min

j∈T ∗

snX
k=1

!jk�
∗2
jk) � c2r

−1
n o(

X
j∈T ∗

snX
k=1

!jk�
∗2
jk)

�c2r−1n o(
X
j∈T ∗

∞X
k=1

!jk�
∗2
jk) � �min

�
Λ
†1/2
T ∗ ΣT ∗T ∗Λ

†1/2
T ∗

�
(�∗

′

T ∗Λ
1/2
T ∗ Λ

1/2
T ∗ �

∗
T ∗)o(r

−1
n )

�(�∗
′

T ∗ΣT ∗T ∗�
∗
T ∗)o(r

−1
n ) � ∆2o(r−1n ); (63)

where the last inequality is by (62). Regarding the term �
∗(1)′
T Σ

(1,2)
TT �

∗(2)
T , one has

j�∗(1)
′

T Σ
(1,2)
TT �

∗(2)
T j � kΛ

(2)†1/2
T Σ

(2,1)
TT �

∗(1)
T k2kΛ

(2)1/2
T �

∗(2)
T k2:

For the term kΛ(2)†1/2
T Σ

(2,1)
TT �

∗(1)
T k2, we have

kΛ(2)†1/2
T Σ

(2,1)
TT �

∗(1)
T k

2
2 . �

∗(1)′
T (Σ

(1,2)
TT Σ

(2)†
TT Σ

(2,1)
TT )�

∗(1)
T . �n�

∗(1)′
T Σ

(1)
TT�

∗(1)
T

.�nkΛ1/2
T ∗ �

∗
T ∗k22 . �n�

∗′
T ∗ΣT ∗T ∗�

∗
T ∗ . �n∆2;

where the last inequality is by (62). For the term kΛ(2)1/2
T �

∗(2)
T k2, one has

kΛ(2)1/2
T �

∗(2)
T k

2
2 . kΛ

(2)1/2
T ∗ �

∗(2)
T ∗ k

2
2 . o(min

j∈T ∗

snX
k=1

!jk�
∗2
jk) .

X
j∈T ∗

∞X
k=1

!jk�
∗2
jko(r

−1
n ) . ∆2o(r−1n ):

To this end, based on the above three inequalities, we have

j�∗(1)
′

T Σ
(1,2)
TT �

∗(2)
T j . ∆2o(r−1/2n �1/2

n ): (64)

For the term �
∗(1)′
T Σ

(1)
TT�

∗(1)
T , we have

�
∗(1)′
T Σ

(1)
TT�

∗(1)
T =�

(1)′

T Σ
(1)
TT�

(1)
T � (�

∗(1)
T � �(1)

T )′Σ
(1)
TT (�

∗(1)
T � �(1)

T ) + 2�
∗(1)′
T Σ

(1)
TT (�

∗(1)
T � �(1)

T )

=�
(1)′

T Σ
(1)
TT�

(1)
T � �

∗(2)′
T Σ

(2,1)
TT Σ

(1)−1
TT Σ

(1,2)
TT �

∗(2)
T � 2�

∗(1)′
T Σ

(1,2)
TT �

∗(2)
T

=�
(1)′

T Σ
(1)
TT�

(1)
T +O(1)�

∗(2)′
T Σ

(2)
TT�

∗(2)
T � 2�

∗(1)′
T Σ

(1,2)
TT �

∗(2)
T

=�
(1)′

T Σ
(1)
TT�

(1)
T + ∆2o(r−1n + r−1/2n �1/2

n );
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where the second equality follows from (61), and the last equality is based on (63) and

(64). Together with (64), (63) and (62), it can be concluded that ∆(1)2 = f1 + o(r−1n ) +

o(r
−1/2
n �

1/2
n )g∆2, which completes the proof.

Lemma 2. Assume the invertibility of S
(1)
TT and consider the following optimization prob-

lem:

min
vT∈Rqnsn

h1

2
v′T
�
S
(1)
TT +

n1n2

n(n� 2)
�̂
(1)
T �̂

(1)′

T

	
vT �

n1n2

n(n� 2)
v′T �̂

(1)
T + �n(Λ̂

(1)1/2
T vT )′sgn(�

(1)
T )
i
;

where vT = (v′1; : : : ; v
′
qn

)′ with sub-vectors vj = (vj1; : : : ; vjsn)′ 2 Rsn. Let ṽT be the

solution of this optimization problem where ṽT = (ṽ′1; : : : ; ṽ
′
qn

)′ with sub-vectors ṽj =

(ṽj1; : : : ; ṽjsn)′ 2 Rsn, then we have:

ṽT =fn1n2n
−1(n� 2)−1gf1 + �n�̂

(1)′

T S
(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )g

�
�
1 + fn1n2n

−1(n� 2)−1g�̂(1)
′

T S
(1)−1
TT �̂

(1)
T

�−1
S
(1)−1
TT �̂

(1)
T � �nS

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T ):

Proof of Lemma 2: The proof is analogous to that of Lemma 16.

Lemma 3. De�ne the events Mn and M∗
n as

Mn = f�1=2 � n1=n � 3�1=2g \ f�2=2 � n2=n � 3�2=2g;

M∗
n = f�1�2=4 � n1n2=n

2 � 9�1�2=4g:

Then we have the following properties:

1) P (Mn) � 1� 2 exp(�n�1=12)� 2 exp(�n�2=12).

2) P (M∗
n) � 1� 2 exp(�n�1=12)� 2 exp(�n�2=12).

Proof of Lemma 3: First of all, note that n1 � Binomial(n; �1). Invoking the chernoff tail

bounds for binomial random variables, we have that for any � 2 [0; 1],

Pfn1 � (1 + �)n�1g � exp(�n�1�2=3);

Pfn1 � (1� �)n�1g � exp(�n�1�2=3):

26



Then, we substitute � = 1=2 into the above two inequalities to obtain

P (n1=n � 3�1=2) � exp(�n�1=12);

P (n1=n � �1=2) � exp(�n�1=12): (65)

Accordingly, we have

P (�1=2 � n1=n � 3�1=2) =1� P (n1=n > 3�1=2)� P (n1=n < �1=2)

�1� 2 exp(�n�1=12);

where the last inequality is by (65). By symmetry, one has

P (�2=2 � n2=n � 3�2=2) � 1� 2 exp(�n�2=12):

To this end, based on the above two inequalities, we can deduce that P (Mn) � 1 �

2 exp(�n�1=12) � 2 exp(�n�2=12), which completes the proof of 1). Property 2) follows

from the fact that Mn �M∗
n.

Lemma 4. For any % 2 (e−n/100; 1=100), de�ne the event M3n(%) as

M3n(%) =
n���̂(1)′T S

(1)−1
TT �̂

(1)
T � �

(1)′

T Σ
(1)−1
TT �

(1)
T

�� . qnsn=n+ log(%−1)=n

+
�
qnsn=n+ flog(%−1)=ng1/2

�
f�(1)

′

T Σ
(1)−1
TT �

(1)
T



Proof of Lemma 4: First of all, note that

�̂
(1)′

T S
(1)−1
TT �̂

(1)
T � �

(1)′

T Σ
(1)−1
TT �

(1)
T

=(�̂
(1)′

T Σ
(1)−1
TT �̂

(1)
T � �

(1)′

T Σ
(1)−1
TT �

(1)
T )(�̂

(1)′

T S
(1)−1
TT �̂

(1)
T =�̂

(1)′

T Σ
(1)−1
TT �̂

(1)
T � 1)

+ �
(1)′

T Σ
(1)−1
TT �

(1)
T (�̂

(1)′

T S
(1)−1
TT �̂

(1)
T =�̂

(1)′

T Σ
(1)−1
TT �̂

(1)
T � 1) + (�̂

(1)′

T Σ
(1)−1
TT �̂

(1)
T � �

(1)′

T Σ
(1)−1
TT �

(1)
T );

which implies that

j�̂(1)
′

T S
(1)−1
TT �̂

(1)
T � �

(1)′

T Σ
(1)−1
TT �

(1)
T j

�j�̂(1)
′

T Σ
(1)−1
TT �̂

(1)
T � �

(1)′

T Σ
(1)−1
TT �

(1)
T j � j�̂

(1)′

T S
(1)−1
TT �̂

(1)
T =�̂

(1)′

T Σ
(1)−1
TT �̂

(1)
T � 1j

+ �
(1)′

T Σ
(1)−1
TT �

(1)
T j�̂

(1)′

T S
(1)−1
TT �̂

(1)
T =�̂

(1)′

T Σ
(1)−1
TT �̂

(1)
T � 1j+ j�̂(1)

′

T Σ
(1)−1
TT �̂

(1)
T � �

(1)′

T Σ
(1)−1
TT �

(1)
T j:

Together with Lemma 18 and Lemma 19, we conclude that with probability at least 1 �

4%� 4 exp(�n�1=12)� 4 exp(�n�2=12),

j�̂(1)
′

T S
(1)−1
TT �̂

(1)
T � �

(1)′

T Σ
(1)−1
TT �

(1)
T j .qnsn=n+ log(%−1)=n+

�
qnsn=n+ flog(%−1)=ng1/2

�
� f�(1)

′

T Σ
(1)−1
TT �

(1)
T g+ flog(%−1)=ng1/2f�(1)

′

T Σ
(1)−1
TT �

(1)
T g

1/2;

which completes the proof.

Lemma 5. Assume the following condition (a):

(a) log(qnsn) = o(n).

Then there exist universal constants c1 > 0 and c2 > 0 such that:

1) P
�
kΛ̂(1)

T Λ
(1)−1
T � Iqnsnkmax � c1flog(qnsn)=ng1/2

�
� 1� c2f(qnsn)−1

+ exp(�n�1=12) + exp(�n�2=12)g.

2) P
�
kΛ(1)

T Λ̂
(1)−1
T � Iqnsnkmax � c1flog(qnsn)=ng1/2

�
� 1� c2f(qnsn)−1

+ exp(�n�1=12) + exp(�n�2=12)g.
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3) P
�
kΛ̂(1)1/2

T Λ
(1)−1/2
T � Iqnsnkmax � c1flog(qnsn)=ng1/2

�
� 1� c2f(qnsn)−1

+ exp(�n�1=12) + exp(�n�2=12)g.

4) P
�
kΛ(1)1/2

T Λ̂
(1)−1/2
T � Iqnsnkmax � c1flog(qnsn)=ng1/2

�
� 1� c2f(qnsn)−1

+ exp(�n�1=12) + exp(�n�2=12)g.

Note that Iqnsn denotes the qnsn � qnsn identity matrix.

Proof of Lemma 5: Before showing the Lemma, we prepare some notations. For any

sub-exponential random variable X, its sub-exponential norm is denoted as kXkψ =

supq≥1 q
−1fE(jXjq)g1/q. Now, we are in a position to start the proof. First of all, no-

tice that

kΛ̂(1)
T Λ

(1)−1
T � Iqnsnkmax = max

j∈T
max
k≤sn

j!̂jk!−1jk � 1j: (66)

Moreover, by definition, we have that for every j 2 T and k � sn,

!̂jk =(n� 2)−1
h
n1

�X
i∈H1

(�ijk � �1jk)
2=n1

	
+ n2

� X
i′∈H2

(�i′jk � �2jk)
2=n2

	i
� (n� 2)−1

h
n1(

X
i1∈H1

�i1jk=n1 � �1jk)
2 + n2(

X
i2∈H2

�i2jk=n2 � �2jk)
2
i
;

which implies that for every j 2 T and k � sn,

!̂jk!
−1
jk � 1 =(n� 2)−1n1

�
n−11

X
i∈H1

f!−1/2jk (�ijk � �1jk)g2 � 1
�

+ (n� 2)−1n2

�
n−12

X
i′∈H2

f!−1/2jk (�i′jk � �2jk)g2 � 1
�

� (n� 2)−1n1

�
n−11

X
i1∈H1

!
−1/2
jk (�i1jk � �1jk)

�2
� (n� 2)−1n2

�
n−12

X
i2∈H2

!
−1/2
jk (�i2jk � �2jk)

�2
+ 2(n� 2)−1:
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Together with (66), we obtain

kΛ̂(1)
T Λ

(1)−1
T � Iqnsnkmax � 2n−1n1Υ1 + 2n−1n2Υ2 + 2n−1n1Υ

2
3 + 2n−1n2Υ

2
4 + 3n−1; (67)

where

Υ1 = max
j∈T

max
k≤sn

��n−11

X
i∈H1

f!−1/2jk (�ijk � �1jk)g2 � 1
��;

Υ2 = max
j∈T

max
k≤sn

��n−12

X
i′∈H2

f!−1/2jk (�i′jk � �2jk)g2 � 1
��;

Υ3 = max
j∈T

max
k≤sn

��n−11

X
i1∈H1

!
−1/2
jk (�i1jk � �1jk)

��;
Υ4 = max

j∈T
max
k≤sn

��n−12

X
i2∈H2

!
−1/2
jk (�i2jk � �2jk)

��:
At this point, note that for every i 2 H1; j � qn; k � sn, the sub-exponential norms of the

sub-exponential random variables f!−1/2jk (�ijk � �1jk)g2 satisfy

kf!−1/2jk (�ijk � �1jk)g2kψ � maxf4�; 2e2/eg: (68)

For the term Υ1, conditional on any nonempty fYi = yigni=1 \Mn, one can show that for

any t � 0,

P
�
Υ1 � t

��fYi = yigni=1 \Mn

�
�
X
j∈T

X
k≤sn

P
h��n−11

X
i∈H1

f!−1/2jk (�ijk � �1jk)g2 � 1
�� � t

��fYi = yigni=1 \Mn

i
�2qnsn exp

�
� c1 minft2; tgn

�
; (69)

for some universal constant c1 > 0, where the first inequality holds from the union bound

inequality, and the second inequality follows from (68) and the Bernstein inequality in

Lemma H.2 of Ning and Liu (2017). Similar reasoning gives the result that for any t � 0,

P
�
Υ2 � t

��fYi = yigni=1 \Mn

�
� 2qnsn exp

�
� c2 minft2; tgn

�
; (70)
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for some universal constant c2 > 0. Regarding the term Υ3, it is clear that for any t � 0,

P
�
Υ3 � t

��fYi = yigni=1 \Mn

�
�
X
j∈T

X
k≤sn

P
h��n−11

X
i1∈H1

!
−1/2
jk (�i1jk � �1jk)

�� � t
��fYi = yigni=1 \Mn

i
�2qnsn exp(�c3nt2); (71)

for some universal constant c3 > 0, where the first inequality is based on the union bound

inequality, and the second inequality follows from Hoeffding inequality. Similar argument

leads to the result that for any t � 0,

P
�
Υ4 � t

��fYi = yigni=1 \Mn

�
� 2qnsn exp(�c4nt2); (72)

for some universal constant c4 > 0. To this end, conditional on any nonempty fYi =

yigni=1 \Mn, it can be deduced that for any t � 0,

P
�
kΛ̂(1)

T Λ
(1)−1
T � Iqnsnkmax � t

��fYi = yigni=1 \Mn

�
�P
�
2n−1n1Υ1 + 2n−1n2Υ2 + 2n−1n1Υ

2
3 + 2n−1n2Υ

2
4 + 3n−1 � t��fYi = yigni=1 \Mn

�
�P
�
Υ1 + Υ2 + Υ2

3 + Υ2
4 + n−1 � c5t

��fYi = yigni=1 \Mn

�
�P
�
Υ1 � 5−1c5t

��fYi = yigni=1 \Mn

�
+ P

�
Υ2 � 5−1c5t

��fYi = yigni=1 \Mn

�
+ P

�
Υ3 � 5−1/2c

1/2
5 t1/2

��fYi = yigni=1 \Mn

�
+ P

�
Υ4 � 5−1/2c

1/2
5 t1/2

��fYi = yigni=1 \Mn

�
+ P

�
n−1 � 5−1c5t

��fYi = yigni=1 \Mn

�
�4qnsn exp

�
� c6 minft2; tgn

�
+ 4qnsn exp(�c6nt) + P (n−1 � 5−1c5t)

�8qnsn exp
�
� c6 minft2; tgn

�
+ P (n−1 � 5−1c5t);

for some carefully chosen universal constants c5 > 0 and c6 > 0, where the first inequality

is by (67), the second inequality comes from the definition of Mn in Lemma 3, the fourth
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inequality is based on (69), (70), (71) and (72). Accordingly, we set c7 = (2c−16 )1/2 and

substitute t = c7flog(qnsn)=ng1/2 into the above inequality to obtain

P
�
kΛ̂(1)

T Λ
(1)−1
T � Iqnsnkmax � c7flog(qnsn)=ng1/2

��fYi = yigni=1 \Mn

�
� 1� 8(qnsn)−1:

(73)

It then follows that

P
�
kΛ̂(1)

T Λ
(1)−1
T � Iqnsnkmax � c7flog(qnsn)=ng1/2

�
�

X
{yi}n

i=1∈Mn

P
�
kΛ̂(1)

T Λ
(1)−1
T � Iqnsnkmax � c7flog(qnsn)=ng1/2

��fYi = yigni=1

�
� P
�
fYi = yigni=1

�
�f1� 8(qnsn)−1g

X
{yi}n

i=1∈Mn

P
�
fYi = yigni=1

�
= f1� 8(qnsn)−1gP (Mn)

�1� 8f(qnsn)−1 + exp(�n�1=12) + exp(�n�2=12)g;

where the second inequality is by (73), and the last inequality follows from Lemma 3.

Therefore, property 1) holds from the above inequality. Moreover, it can be verified that

under the event
�
kΛ̂(1)

T Λ
(1)−1
T � Iqnsnkmax � c7flog(qnsn)=ng1/2

	
,

kΛ(1)
T Λ̂

(1)−1
T � Iqnsnkmax � 2kΛ̂(1)

T Λ
(1)−1
T � Iqnsnkmax:

Hence, based on the above two inequalities, we conclude that

P
�
kΛ(1)

T Λ̂
(1)−1
T � Iqnsnkmax � 2c7flog(qnsn)=ng1/2

�
�1� 8f(qnsn)−1 + exp(�n�1=12) + exp(�n�2=12)g; (74)

which completes the proof of property 2). Property 3) can be directly proved by using the

fact that kΛ̂(1)1/2
T Λ

(1)−1/2
T � Iqnsnkmax � kΛ̂(1)

T Λ
(1)−1
T � Iqnsnkmax. Likewise, one can show

property 4), which finishes the proof.

Lemma 6. Assume the following conditions (a){(b):
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(a) supj≤pn

P∞
k=1 !jk <1, �min(Λ

(1)
N ) � c0s

−a
n for some constants c0 > 0 and a > 1.

(b) s2an logf(pn � qn)sng = o(n).

Then there exist universal constants c1 > 0 and c2 > 0 such that:

1) P
�
kΛ̂(1)

N Λ
(1)−1
N �I(pn−qn)snkmax � c1[logf(pn�qn)sng=n]1/2

�
� 1�c2[f(pn�qn)sng−1 +

exp(�n�1=12) + exp(�n�2=12)].

2) P
�
kΛ(1)

N Λ̂
(1)−1
N �I(pn−qn)snkmax � c1[logf(pn�qn)sng=n]1/2

�
� 1�c2[f(pn�qn)sng−1 +

exp(�n�1=12) + exp(�n�2=12)].

3) P
�
kΛ̂(1)1/2

N Λ
(1)−1/2
N � I(pn−qn)snkmax � c1[logf(pn � qn)sng=n]1/2

�
� 1 � c2[f(pn �

qn)sng−1 + exp(�n�1=12) + exp(�n�2=12)].

4) P
�
kΛ(1)1/2

N Λ̂
(1)−1/2
N � I(pn−qn)snkmax � c1[logf(pn � qn)sng=n]1/2

�
� 1 � c2[f(pn �

qn)sng−1 + exp(�n�1=12) + exp(�n�2=12)].

5) Pfdet(Λ̂
(1)
N ) 6= 0g � 1� c2[f(pn � qn)sng−1 + exp(�n�1=12) + exp(�n�2=12)].

Note that I(pn−qn)sn denotes the (pn � qn)sn � (pn � qn)sn identity matrix.

Proof of Lemma 6: The proof of property 1) is analogous to that of property 1) in Lemma 5.

Then, it can be deduced that there exists c3 > 0 and c4 > 0 such that with probability at

least 1� c3[f(pn � qn)sng−1 + exp(�n�1=12) + exp(�n�2=12)],

�min(Λ̂
(1)
N ) � �min(Λ

(1)
N )� �max(Λ(1)

N )kΛ̂(1)
N Λ

(1)−1
N � I(pn−qn)snkmax � c4s

−a
n ;
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where the last inequality is based on (a), (b) and property 1). As a result, property 5)

holds true from the above inequality. Finally, properties 2) to 4) can be derived in a similar

fashion as properties 2) to 4) in Lemma 5, which finishes the proof.

Lemma 7. Assume the following condition (a):

(a) log(qnsn) = o(n).

Then there exist universal constants c1 > 0 and c2 > 0 such that:

P
�
kΛ(1)−1/2

T S
(1)
TTΛ

(1)−1/2
T � Λ

(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
T k2 � c1fq2ns2n log(qnsn)=ng1/2

�
�1� c2f(qnsn)−1 + exp(�n�1=12) + exp(�n�2=12)g:

Proof of Lemma 7: First of all, we note that

kΛ(1)−1/2
T S

(1)
TTΛ

(1)−1/2
T � Λ

(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
T k2 � Ω1 + Ω2 + Ω3 + Ω4 + Ω5; (75)

where

Ω1 =2n−1n1qnsnmax
j2∈T

max
k2≤sn

max
j1∈T

max
k1≤sn

���n−11

X
i∈H1

h�
!
−1/2
j1k1

(�ij1k1 � �1j1k1)
	

�
�
!
−1/2
j2k2

(�ij2k2 � �1j2k2)
	
� corr(�j1k1 ; �j2k2)

i���;
Ω2 =2n−1n2qnsnmax

j2∈T
max
k2≤sn

max
j1∈T

max
k1≤sn

���n−12

X
i∈H2

h�
!
−1/2
j1k1

(�ij1k1 � �2j1k1)
	

�
�
!
−1/2
j2k2

(�ij2k2 � �2j2k2)
	
� corr(�j1k1 ; �j2k2)

i���;
Ω3 =2n−1n1qnsnmax

j2∈T
max
k2≤sn

max
j1∈T

max
k1≤sn

����n−11

X
i1∈H1

!
−1/2
j1k1

(�i1j1k1 � �1j1k1)
	

�
�
n−11

X
i1∈H1

!
−1/2
j2k2

(�i1j2k2 � �1j2k2)
	���;

Ω4 =2n−1n2qnsnmax
j2∈T

max
k2≤sn

max
j1∈T

max
k1≤sn

����n−12

X
i2∈H2

!
−1/2
j1k1

(�i2j1k1 � �2j1k1)
	

�
�
n−12

X
i2∈H2

!
−1/2
j2k2

(�i2j2k2 � �2j2k2)
	���;

Ω5 =4n−1qnsn:
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For the term Ω1, conditional on any nonempty fYi = yigni=1 \Mn, it can be shown that

for any t � 0,

P
�
Ω1 � t

��fYi = yigni=1 \Mn

�
�P
�

max
j2∈T

max
k2≤sn

max
j1∈T

max
k1≤sn

���n−11

X
i∈H1

h�
!
−1/2
j1k1

(�ij1k1 � �1j1k1)
	
�
�
!
−1/2
j2k2

(�ij2k2 � �1j2k2)
	

� corr(�j1k1 ; �j2k2)
i��� � (3�1qnsn)−1t

���fYi = yigni=1 \Mn

�
�
X
j2∈T

snX
k2=1

X
j1∈T

snX
k1=1

P
����n−11

X
i∈H1

h�
!
−1/2
j1k1

(�ij1k1 � �1j1k1)
	
�
�
!
−1/2
j2k2

(�ij2k2 � �1j2k2)
	

� corr(�j1k1 ; �j2k2)
i��� � (3�1qnsn)−1t

���fYi = yigni=1 \Mn

�
�
X
j2∈T

snX
k2=1

X
j1∈T

snX
k1=1

2 exp
�
� c1nminf(qnsn)−2t2; (qnsn)−1tg

�
=2(qnsn)2 exp

�
� c1nminf(qnsn)−2t2; (qnsn)−1tg

�
;

for some universal constant c1 > 0, where the first inequality is by the definition of Mn

in Lemma 3, the second inequality holds from the union bound inequality, and the last

inequality is based on Bernstein inequality and the definition of Mn. To this end, we set

c2 = (c1=3)−1/2 and substitute t = c2fq2ns2n log(qnsn)=ng1/2 into the above inequality to

obtain

P
�
Ω1 � c2fq2ns2n log(qnsn)=ng1/2

��fYi = yigni=1 \Mn

�
� 2(qnsn)−1: (76)

Similar reasoning yields that

P
�
Ω2 � c3fq2ns2n log(qnsn)=ng1/2

��fYi = yigni=1 \Mn

�
� 2(qnsn)−1; (77)

for some universal constant c3 > 0. For the term Ω3, it is apparent to see that for any
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t � 0,

P
�
Ω3 � t

��fYi = yigni=1 \Mn

�
�
X
j2∈T

snX
k2=1

X
j1∈T

snX
k1=1

P
����n−11

X
i1∈H1

!
−1/2
j1k1

(�i1j1k1 � �1j1k1)
��� � (3�1qnsn)−1/2t1/2

���
fYi = yigni=1 \Mn

�
+
X
j2∈T

snX
k2=1

X
j1∈T

snX
k1=1

P
����n−11

X
i1∈H1

!
−1/2
j2k2

(�i1j2k2 � �1j2k2)
���

� (3�1qnsn)−1/2t1/2
���fYi = yigni=1 \Mn

�
�4(qnsn)2 exp(�c4nq−1n s−1n t);

for some universal constant c4 > 0, where the last inequality follows from Hoeffding inequal-

ity and the definition of Mn. Therefore, we set c5 = 3c−14 and plug t = c5qnsn log(qnsn)=n

into the above inequality to obtain

P
�
Ω3 � c5qnsn log(qnsn)=n

��fYi = yigni=1 \Mn

�
� 4(qnsn)−1:

Similar reasoning leads to

P
�
Ω4 � c6qnsn log(qnsn)=n

��fYi = yigni=1 \Mn

�
� 4(qnsn)−1;

for some universal constant c6 > 0. Accordingly, we set c7 = c2 + c3 + c5 + c6 + 1. By

combining the above two inequalities with (76), (77), and (75), it can be deduced that

P
�
kΛ(1)−1/2

T S
(1)
TTΛ

(1)−1/2
T � Λ

(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
T k2 � c7fq2ns2n log(qnsn)=ng1/2

��fYi = yigni=1 \Mn

�
�1� 12(qnsn)−1: (78)
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Finally, we have

P
�
kΛ(1)−1/2

T S
(1)
TTΛ

(1)−1/2
T � Λ

(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
T k2 � c7fq2ns2n log(qnsn)=ng1/2

�
�

X
{yi}n

i=1∈Mn

P
�
kΛ(1)−1/2

T S
(1)
TTΛ

(1)−1/2
T � Λ

(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
T k2 �

c7qnsnflog(qnsn)=ng1/2
��fYi = yigni=1

�
� P
�
fYi = yigni=1

�
�f1� 12(qnsn)−1g

X
{yi}n

i=1∈Mn

P
�
fYi = yigni=1

�
= f1� 12(qnsn)−1gP (Mn)

�1� 12f(qnsn)−1 + exp(�n�1=12) + exp(�n�2=12)g;

where the second inequality is by (78), and the last inequality follows from Lemma 3. This

completes the proof.

Lemma 8. Assume the following conditions (a){(b):

(a) q2ns
2
n log(qnsn) = o(n).

(b) c1 � �min(Λ
(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
T ) � �max(Λ

(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
T ) � c2, for some universal

constants 0 < c1 < c2.

Then we have the following properties:

1) There exist universal constants c3 > 0 and c4 > 0 such that

P (kΛ(1)−1/2
T S

(1)
TTΛ

(1)−1/2
T k2 � c3) � 1� c4f(qnsn)−1 + exp(�n�1=12) + exp(�n�2=12)g.

2) There exist universal constants c5 > 0 and c6 > 0 such that

P (kΛ(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T k2 � c5) � 1� c6f(qnsn)−1 + exp(�n�1=12) + exp(�n�2=12)g.

Proof of Lemma 8: First of all, we note that

kΛ(1)−1/2
T S

(1)
TTΛ

(1)−1/2
T k2 � kΛ(1)−1/2

T S
(1)
TTΛ

(1)−1/2
T � Λ

(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
T k2 + c2;
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where c2 is defined in condition (b). Together with condition (a) and Lemma 7, it can be

concluded that there exist universal constants c3 > 0 and c4 > 0 such that with probability

at least 1� c3f(qnsn)−1 + exp(�n�1=12) + exp(�n�2=12)g,

kΛ(1)−1/2
T S

(1)
TTΛ

(1)−1/2
T k2 � c4fq2ns2n log(qnsn)=ng1/2 + c2 � 2c2;

which completes the proof of property 1). To show the second property, we first notice that

kΛ(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T k2 = �−1min(Λ

(1)−1/2
T S

(1)
TTΛ

(1)−1/2
T ): (79)

Moreover, it is apparent to deduce that

�min(Λ
(1)−1/2
T S

(1)
TTΛ

(1)−1/2
T ) � c1 � kΛ(1)−1/2

T S
(1)
TTΛ

(1)−1/2
T � Λ

(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
TT



2) P
���fsgn(�

(1)
T )′Λ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )g=fsgn(�

(1)
T )′Λ̂

(1)1/2
T S

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )g

� 1
�� � c3

�
flog(qnsn)=ng1/2 + flog log(n)=ng1/2

��
� 1� c4

�
(qnsn)−1 + flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)

�
.

Proof of Lemma 9: First of all, we note that

sgn(�
(1)
T )′Λ̂

(1)1/2
T S

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T ) = sgn(�

(1)
T )′Λ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T ) + Ω1 + 2Ω2;

(80)

where

Ω1 = sgn(�
(1)
T )′(Λ̂

(1)1/2
T Λ

(1)−1/2
T � Iqnsn)(Λ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T )(Λ

(1)−1/2
T Λ̂

(1)1/2
T � Iqnsn)sgn(�

(1)
T );

Ω2 = sgn(�
(1)
T )′(Λ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T )(Λ

(1)−1/2
T Λ̂

(1)1/2
T � Iqnsn)sgn(�

(1)
T ):

For the term Ω1, it can be deduced that

Ω1 � qnsnkΛ(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T k2 � kΛ̂(1)1/2

T Λ
(1)−1/2
T � Iqnsnk2max:

Together with condition (a), condition (b), Lemma 8, and Lemma 5, it can be concluded

that there exist universal constants c3 > 0 and c4 > 0 such that

PfΩ1 � c3qnsn log(qnsn)=ng � 1� c4f(qnsn)−1 + exp(�n�1=12) + exp(�n�2=12)g: (81)

For the term Ω2, one has

jΩ2j �k(Λ(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T )sgn(�

(1)
T )k1 � k(Λ(1)−1/2

T Λ̂
(1)1/2
T � Iqnsn)sgn(�

(1)
T )k∞

�qnsnkΛ(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T k2 � kΛ̂(1)1/2

T Λ
(1)−1/2
T � Iqnsnkmax:

Together with condition (a), condition (b), Lemma 8, and Lemma 5, it can be deduced

that there exist universal constants c5 > 0 and c6 > 0 such that

P [jΩ2j � c5fq2ns2n log(qnsn)=ng1/2] � 1� c6f(qnsn)−1 + exp(�n�1=12) + exp(�n�2=12)g:
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Together with (80) and (81), it can be concluded that there exist universal constants

c7 > 0 and c8 > 0 such that with probability at least 1 � c7f(qnsn)−1 + exp(�n�1=12) +

exp(�n�2=12)g,
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Moreover, we note that
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��;
where the last inequality is based on condition (b). Therefore, by combining Lemma 22

with the above two inequalities, we conclude that there exist universal constants c9 > 0 and

c10 > 0 such that with probability at least 1� c9
�
(qnsn)−1 + flog(n)g−1 + exp(�n�1=12) +

exp(�n�2=12)
�
,

��fsgn(�
(1)
T )′Λ̂

(1)1/2
T S

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )g=fsgn(�

(1)
T )′Λ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )g � 1

��
�c10

�
flog(qnsn)=ng1/2 + qnsn=n+ flog log(n)=ng1/2

�
�2c10

�
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�
;

which completes the proof of property 1). To show the second property, we notice the fact
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that
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Together with property 1), property 2) follows directly, which finishes the proof.

Lemma 10. Assume the following conditions (a){(b):

(a) qnsn = o(n).

(b) c1 � �min(Λ
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(1)−1/2
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(1)−1/2
T Σ
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T ) � c2, for some universal

constants 0 < c1 < c2.

Then there exist universal constants c3 > 0 and c4 > 0 such that with probability at least
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Proof of Lemma 10: First of all, we note that
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For the term Ω1, Lemma 21 together with condition (b) imply that there exist universal

constants c3 > 0 and c4 > 0 such that with probability at least 1 � c3[flog(n)g−1 +

exp(�n�1=12) + exp(�n�2=12)],

Ω1 � c4fqnsn log log(n)=ng1/2: (83)

For the term Ω2, it is clear that

Ω2 � Π1 + Π2; (84)

where
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1� c7[(qnsn)−1 + flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)],
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To bound the term Π2, we note that
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For the term Υ1, Lemma 22 entails that there exist universal constants c9 > 0 and c10 > 0

such that with probability at least 1� c9[flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)],

Υ1 � c10[qnsn=n+ flog log(n)=ng1/2]: (87)

For the term Υ2, by using similar arguments as in the proof of Lemma 23, it can be

deduced that there exist universal constants c11 > 0 and c12 > 0 such that conditional on

any nonempty fYi = yigni=1 \Mn \ f�̂Tg, and for any t � 0,
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By plugging t = c13f�̂ ′TΣ
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12 into the above inequality, it yields that
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Therefore, we have
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for some universal constant c14 > 0, where f(�̂T jfYi = yigni=1) denotes the conditional

density function, and the second inequality is by (88). Together with Lemma 19 yields the

result that there exist universal constants c15 > 0 and c16 > 0 such that with probability

at least 1� c15[flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)],
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For the term Υ3, Lemma 21 leads to the result that there exist universal constants c17 > 0

and c18 > 0 such that with probability at least 1 � c17[flog(n)g−1 + exp(�n�1=12) +

exp(�n�2=12)],

Υ3 � c18fqnsn log log(n)=ng1/2:

Together with (87), (89) and (86), it can be observed that there exist universal constants

c19 > 0 and c20 > 0 such that with probability at least 1�c19[flog(n)g−1 +exp(�n�1=12)+
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Together with (84) and (85), there exist universal constants c21 > 0 and c22 > 0 such that
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Together with (82) and (83), it can be concluded that there exist universal constants

c23 > 0 and c24 > 0 such that with probability at least 1 � c23[(qnsn)−1 + flog(n)g−1 +
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exp(�n�1=12) + exp(�n�2=12)],
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which completes the proof.

Lemma 11. Assume the following conditions (a){(d):

(a) maxfq2ns2n log(qnsn); qnsn log(pn � qn)g = o(n).

(b) c1 � �min(Λ
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Then there exists a universal constant c3 > 0 such that:
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By choosing K3 > c6=c5 in condition (d), (91) together with condition (d) further implies

that
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Likewise, it can be deduced that there exists a universal constant c8 > 0 such that
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Putting the above two inequalities together implies that there exists a universal constant
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T )g � 1� c9[flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)]: (92)

Moreover, it can be recalled from Lemma 2 that the quantity ṽT can be formulated as

ṽT =#̂S
(1)−1
TT �̂

(1)
T � �nS

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T );

where

#̂ =fn1n2n
−1(n� 2)−1gf1 + �n�̂

(1)′

T S
(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )g

�
�
1 + fn1n2n

−1(n� 2)−1g�̂(1)
′

T S
(1)−1
TT �̂

(1)
T

�−1
:

To this end, by combining conditions (a)–(c) with Lemma 10, it can be deduced that there

exists a universal constant c10 > 0 such that with probability at least 1 � c10[(qnsn)−1 +

flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)],

�n�̂
(1)′

T S
(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T ) = �n�

(1)′

T Σ
(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )f1 + o(1)g+ o(1):

Similarly, by combining conditions (a)–(c) with Lemma 4, it can be deduced that there

exists a universal constant c11 > 0 such that with probability at least 1� c11[flog(n)g−1 +

exp(�n�1=12) + exp(�n�2=12)],

�̂
(1)′

T S
(1)−1
TT �̂

(1)
T = �

(1)′

T Σ
(1)−1
TT �

(1)
T f1 + o(1)g:
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According to the above three inequalities and Lemma 3, it can be concluded that there exist

universal constants c12 > 0 and c13 > 0 such that with probability at least 1�c12[(qnsn)−1+

flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)],

#̂ �c13�1�2f1 + �n�
(1)′

T Σ
(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )gf1 + �1�2�

(1)′

T Σ
(1)−1
TT �

(1)
T g

−1:

For the term �n�
(1)′

T Σ
(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T ), one has

�n�
(1)′

T Σ
(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T ) � �nf�(1)

′

T Σ
(1)−1
TT �

(1)
T g

1/2�

fsgn(�
(1)
T )′Λ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )g1/2 . �nfqnsn�(1)

′

T Σ
(1)−1
TT �

(1)
T g

1/2

. [qnsn logf(pn � qn)sn log ng=n]1/2 . o(1); (93)

where the second and the third inequalities are based on (b) and (c), and the last inequality

follows from (a). Piecing the above two inequalities together yields that there exist universal

constants c14 > 0 and c15 > 0 such that with probability at least 1 � c14[(qnsn)−1 +

flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)],

#̂ �c15f�(1)
′

T Σ
(1)−1
TT �

(1)
T g

−1:

Together with (91) and (92), it can be deduced that there exist universal constants c16; c17; c18 >

0 such that

P
h \
k∈S1

n
#̂e′kΛ

(1)1/2
T S

(1)−1
TT �̂

(1)
T � c17f�(1)

′

T Σ
(1)−1
TT �

(1)
T g

−1(e′kΛ
(1)1/2
T Σ

(1)−1
TT �

(1)
T

� c18[logf(pn � qn)sn log ng=(n�2n)]1/2flog(qnsn log n)=ng1/2)
oi

�1� c16[(qnsn)−1 + flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)]:

In addition, utilizing Lemma 24 and conditions (a)–(c), it can also be justified that there
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exist universal constants c19 > 0 and c20 > 0 such that

P
h \
k∈S1

n
�nje′kΛ

(1)1/2
T S

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )j � �nje′kΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )j

+ c19�n[qnsn=n+ flog(qnsn log n)=ng1/2] � je′kΛ
(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )j

+ c19�n[fqnsn log(qnsn)=ng1/2 + fqnsn log log(n)=ng1/2]
oi

�1� c20[(qnsn)−1 + flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)]:

Based on the above two inequalities, it is seen that there exist positive universal constants

c21, c22 and c23 that

P
h \
k∈S1

n
e′kΛ

(1)1/2
T ṽT � c21f�(1)

′

T Σ
(1)−1
TT �

(1)
T g

−1

�
e′kΛ

(1)1/2
T Σ

(1)−1
TT �

(1)
T � c22[logf(pn � qn)sn log ng=(n�2n)]1/2flog(qnsn log n)=ng1/2

� c22[logf(pn � qn)sn log ng=(n�n)] � je′kΛ
(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )j

� c22[logf(pn � qn)sn log ng=(n�n)] � [fqnsn log(qnsn)=ng1/2 + fqnsn log log(n)=ng1/2]
�oi

�1� c23[(qnsn)−1 + flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)]:

By choosingK3 > c22 in condition (d), it follows from condition (d) and the above inequality

that

P
h \
k∈S1

n
e′kΛ

(1)1/2
T ṽT > 0

oi
� 1� c23[(qnsn)−1 + flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)]:

Similar reasoning leads to the result that there exists a universal constants c24 > 0 such

that

P
h \
k∈S2

n
e′kΛ

(1)1/2
T ṽT < 0

oi
� 1� c24[(qnsn)−1 + flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)]:

Based on (92) and the above two inequalities, there exists a universal constant c25 > 0 such
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that

Pfsgn(ṽT ) = sgn(�
(1)
T ) = sgn(�̂

(1)
T )g

�1� c25[(qnsn)−1 + flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)];

which concludes the proof.

Lemma 12. Let an and bn be any two sequences of constants such that an !1 and bn ! 0.

Also let Xn and Un be any two sequences of random variables such that Xn = op(1) and

Un = op(1). Assume that we have the following conditions (a){(b):

(a) anXn = op(1).

(b) a
1/2
n (Un � bn) = op(1).

Then we have the following property:

Φ(�a1/2n (1 +Xn) + Un)=Φ(�a1/2n + bn)
p! 1:

Proof of Lemma 12: The proof is analogous to that of Lemma 1 in Shao et al. (2011).

Lemma 13. Consider a pair A, B of p� p matrices, assume the following condition (a):

(a) �min(A�B) � 0.

Then we have the following property:

�min(A) � �min(B); �max(A) � �max(B):

Proof of Lemma 13: First of all, we have

�min(A) � �min(A�B) + �min(B) � �min(B);
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where the last inequality is by condition (a). Similarly, we also have

�max(A) � �min(A�B) + �max(B) � �max(B);

where the last inequality is by condition (a) as well, which completes the proof.

Lemma 14. For any p� p square matrix A, partitioned as

A =

264A11 A12

A21 A22

375 ;
where A11 is a k � k matrix for some positive integer k < p, assume we have the following

condition (a):

(a) c1 � �min(A) � �max(A) � c2, for some universal constants 0 < c1 < c2.

Then we have the following properties:

1) c1 � �min(A11 � A12A
−1
22 A21) � �max(A11 � A12A

−1
22 A21) � c2,

c1 � �min(A22 � A21A
−1
11 A12) � �max(A22 � A21A

−1
11 A12) � c2.

2) �max(A12A
−1
22 A21) � �max(A11) � c2,

�max(A21A
−1
11 A12) � �max(A22) � c2,

�min(A12A
−1
22 A21) � �min(A11),

�min(A21A
−1
11 A12) � �min(A22).

Proof of Lemma 14: Based on condition (a), we have

c−12 � �min(A−1) � �max(A
−1) � c−11 ;

where A−1 can be expressed as

A−1 =

264 (A11 � A12A
−1
22 A21)

−1 �A−111 A12(A22 � A21A
−1
11 A12)

−1

�A−122 A21(A11 � A12A
−1
22 A21)

−1 (A22 � A21A
−1
11 A12)

−1

375 :
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Hence, we have

c−12 � �min((A11 � A12A
−1
22 A21)

−1) � �max((A11 � A12A
−1
22 A21)

−1) � c−11 ;

c−12 � �min((A22 � A21A
−1
11 A12)

−1) � �max((A22 � A21A
−1
11 A12)

−1) � c−11 ;

which implies that

c1 � �min(A11 � A12A
−1
22 A21) � �max(A11 � A12A

−1
22 A21) � c2;

c1 � �min(A22 � A21A
−1
11 A12) � �max(A22 � A21A

−1
11 A12) � c2;

finishing the proof of property 1). Finally, by combining property 1) with Lemma 13, the

assertion in property 2) follows immediately, which completes the proof.

Lemma 15. Let fX1; : : : ; Xn+mg be a sample of random vectors in Rp. Denote

S1 =
nX
i=1

(Xi � X̄1)(Xi � X̄1)
′=(n� 1); X̄1 =

nX
i=1

Xi=n;

S2 =
n+mX
i=n+1

(Xi � X̄2)(Xi � X̄2)
′=(m� 1); X̄2 =

n+mX
i=n+1

Xi=m;

S =
n+mX
i=1

(Xi � X̄)(Xi � X̄)′=(n+m� 2); X̄ =
n+mX
i=1

Xi=(n+m);

Spool = f(n� 1)S1 + (m� 1)S2g=(n+m� 2):

Then we have the following property:

S = Spool + nm(n+m)−1(n+m� 2)−1(X̄1 � X̄2)(X̄1 � X̄2)
′:

Proof of Lemma 15: The term S can be decomposed as S = I1 + I2 with

I1 =
nX
i=1

(Xi � X̄)(Xi � X̄)′=(n+m� 2);

I2 =
n+mX
i=n+1

(Xi � X̄)(Xi � X̄)′=(n+m� 2):
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For the term I1, one has

I1 = (n� 1)(n+m� 2)−1S1 + nm2(n+m)−2(n+m� 2)−1(X̄1 � X̄2)(X̄1 � X̄2)
′:

By symmetry, we also have

I2 = (m� 1)(n+m� 2)−1S2 +mn2(n+m)−2(n+m� 2)−1(X̄1 � X̄2)(X̄1 � X̄2)
′:

Based on the above results, we conclude that S = Spool +nm(n+m)−1(n+m� 2)−1(X̄1�

X̄2)(X̄1 � X̄2)
′, which finishes the proof.

Lemma 16. Recall that T = f1; : : : ; qng. Assume the matrix Σ
(1)
TT is invertible and consider

the following optimization problem:

min
wT∈Rqnsn

h1

2
w′T
�
Σ

(1)
TT + �1�2�

(1)
T �

(1)′

T

�
wT � �1�2w′T�

(1)
T + �n(Λ

(1)1/2
T wT )′sgn(�

(1)
T )
i
;

where wT = (w′1; : : : ; w
′
qn

)′ with sub-vectors wj = (wj1; : : : ; wjsn)′ 2 Rsn. Let w̃T be the

solution of the optimization problem where w̃T = (w̃′1; : : : ; w̃
′
qn

)′ with sub-vectors w̃j =

(w̃j1; : : : ; w̃jsn)′ 2 Rsn, then we have:

w̃T =�1�2(1 + �nkΛ(1)1/2
T �

(1)
T k1)(1 + �1�2�

(1)′

T Σ
(1)
TT�

(1)
T )−1�

(1)
T � �nΣ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T ):

Proof of Lemma 16: First of all, based on first order condition, one has

�
Σ

(1)
TT + �1�2�

(1)
T �

(1)′

T

�
w̃T = �1�2�

(1)
T � �nΛ

(1)1/2
T sgn(�

(1)
T ): (94)

Moreover, according to Sherman-Morrison-Woodbury formula, we have

�
Σ

(1)
TT + �1�2�

(1)
T �

(1)′

T

�−1
=Σ

(1)−1
TT � Σ

(1)−1
TT �

(1)
T (�−11 �−12 + �

(1)′

T Σ
(1)−1
TT �

(1)
T )−1�

(1)′

T Σ
(1)−1
TT

=Σ
(1)−1
TT � �1�2(1 + �1�2�

(1)′

T Σ
(1)−1
TT �

(1)
T )−1Σ

(1)−1
TT �

(1)
T �

(1)′

T Σ
(1)−1
TT :
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Finally, by combining the above two equations, we have

w̃T =
�
Σ

(1)
TT + �1�2�

(1)
T �

(1)′

T

�−1f�1�2�(1)T � �nΛ
(1)1/2
T sgn(�

(1)
T )g

=fΣ(1)−1
TT � �1�2(1 + �1�2�

(1)′

T Σ
(1)−1
TT �

(1)
T )−1Σ

(1)−1
TT �

(1)
T �

(1)′

T Σ
(1)−1
TT g

� f�1�2�(1)T � �nΛ
(1)1/2
T sgn(�

(1)
T )g

=fΣ(1)−1
TT � �1�2(1 + �1�2�

(1)′

T Σ
(1)
TT�

(1)
T )−1�

(1)
T �

(1)′

T Σ
(1)−1
TT g

� f�1�2�(1)T � �nΛ
(1)1/2
T sgn(�

(1)
T )g

=f�1�2Σ(1)−1
TT �

(1)
T � �

2
1�

2
2(1 + �1�2�

(1)′

T Σ
(1)
TT�

(1)
T )−1�

(1)
T �

(1)′

T Σ
(1)−1
TT �

(1)
T g�

f�nΣ
(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )� �1�2(1 + �1�2�

(1)′

T Σ
(1)
TT�

(1)
T )−1�

(1)
T �nkΛ(1)1/2

T �
(1)
T k1g

=�1�2(1 + �nkΛ(1)1/2
T �

(1)
T k1)(1 + �1�2�

(1)′

T Σ
(1)
TT�

(1)
T )−1�

(1)
T � �nΣ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T );

which finishes the proof.

Lemma 17. Consider the following optimization problem:

min
w∈Rpnsn

h1

2
w′
�
Σ(1) + �1�2�

(1)�(1)
′�
w � �1�2w′�(1) + �n

pnX
j=1

kΛ(1)1/2
j wjk1

i
; (95)

where w = (w′1; : : : ; w
′
pn

)′ with vectors wj = (wj1; : : : ; wjsn)′ 2 Rsn. Assume we have the

following conditions (a){(c):

(a) Σ
(1)
TT is invertible.

(b) �1�2(1 + �nkΛ(1)1/2
T �

(1)
T k1)(1 + �1�2�

(1)′

T Σ
(1)
TT�

(1)
T )−1(min

j∈T
min
k≤sn

!
1/2
jk j�jkj) >

�nkΛ(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )k∞.

(c) kΛ(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )k∞ � 1� , for a universal constant  2 (0; 1].

Denote ŵ as ŵ = (ŵ′T ; ŵ
′
N)′ = (w̃′T ; 0

′)′ with ŵN = 0 2 R(pn−qn)sn, and ŵT = w̃T where w̃T

is de�ned in Lemma 16. Then we have the following properties:

1) ŵ is a global minimum of (95).
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2) sgn(ŵ) = sgn(�(1)).

Proof of Lemma 17: First of all, based on (a), (b) and the definition of ŵ, it is trivial

to deduce that sgn(ŵ) = sgn(�(1)), finishing the proof of 2). Moreover, according to the

optimization theory, we know that ŵ is a global minimum of (95) if and only if

�
Σ

(1)
TT + �1�2�

(1)
T �

(1)′

T

�
w̃T = �1�2�

(1)
T � �nΛ

(1)1/2
T sgn(�

(1)
T ); (96)

kΛ(1)−1/2
N

��
Σ

(1)
NT + �1�2�

(1)
N �

(1)′

T

�
w̃T � �1�2�(1)N

	
k∞ � �n; (97)

where (96) and (97) serve as the Karush-Kuhn-Tucker conditions. It is apparent that (96)

follows from (94). In addition, observe that

kΛ(1)−1/2
N

��
Σ

(1)
NT + �1�2�

(1)
N �

(1)′

T

�
w̃T � �1�2�(1)N

	
k∞

=kΛ(1)−1/2
N

��
Σ

(1)
NT + �1�2Σ

(1)
NTΣ

(1)−1
TT �

(1)
T �

(1)′

T

�
w̃T � �1�2Σ(1)

NTΣ
(1)−1
TT �

(1)
T

	
k∞

=kΛ(1)−1/2
N Σ

(1)
NT

��
I + �1�2�

(1)
T �

(1)′

T

�
w̃T � �1�2�(1)

T

	
k∞;

where the first and the second equalities follow from (10) in the main paper. For the term�
I + �1�2�

(1)
T �

(1)′

T

�
w̃T , we have

�
I + �1�2�

(1)
T �

(1)′

T

�
w̃T

=�1�2(1 + �nkΛ(1)1/2
T �

(1)
T k1)�

(1)
T � �nΣ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )

� �1�2�n�(1)
T �

(1)′

T Σ
(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )

=�1�2�
(1)
T � �nΣ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T );

where the first equality is by Lemma 16. To this end, based on the above two equations,

we deduce that

kΛ(1)−1/2
N

��
Σ

(1)
NT + �1�2�

(1)
N �

(1)′

T

�
w̃T � �1�2�(1)N

	
k∞

=�nkΛ(1)−1/2
N Σ

(1)
NTΣ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )k∞ � �n;
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where the last inequality is based on condition (c). According to the above results, it can

be concluded that ŵ is a global minimum of (95), which completes the proof.

Lemma 18. For any % 2 (e−n/100; 1=100), de�ne the event M1n(%) as

M1n(%) =
n

2−1(qnsn=n)� 8flog(%−1)=ng1/2 � (�̂
(1)′

T S
(1)−1
TT �̂

(1)
T )=(�̂

(1)′

T Σ
(1)−1
TT �̂

(1)
T )� 1

� 2(qnsn=n) + 16flog(%−1)=ng1/2
o
:

Assume the condition (a):

(a) qnsn = o(n).

Then we have the following property:

PfM1n(%)g � 1� 2%� 2 exp(�n�1=12)� 2 exp(�n�2=12); 8% 2 (e−n/100; 1=100).

Proof of Lemma 18: First of all, based on condition (a) and the definition, it is clear to

observe that conditional on any nonempty set fYi = yigni=1 \Mn, we have

(n� 2)S
(1)
TT jfYi = yigni=1 \Mn �Wishart(n� 2jΣ(1)

TT ); (98)

where the degree of freedom of the Wishart distribution is equal to n� 2. Moreover, it is

trivial to verify that conditional on fYi = yigni=1 \Mn, one has the fact that �̂
(1)
T jfYi =

yigni=1 \Mn is independent of (n � 2)S
(1)
TT jfYi = yigni=1 \Mn. Together with (98), condi-

tion (a) and Theorem 3.2.12 in Muirhead (1982), we reach a conclusion that

(n� 2)(�̂
(1)′

T Σ
(1)−1
TT �̂

(1)
T )(�̂

(1)′

T S
(1)−1
TT �̂

(1)
T )−1jfYi = yigni=1 \Mn � �2

n−qnsn−1:

Together with (A.2) and (A.3) in Johnstone and Lu (2009), we conclude that for any

t 2 [0; 1=2),

P
�
j(n� qnsn � 1)−1(n� 2)(�̂

(1)′

T Σ
(1)−1
TT �̂

(1)
T )(�̂

(1)′

T S
(1)−1
TT �̂

(1)
T )−1 � 1j

� tjfYi = yigni=1 \Mn

�
� 2 expf�3(n� qnsn � 1)t2=16g:
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For any % 2 (e−n/100; 1=100), we plug t = f16(n� qnsn� 1)−1 log(%−1)=3g1/2 into the above

inequality to obtain

P
�
j(n� qnsn � 1)−1(n� 2)(�̂

(1)′

T Σ
(1)−1
TT �̂

(1)
T )(�̂

(1)′

T S
(1)−1
TT �̂

(1)
T )−1 � 1j �

f16(n� qnsn � 1)−1 log(%−1)=3g1/2jfYi = yigni=1 \Mn

�
� 2%;

which implies that

P
�
j(n� qnsn � 1)−1(n� 2)(�̂

(1)′

T Σ
(1)−1
TT �̂

(1)
T )(�̂

(1)′

T S
(1)−1
TT �̂

(1)
T )−1 � 1j �

f16(n� qnsn � 1)−1 log(%−1)=3g1/2jfYi = yigni=1 \Mn

�
� 1� 2%: (99)

Therefore, it can be seen that

P
�
j(n� qnsn � 1)−1(n� 2)(�̂

(1)′

T Σ
(1)−1
TT �̂

(1)
T )(�̂

(1)′

T S
(1)−1
TT �̂

(1)
T )−1 � 1j �

f16(n� qnsn � 1)−1 log(%−1)=3g1/2
�

�
X

{yi}n
i=1∈Mn

P
�
j(n� qnsn � 1)−1(n� 2)(�̂

(1)′

T Σ
(1)−1
TT �̂

(1)
T )(�̂

(1)′

T S
(1)−1
TT �̂

(1)
T )−1

� 1j � f16(n� qnsn � 1)−1 log(%−1)=3g1/2jfYi = yigni=1

�
� P
�
fYi = yigni=1

�
�(1� 2%)

X
{yi}n

i=1∈Mn

P
�
fYi = yigni=1

�
= (1� 2%)P (Mn)

�1� 2%� 2 exp(�n�1=12)� 2 exp(�n�2=12); (100)

where the second inequality is by (99), and the last inequality follows from Lemma 3. To this

end, based on condition (a), it is straightforward to verify that for any % 2 (e−n/100; 1=100),

M∗
1n(%) �M1n(%); (101)

in which M∗
1n(%) =

�
j(n � qnsn � 1)−1(n � 2)(�̂

(1)′

T Σ
(1)−1
TT �̂

(1)
T )(�̂

(1)′

T S
(1)−1
TT �̂

(1)
T )−1 � 1j �

f16(n� qnsn � 1)−1 log(%−1)=3g1/2
	

. Finally, the assertion follows immediately from (100)

and (101).
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Moreover, conditional on fYi = yigni=1 \Mn, we also note that

(n−11 n−12 n2)(qnsn=n) + 2(n−11 n−12 n2)flog(%−1)=ng

+ 2(n−11 n−12 n2)(qnsn=n+ 2n1n2n
−2�

(1)′

T Σ
(1)−1
TT �

(1)
T )1/2flog(%−1)=ng1/2

�(400�−11 �−12 )1/2
�
qnsn=n+ log(%−1)=n+ f�(1)

′

T Σ
(1)−1
TT �

(1)
T log(%−1)=ng1/2

�
;

according to the definition ofMn in Lemma 3. Therefore, based on the above two inequal-

ities, we have

P
n
�̂
(1)′

T Σ
(1)−1
TT �̂

(1)
T � �

(1)′

T Σ
(1)−1
TT �

(1)
T � (400�−11 �−12 )1/2

�
qnsn=n+ log(%−1)=n

+ f�(1)
′

T Σ
(1)−1
TT �

(1)
T log(%−1)=ng1/2

����fYi = yigni=1 \Mn

o
� 1� %: (103)

Analogously, based on (102) and (8.35) of Lemma 8.1 in Birge (2001), it is obvious that

for any t > 0,

P
n
�̂
(1)′

T Σ
(1)−1
TT �̂

(1)
T � �

(1)′

T Σ
(1)−1
TT �

(1)
T � (n−11 n−12 n2)(qnsn=n)� 2(n−11 n−12 n2)�

(qnsn=n+ 2n1n2n
−2�

(1)′

T Σ
(1)−1
TT �

(1)
T )1/2(t=n)1/2

���fYi = yigni=1 \Mn

o
� exp(�t):

We then substitute t = log(%−1) into the above inequality to obtain

P
h
�̂
(1)′

T Σ
(1)−1
TT �̂

(1)
T � �

(1)′

T Σ
(1)−1
TT �

(1)
T � (n−11 n−12 n2)(qnsn=n)� 2(n−11 n−12 n2)�

(qnsn=n+ 2n1n2n
−2�

(1)′

T Σ
(1)−1
TT �

(1)
T )1/2flog(%−1)=ng1/2

���fYi = yigni=1 \Mn

i
� 1� %:

Likewise, we note that conditional on fYi = yigni=1 \Mn,

(n−11 n−12 n2)(qnsn=n)� 2(n−11 n−12 n2)(qnsn=n+ 2n1n2n
−2�

(1)′

T Σ
(1)−1
TT �

(1)
T )1/2flog(%−1)=ng1/2

�� (400�−11 �−12 )1/2
�

log(%−1)=n+ f�(1)
′

T Σ
(1)−1
TT �

(1)
T log(%−1)=ng1/2

�
:
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We then derive from the above two inequalities that

P
n
�̂
(1)′

T Σ
(1)−1
TT �̂

(1)
T � �

(1)′

T Σ
(1)−1
TT �

(1)
T � �(400�−11 �−12 )1/2

�
log(%−1)=n

+ f�(1)
′

T Σ
(1)−1
TT �

(1)
T log(%−1)=ng1/2

����fYi = yigni=1 \Mn

o
� 1� %:

Together with (103), we arrive at

P
�
M2n(%)

��fYi = yigni=1 \Mn

�
� 1� 2%: (104)

Finally, we have

PfM2n(%)g �PfM2n(%) \Mng =
X

{yi}n
i=1∈Mn

P
�
M2n(%)

��fYi = yigni=1

�
� P
�
fYi = yigni=1

�
�(1� 2%)

X
{yi}n

i=1∈Mn

P
�
fYi = yigni=1

�
= (1� 2%)P (Mn)

�1� 2%� 2 exp(�n�1=12)� 2 exp(�n�2=12);

where the second inequality is by (104), and the last inequality follows from Lemma 3.

This finishes the proof.

Lemma 20. For any % 2 (e−n/100; 1=100), de�ne the event M4n(%) as

M4n(%) =

qnsn\
j=1

n��e′jΛ(1)1/2
T Σ

(1)−1
TT �̂

(1)
T � e

′
jΛ

(1)1/2
T Σ

(1)−1
TT �

(1)
T

�� � (8�−11 �−12 )1/2

fe′jΛ
(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg1/2flog(qnsn%

−1)=ng1/2
o
;

where fej : j � qnsng denotes the standard basis for Rqnsn. Then we have the following

property:

PfM4n(%)g � 1� 2%� 2 exp(�n�1=12)� 2 exp(�n�2=12); 8% 2 (e−n/100; 1=100).

Proof of Lemma 20: First of all, we note that conditional on any nonempty fYi = yigni=1 \
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Mn

Λ
(1)1/2
T Σ

(1)−1
TT �̂

(1)
T

��fYi = yigni=1 \Mn � N(Λ
(1)1/2
T Σ

(1)−1
TT �

(1)
T ; n−11 n−12 nΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ):

(105)

Moreover, it can be observed that

P
�
M4n(%)

��fYi = yigni=1 \Mn

�
�

qnsnX
j=1

P
�
M4nj(%)

��fYi = yigni=1 \Mn

�
� (qnsn � 1);

where the events M4nj(%) =
n��e′jΛ(1)1/2

T Σ
(1)−1
TT �̂

(1)
T � e′jΛ

(1)1/2
T Σ

(1)−1
TT �

(1)
T

�� � (8�−11 �−12 )1/2

fe′jΛ
(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg1/2flog(qnsn%

−1)=ng1/2
o

for all j � qnsn. Under (105), the con-

centration inequality entails that for all j � qnsn

P
�
M4nj(%)

��fYi = yigni=1 \Mn

�
�1� 2 expf� log(qnsn%

−1)g = 1� 2q−1n s−1n %:

Putting the above two inequalities together leads to

P
�
M4n(%)

��fYi = yigni=1 \Mn

�
� 1� 2%: (106)

Therefore, we have

PfM4n(%)g � PfM4n(%) \Mng

�(1� 2%)
X

{yi}n
i=1∈Mn

P
�
fYi = yigni=1

�
= (1� 2%)P (Mn)

�1� 2%� 2 exp(�n�1=12)� 2 exp(�n�2=12);

where the second inequality is by (106), and the last inequality follows from Lemma 3.

This finishes the proof.

Lemma 21. For any % 2 (e−n/100; 1=100), de�ne the event M5n(%) as

M5n(%) =
n���̂(1)′T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )� �(1)

′

T Σ
(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )
�� �

(8�−11 �−12 )1/2�1/2max(Λ
(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T )fqnsn log(%−1)=ng1/2

o
:

Then we have the following property:
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PfM5n(%)g � 1� 2%� 2 exp(�n�1=12)� 2 exp(�n�2=12); 8% 2 (e−n/100; 1=100).

Proof of Lemma 21: First of all, we know that conditional on any nonempty fYi = yigni=1\

Mn

ν̂
(1)′

T Σ
(1)−1
TT Λ

(1)1/2
T sgn(β

(1)
T )
��fYi = yigni=1 \Mn

�N
�
ν
(1)′

T Σ
(1)−1
TT Λ

(1)1/2
T sgn(β

(1)
T ), n−11 n−12 nfsgn(β

(1)
T )′Λ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(β

(1)
T )g

�
.

Together with the concentration inequality, we conclude that for any t > 0

P
���(�̂(1)T � �

(1)
T )′Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )
�� � t

��fYi = yigni=1 \Mn

	
�1� 2 exp

�
� 8−1�1�2fqnsn�max(Λ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T )g−1nt2

�
:

Plugging t = (8�−11 �−12 )1/2�
1/2
max(Λ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T )fqnsn log(%−1)=ng1/2 into the above in-

equality yields

P
�
M5n(%)

��fYi = yigni=1 \Mn

�
� 1� 2%: (107)

Finally, we have

PfM5n(%)g � PfM5n(%) \Mng

�(1� 2%)
X

{yi}n
i=1∈Mn

P
�
fYi = yigni=1

�
= (1� 2%)P (Mn)

�1� 2%� 2 exp(�n�1=12)� 2 exp(�n�2=12);

where the second inequality is by (107), and the last inequality follows from Lemma 3.

This completes the proof.

Lemma 22. Assume the following condition (a):

(a) qnsn = o(n).

Then there exists universal constants c1 > 0 and c2 > 0 such that:
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1) P
�

max
j≤qnsn

��(e′jΛ(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ej)=(e

′
jΛ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T ej)� 1

�� �
c1
�
qnsn=n+flog(qnsn log n)=ng1/2

��
� 1�c2

�
flog(n)g−1+exp(�n�1=12)+exp(�n�2=12)

�
.

2) P
�

max
j≤qnsn

��(e′jΛ(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T ej)=(e

′
jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ej)� 1

�� �
c1
�
qnsn=n+flog(qnsn log n)=ng1/2

��
� 1�c2

�
flog(n)g−1+exp(�n�1=12)+exp(�n�2=12)

�
.

3) P
���fsgn(�

(1)
T )′Λ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )g=fsgn(�

(1)
T )′Λ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )g

� 1
�� � c1

�
qnsn=n + flog log(n)=ng1/2

��
� 1 � c2

�
flog(n)g−1 + exp(�n�1=12) +

exp(�n�2=12)
�
.

4) P
���fsgn(�

(1)
T )′Λ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )g=fsgn(�

(1)
T )′Λ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )g

� 1
�� � c1

�
qnsn=n + flog log(n)=ng1/2

��
� 1 � c2

�
flog(n)g−1 + exp(�n�1=12) +

exp(�n�2=12)
�
.

Recall that fej : j � qnsng denotes the standard basis for Rqnsn.

Proof of Lemma 22: First of all, according to (98), condition (a) and Theorem 3.2.12 in

Muirhead (1982), we know that conditional on any nonempty fYi = yigni=1 \Mn, and for

every j � qnsn,

(n� 2)(e′jΛ
(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ej)(e

′
jΛ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T ej)

−1jfYi = yigni=1 \Mn � �2
n−qnsn−1:

Together with (A.2) and (A.3) in Johnstone and Lu (2009), it can be deduced that for any

t 2 [0; 1=2) and for every j � qnsn,

P
�
j(n� qnsn � 1)−1(n� 2)(e′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ej)(e

′
jΛ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T ej)

−1

� 1j � tjfYi = yigni=1 \Mn

�
� 2 expf�3(n� qnsn � 1)t2=16g;
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which together with condition (a) implies that

P
�
j(e′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ej)(e

′
jΛ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T ej)

−1 � 1j

� 4qnsn=n+ 2tjfYi = yigni=1 \Mn

�
� 1� 2 expf�3(n� qnsn � 1)t2=16g

�1� 2 exp(�nt2=16):

Together with the union bound inequality, it can be observed that for any t 2 [0; 1=2),

P
�

max
j≤qnsn

j(e′jΛ
(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ej)(e

′
jΛ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T ej)

−1 � 1j

� 4qnsn=n+ 2tjfYi = yigni=1 \Mn

�
� 1� 2qnsn exp(�nt2=16):

Subsequently, we substitute t = f16 log(qnsn log n)=ng1/2 into the above inequality to obtain

P
�

max
j≤qnsn

j(e′jΛ
(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ej)(e

′
jΛ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T ej)

−1 � 1j

� 4qnsn=n+ 8flog(qnsn log n)=ng1/2jfYi = yigni=1 \Mn

�
�1� 2flog(n)g−1: (108)

It then follows that

P
�

max
j≤qnsn

��(e′jΛ(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ej)=(e

′
jΛ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T ej)� 1

��
� 8
�
qnsn=n+ flog(qnsn log n)=ng1/2

��
�

X
{yi}n

i=1∈Mn

P
�

max
j≤qnsn

��(e′jΛ(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ej)=(e

′
jΛ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T ej)

� 1
�� � 8

�
qnsn=n+ flog(qnsn log n)=ng1/2

���fYi = yigni=1

�
� P
�
fYi = yigni=1

�
�[1� 2flog(n)g−1]

X
{yi}n

i=1∈Mn

P
�
fYi = yigni=1

�
= [1� 2flog(n)g−1]P (Mn)

�1� 2
�
flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)

�
;

where the second inequality is by (108), and the last inequality follows from Lemma 3.

Hence, property 1) is justified by the above inequality. To prove property 2), notice that
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under the event
n

max
j≤qnsn

��(e′jΛ(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ej)=

(e′jΛ
(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T ej) � 1

�� � 8
�
qnsn=n + flog(qnsn log n)=ng1/2

�o
, it is straightforward

to verify that

max
j≤qnsn

��(e′jΛ(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T ej)=(e

′
jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ej)� 1

��
�2 max

j≤qnsn

��(e′jΛ(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ej)=(e

′
jΛ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T ej)� 1

��:
Putting the above t[(e)]49.84.ot[inequalitiest[(oge27((the)-3leadsthe)-32o23 11.9552 Tf 3.985 61.1321  Td [(Putting29 11.9552 Tf 5.853 9d [11 Td [�)]TJ/F15 11.9552 Tf 11.955 0.4371 Td [max)]TJ/F24 7.9701 Tf -3.29 -7.321 Td [(j)]TJ/F27 7.9701 Tf 3.884 0 Td [(�)]TJ/F24 7.9701 Tf 6.587 0 Td [(q)]TJ/F25 5.9776 Tf 3.781 -0.997 Td [(n)]TJ/F24 7.9701 Tf 5.099 0.997 Td [(s)]TJ/F25 5.9776 Tf 3.916 -0.997 Td [(n)]TJ/F29 11.9552 Tf 5.098 18.48 Td [(fi)]TJ 0 -7.173 Td [(fi)]TJ/F15 11.9552 Tf 3.986 -2.989 Td [(()]TJ/F23 11.9552 Tf 4.552 0 Td [(e)]TJ/F27 7.9701 Tf 5.425 4.339 Td [(0)]TJ/F24 7.9701 Tf 0 -7.892 Td [(j)]TJ/F15 11.9552 Tf 4.382 2.956 Td [(Λ)]TJ/F21 7.9701 Tf 8.125 6.11 Td [((1)1)]TJ/F24 7.9701 Tf 15.055 0 Td [(=)]TJ/F21 7.9701 Tf 4.234 0 Td [(2)]TJ/F24 7.9701 Tf -19.289 -9.351 Td [(T)]TJ/F23 11.9552 Tf 24.022 3.241 Td [(S)]TJ/F21 7.9701 Tf 7.895 6.11 Td [((1))]TJ/F27 7.9701 Tf 10.821 0 Td [(Γ)]TJ/F21 7.9701 Tf 6.586 0 Td [(1)]TJ/F24 7.9701 Tf -18.103 -9.351 Td [(T)-148(T)]TJ/F15 11.9552 Tf 22.836 3.241 Td [(Λ)]TJ/F21 7.9701 Tf 8.125 6.11 Td [((1)1)]TJ/F24 7.9701 Tf 15.055 0 Td [(=)]TJ/F21 7.9701 Tf 4.234 0 Td [(2)]TJ/F24 7.9701 Tf -19.289 -9.351 Td [(T)]TJ/F23 11.9552 Tf 24.021 3.241 Td [(e)]TJ/F24 7.9701 Tf 5.426 -1.793 Td [(j)]TJ/F15 11.9552 Tf 4.383 1.793 Td [())]TJ/F23 11.9552 Tf 4.552 0 Td [(=)]TJ/F15 11.9552 Tf 5.853 0 Td [(()]TJ/F23 11.9552 Tf 4.552 0 Td [(e)]TJ/F27 7.9701 Tf 5.426 4.936 Td [(0)]TJ/F24 7.9701 Tf 0 -7.892 Td [(j)]TJ/F15 11.9552 Tf 4.382 2.956 Td [(Λ)]TJ/F21 7.9701 Tf 8.125 6.11 Td [((1)1)]TJ/F24 7.9701 Tf 15.055 0 Td [(=)]TJ/F21 7.9701 Tf 4.234 0 Td [(2)]TJ/F24 7.9701 Tf -19.289 -9.351 Td [(T)]TJ/F15 11.9552 Tf 24.021 3.241 Td [(Σ)]TJ/F21 7.9701 Tf 8.455 6.11 Td [((1))]TJ/F27 7.9701 Tf 10.82 0 Td [(Γ)]TJ/F21 7.9701 Tf 6.587 0 Td [(1)]TJ/F24 7.9701 Tf -17.407 -9.351 Td [(T)-148(T)]TJ/F15 11.9552 Tf 22.139 3.241 Td [(Λ)]TJ/F21 7.9701 Tf 8.125 6.11 Td [((1)1)]TJ/F24 7.9701 Tf 15.055 0 Td [(=)]TJ/F21 7.9701 Tf 4.234 0 Td [(2)]TJ/F24 7.9701 Tf -19.289 -9.351 Td [(T)]TJ/F23 11.9552 Tf 24.022 3.241 Td [(S)]TJ/F24 7.9701 Tf 5.425 -1.793 Td [(j)]TJ/F15 11.9552 Tf 4.382 1.793 Td [())]TJ/F26 11.9552 Tf 7.209 0 Td [(Γ)]TJ/F15 11.9552 Tf 11.955 0 Td [(1)]TJ/F29 11.9552 Tf 5.853 10.162 Td [(fi)]TJ 0 -7.173 Td [(fi)]TJ/F23 11.9552 Tf 7.209 0 3069 Td [(�)]TJ/F15 11.9552 Tf 13.478-312.793 -3Td 6(Λ)]1629 11.9552 Tf 5.853 2 T7069Td [(�)]TJ/F23 11.9552 Tf 4.981 -9.624 Td [(q)]TJ/F24 7.9701 Tf 5.19 -1.793 Td [(n)]TJ/F23 11.9552 Tf 5.637 1.796 Td [(s)]TJ/F24 7.9701 Tf 5.514 -1.793 Td [(n)]TJ/F23 11.9552 Tf 5.636 1.797 Td [(=n)]TJ/F15 11.9552 Tf 15.841 0 497[(+)]TJ/F26 11.9552 Tf 12.105 Td 61[(f)]TJ/F15 11.9552 Tf 5.978 0 Td [(log)-14(()]TJ/F23 11.9552 Tf 19.672 0 Td [(q)]TJ/F24 7.9701 Tf 5.19 -1.7913 Td [(n)]TJ/F23 11.9552 Tf 5.637 1.796 Td [(s)]TJ/F24 7.9701 Tf 5.514 -1.793 Td [(n)]TJ/F23 11.9552 Tf 7.628 1.799 Td [(log)]TJ/F23 11.9552 Tf 17.113 0 Td [(n)]TJ/F15 11.9552 Tf 6.988 0 Td7[())]TJ/F23 11.9552 Tf 4.552 0 Td [(=n)]TJ/F26 11.9552 Tf 12.841 0 Td [(g)]TJ/F21 7.9701 Tf 5.977 4.338 Td [(0)]TJ/F24 7.9701 Tf 4.234 0 Td [(=)]TJ/F21 7.9701 Tf 4.235 0 Td4[(2)]TJ/F29 11.9552 Tf 4.732 5.345 5.3[(()]TJ 4.981 3.582 Td [(o)]TJ/TJ/F26 11.9552 Tf 7.209 9 -0.4[(P-43T7069)]TJ/TJ/515 11.9552 Tf 9.298 0 Td [(1)]TJ/F29 11.9552 Tf 8.165 -25d [(Γ)]TJ/F15 11.9552 Tf 11.955 0 Td [(1)]TJ/229 11.9552 Tf 5.853 9.684 Td [3�



where

Ω1j = je′jΛ
(1)1/2
T Σ

(1)−1
TT �̂

(1)
T � e

′
jΛ

(1)1/2
T Σ

(1)−1
TT �

(1)
T j;

Ω2j = je′jΛ
(1)1/2
T S

(1)−1
TT �̂

(1)
T � e

′
jΛ

(1)1/2
T Σ

(1)−1
TT �̂

(1)
T j:

Invoking Lemma 20, it can be deduced that there exist universal constants c1 > 0 and

c2 > 0 such that

P
h qnsn\
j=1

n
Ω1j � c1flog(qnsn log n)=ng1/2fe′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg1/2

oi
�1� c2

�
flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)

�
: (110)

Regarding the term Ω2j, it can be seen that

Ω2j �fe′jΛ
(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg � jΠ1jj � (1 + Π2j) + (Ω1j + je′jΛ

(1)1/2
T Σ

(1)−1
TT �

(1)
T j) � Π2j;

where

Π1j =fe′jΛ
(1)1/2
T S

(1)−1
TT �̂

(1)
T gfe

′
jΛ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T ejg−1

� fe′jΛ
(1)1/2
T Σ

(1)−1
TT �̂

(1)
T gfe

′
jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg−1;

Π2j =
��fe′jΛ(1)1/2

T S
(1)−1
TT Λ

(1)1/2
T ejgfe′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg−1 � 1

��:
For the term Π2j, it follows from Lemma 22 that there exist universal constants c3 > 0 and

c4 > 0 such that

P
�

max
j≤qnsn

Π2j � c3[qnsn=n+ flog(qnsn log n)=ng1/2]
�

�1� c4
�
flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)

�
:

To this end, based on the above three inequalities, we conclude that there exist universal
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constants c5 > 0 and c6 > 0 such that

P
h qnsn\
j=1

n
Ω2j � c5

�
jΠ1jj � fe′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg+ [qnsn=n+ flog(qnsn log n)=ng1/2]

� flog(qnsn log n)=ng1/2 � fe′jΛ
(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg1/2 + [qnsn=n+ flog(qnsn log n)=ng1/2]

� je′jΛ
(1)1/2
T Σ

(1)−1
TT �

(1)
T j
�oi
� 1� c6

�
flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)

�
:

(111)

To bound the term Π1j, for every j � qnsn, we define a 2� qnsn random matrix M̂j as

M̂j = [Λ
(1)1/2
T ej; �̂T ]′ 2 R2×qnsn :

Elementary algebra shows that for every j � qnsn,

M̂jS
(1)−1
TT M̂ ′

j =

264e′jΛ(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T ej e′jΛ

(1)1/2
T S

(1)−1
TT �̂T

e′jΛ
(1)1/2
T S

(1)−1
TT �̂T �̂ ′TS

(1)−1
TT �̂T

375 2 R2×2;

M̂jΣ
(1)−1
TT M̂ ′

j =

264e′jΛ(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ej e′jΛ

(1)1/2
T Σ

(1)−1
TT �̂T

e′jΛ
(1)1/2
T Σ

(1)−1
TT �̂T �̂ ′TΣ

(1)−1
TT �̂T

375 2 R2×2: (112)

Moreover, since �̂T is independent of S
(1)
TT , it can be shown that conditional on any nonempty

fYi = yigni=1 \Mn \ f�̂Tg, and for every j � qnsn,

(n� 2)(M̂jS
(1)−1
TT M̂ ′

j)
−1jfYi = yigni=1 \Mn \ f�̂Tg �Wishart(n� qnsnj(M̂jΣ

(1)−1
TT M̂ ′

j)
−1);

(113)

using Theorem 3.2.11 in Muirhead (1982). To this end, by combining (112), (113) with

Theorem 3(d) in Bodnar and Okhrin (2008), it is straightforward to reach a conclusion

that for every j � qnsn,

f(n� qnsn � 3)=�jg1/2Π1jjfYi = yigni=1 \Mn \ f�̂Tg � t(n� qnsn � 3);

where t(n�qnsn�3) represents the student t-distribution with n�qnsn�3 degrees of free-

dom, and �j = f�̂ ′TΣ
(1)−1
TT �̂Tgfe′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg−1�fe′jΛ

(1)1/2
T Σ

(1)−1
TT �̂Tg2fe′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg−2:
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Together with Lemma 20 in Kolar and Liu (2015), it is clear that there exist universal con-

stants c7 > 0 and c8 > 0 such that for every j � qnsn and for any tj � 0,

P
�
jΠ1jj � tj

��fYi = yigni=1 \Mn \ f�̂Tg
�
� c7 expf�c8(n� qnsn � 3)�−1j t2jg

�c7 exp
�
� 2−1c8nf�̂ ′TΣ

(1)−1
TT �̂Tg−1fe′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejgt2j

�
;

which further implies that

P
�
\qnsn

j=1 fjΠ1jj � tjg
��fYi = yigni=1 \Mn \ f�̂Tg

�
�1�

qnsnX
j=1

c7 exp
�
� 2−1c8nf�̂ ′TΣ

(1)−1
TT �̂Tg−1fe′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejgt2j

�
:

By plugging tj = c9f�̂ ′TΣ
(1)−1
TT �̂Tg1/2fe′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg−1/2flog(qnsn log n)=ng1/2 with

c9 = (2c−18 )1/2 into the above inequality, it can be obtained that

P
h qnsn\
j=1

n
jΠ1jj � c9f�̂ ′TΣ

(1)−1
TT �̂Tg1/2fe′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg−1/2flog(qnsn log n)=ng1/2

o���fYi = yigni=1 \Mn \ f�̂Tg
i
� 1� c7flog(n)g−1: (114)

It then follows that

P
h qnsn\
j=1

n
jΠ1jj � c9f�̂ ′TΣ

(1)−1
TT �̂Tg1/2fe′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg−1/2flog(qnsn log n)=ng1/2

oi
�

X
{yi}n

i=1∈Mn

X
ν̂T∈Mn

P
h qnsn\
j=1

n
jΠ1jj � c9f�̂ ′TΣ

(1)−1
TT �̂Tg1/2fe′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg−1/2

flog(qnsn log n)=ng1/2
o���fYi = yigni=1 \ f�̂Tg

i
� P
�
fYi = yigni=1 \ f�̂Tg

�
�[1� c7flog(n)g−1] �

X
{yi}n

i=1∈Mn

X
ν̂T∈Mn

P
�
fYi = yigni=1 \ f�̂Tg

�
= [1� c7flog(n)g−1] � P (Mn)

�1� c10
�
flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)

�
;

for some universal constant c10 > 0, where the second inequality is by (114). Together with
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Lemma 19, it is seen that there exist universal constants c11 > 0 and c12 > 0 such that,

P
h qnsn\
j=1

n
jΠ1jj � c11fe′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg−1/2flog(qnsn log n)=ng1/2

�
�
qnsn=n+ log log(n)=n+ [1 + qnsn=n+ flog log(n)=ng1/2]f�(1)

′

T Σ
(1)−1
TT �

(1)
T g

+ flog log(n)=ng1/2f�(1)
′

T Σ
(1)−1
TT �

(1)
T g

1/2
�1/2oi

�1� c12
�
flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)

�
:

Together with (111), it is clear that there exist universal constants11



(b) c1 � �min(Λ
(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
T ) � �max(Λ

(1)−1/2
T Σ

(1)
TTΛ

(1)−1/2
T ) � c2, for some universal

constants 0 < c1 < c2.

Then there exist universal constants c3 > 0 and c4 > 0 such that:

P
h qnsn\
j=1

n
je′jΛ

(1)1/2
T S

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )� e′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )j

� c3
�
fqnsn log(qnsn)=ng1/2 + fqnsn log log(n)=ng1/2

�
+ c3je′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )j �

�
qnsn=n+ flog(qnsn log n)=ng1/2

�oi
�1� c4[(qnsn)−1 + flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)]:

Proof of Lemma 24: First of all, we note that for every j � qnsn,

je′jΛ
(1)1/2
T S

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )� e′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )j � Ω1j + Ω2j; (115)

where

Ω1j = je′jΛ
(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )� e′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )j;

Ω2j = je′jΛ
(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )� e′jΛ

(1)1/2
T S

(1)−1
TT Λ̂

(1)1/2
T sgn(�

(1)
T )j:

For the term Ω1j, it is apparent to see that for every j � qnsn,

Ω1j �c−11 (1 + Π1j) � jΠ2jj+ je′jΛ
(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )j � Π1j; (116)

where c1 is defined in condition (b), and

Π1j =jfe′jΛ
(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T ejgfe′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg−1 � 1j;

Π2j =fe′jΛ
(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )gfe′jΛ

(1)1/2
T S

(1)−1
TT Λ

(1)1/2
T ejg−1

� fe′jΛ
(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )gfe′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T ejg−1:

To bound the term Π1j, invoking Lemma 22, it can be seen that there exist universal

constants c3 > 0 and c4 > 0 such that with probability at least 1 � c3[flog(n)g−1 +
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exp(�n�1=12) + exp(�n�2=12)],

max
j≤qnsn

Π1j � c4[qnsn=n+ flog(qnsn log n)=ng1/2]: (117)

To bound the term Π2j, based on similar argument as in the proof of Lemma 23, it can be

shown that there exist universal constants c5 > 0 and c6 > 0 such that conditional on any

nonempty fYi = yigni=1 \Mn, and for any t � 0,

P
�
\qnsn

j=1 fjΠ2jj � tg
��fYi = yigni=1 \Mn

�
� 1� c5qnsn expf�c6n(qnsn)−1t2g:

By setting c7 = c
−1/2
6 and plugging t = c7fqnsn log(qnsn log n)=ng1/2 into the above inequal-

ity, it can be obtained that

P
�

max
j≤qnsn

jΠ2jj � c7fqnsn log(qnsn log n)=ng1/2
��fYi = yigni=1 \Mn

�
� 1� c5flog(n)g−1:

Together with Lemma 3, there exist universal constants c8 > 0 and c9 > 0 such that with

probability at least 1� c8[flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)],

max
j≤qnsn

Π2j � c9fqnsn log(qnsn log n)=ng1/2: (118)

By combining (117), (118) with (116), it is seen that there exist universal constants c10 > 0

and c11 > 0 such that

P
h qnsn\
j=1

n
Ω1j � c10fqnsn log(qnsn log n)=ng1/2 + c10je′jΛ

(1)1/2
T Σ

(1)−1
TT Λ

(1)1/2
T sgn(�

(1)
T )j

� [qnsn=n+ flog(qnsn log n)=ng1/2]
oi

�1� c11[flog(n)g−1 + exp(�n�1=12) + exp(�n�2=12)]: (119)

To bound the term Ω2j, it can be verified that

max
j≤qnsn

Ω2j �(qnsn)1/2kΛ(1)−1/2
T Λ̂

(1)1/2
T � Iqnsnkmax � kΛ(1)1/2

T S
(1)−1
TT Λ

(1)1/2
T k2:
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Together with Lemma 5 and Lemma 8, it is seen that there exist universal constants

c12; c13 > 0 such that

P
�

max
j≤qnsn

Ω2j � c12fqnsn log(qnsn)=ng1/2
�

�1� c13[(qnsn)−1 + exp(�n�1=12) + exp(�n�2=12)]:

Together with (115) and (119), the assertion holds trivially, which completes the proof.
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