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S.1 Algorithm

Practitioners may use the retraction-based proximal gradient method (ManPG) (Chen et al.,

2020) to solve our manifold optimization problem (5). DenoteM = Vp;d and F (V) =

� Tr f V(t)T �̂( t)V(t)g + � kV(t)k1 wheref (V) = � Tr f V(t)T �̂( t)V(t)g is smooth and its gra-

dient is Lipschitz continuous with the Lipschitz constantL and h(V) = � kV(t)k1. ManPG

�rst computes a descent directionDk (k-th step) by solving the following problem:

minD < 5 f (Vk); D > + 1
2t kDk2

F + h(Vk + D)

s:t: D T Vk + V T
k D = 0;

(S.1)

whereVk is obtained in the k-th iteration, t > 0 is a step size andD is a descent direction

of F in the tangent spaceTVk M . Based on the Lagrangian function and KKT system, we

get that

E(�) = A k(D(�)) = 0 ; (S.2)

where A k(D) = D T Vk + V T
k D, D(�) = prox th (B (�)) � Vk with B(�) = Vk � t(5 f (Vk) �

A � (�)), A � (�)) denotes the adjoint operator of A k , where � is a d � d symmetric matrix.

The semi-smooth Newton method (SSN) (Xiao et al., 2018) could be used to solve (S.2).

Retraction operation is an important concept in manifold optimization, see Absil et al.

(2009) for more details. There are many common retractions for the Stiefel manifold, in-

cluding exponential mapping, the polar decomposition and the Cayley transformation. For
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inequality and the Cauchy-Schwarz inequality we have
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Denote the event En = {Exe
a
∑mi

l=1 w̃ilxijlxikl < ∞}, where Ex means that the expectation is

taken on x conditional on til. Then, it holds for all i by picking some appropriate ~wil and a

such that maxi ami| ~wil| is su�ciently small, since x2j(t) is sub-exponential uniformly in t by

Assumption 2.

De�ne B :=
Pn

i=1 bijk = O (n3 �m3h3 + n3 �m4h4). For su�ciently large n, we have
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Note that (S.6) is minimized when a = n=(2B) and that the minimizer is exp {−2n=(4B)}.

Thus, there exists some positive constant C such that
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Similarly, we obtain

P

 
nX

i=1

Wijk ≤ −n
����En

!
≤ exp

�
−C2n=(n3 �m3h3 + n3 �m4h4)

	
:

14



The following obtained by a simple union bound holds for each t ∈ T ,
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Let n = O{(log p)1/2(n3 �m3h3+n3 �m4h4)1/2}. Note that ~wil = Op{(n2 �m2h3)1/2} from Lemma

4, then with probability tending to 1, the event En holds from Assumption 4. Consequently,
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����� = Op{(log p)1/2(n3 �m3h3 + n3 �m4h4)1/2}:
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