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Summary

We propose a new method for functional nonparametric regression with a predictor that resides
on a finite-dimensional manifold, but is observable only in an infinite-dimensional space. Con-
tamination of the predictor due to discrete or noisy measurements is also accounted for. By using
functional local linear manifold smoothing, the proposed estimator enjoys a polynomial rate of
convergence that adapts to the intrinsic manifold dimension and the contamination level. This
is in contrast to the logarithmic convergence rate in the literature of functional nonparametric
regression. We also observe a phase transition phenomenon related to the interplay between the
manifold dimension and the contamination level. We demonstrate via simulated and real data
examples that the proposed method has favourable numerical performance relative to existing
commonly used methods.

Some key words: Contaminated functional data; Functional nonparametric regression; Intrinsic dimension; Local linear
manifold smoothing; Phase transition.

1. Introduction

Regression with a functional predictor is of central importance in the field of functional
data analysis, and has been advanced by Ramsay & Silverman (1997, 2002) and many other
researchers. The early development of functional regression focused on functional linear models
(Cardot et al., 1999; Yao et al., 2005b; Yuan & Cai, 2010). Extensions of linear models include
generalized linear regression (Cardot & Sarda, 2005; Müller & Stadtmüller, 2005), additive mod-
els (Müller & Yao, 2008) and quadratic models (Yao & Müller, 2010), among others. In these
works, specific forms of the regression model are prescribed, which are regarded as functional
parametric regression models (Ferraty & Vieu, 2006) that entail efficient estimation procedures,
and hence are well studied in the literature.

In contrast, functional nonparametric regression, which does not impose structural constraints
on the regression function, has received less attention. The first landmark in the development
of nonparametric functional data analysis was the monograph of Ferraty & Vieu (2006). Recent
advances in this direction include the Nadaraya–Watson estimator (Ferraty et al., 2012) and
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the k-nearest-neighbour estimator (Kudraszow & Vieu, 2013). The development of functional
nonparametric regression has been hindered by a theoretical barrier, which is formulated in Mas
(2012) and linked to the small ball probability problem (Delaigle & Hall, 2010). Essentially, in a
rather general setting, the minimax rate of nonparametric regression on a generic functional space
is slower than any polynomial of the sample size, which differs markedly from the polynomial
minimax rates for many functional parametric regression procedures, see, e.g., Hall & Keilegom
(2007), and Yuan & Cai (2010) for functional linear regression. These endeavours in functional
nonparametric regression do not exploit the intrinsic structure that is common in practice. For
instance, Chen & Müller (2012) suggested that functional data often have a low-dimensional
manifold structure which can be utilized for more efficient representation. In this article, we
exploit the nonlinear low-dimensional structure for functional nonparametric regression.

Our method, which we call functional regression on the manifold, assumes the model

Y = g(X ) + ε, (1)

where Y is a scalar response, X is a functional predictor sampled from an unknown manifold M,
ε is an error term that is independent of X , and g is some unknown functional to be estimated. In
reality, the functional predictor X is rarely fully observed. To accommodate this common scenario,
we assume that X is recorded on a grid of points with noise. The model (X

is
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the observed functional predictors from their discrete or noisy measurements, and then adopt the
local linear manifold smoothing technique of Cheng & Wu (2013). While our approach and that of
Cheng & Wu (2013) share the same intrinsic manifold set-up, their method differs fundamentally
in the ambient aspect, which raises challenging issues unique to functional data. First, functional
data naturally live in an infinite-dimensional ambient space, while the Euclidean data considered
by Cheng & Wu (2013) have a finite ambient dimension. Second, the effects of noise and sampling
in the observed functional data need to be dealt with explicitly, since functional data are discretely
and noisily recorded in practice, which leads to contamination of the functional predictor. This
contamination issue is not encountered in the situation studied by Cheng & Wu (2013) and has
been considered only for linear regression of multivariate data by Aswani et al. (2011) and Loh
& Wainwright (2012). Moreover, the contamination has an intrinsic dimension that grows with
the sample size and thus is coupled with the ambient infinite dimensionality.

The main contributions of this article are as follows. First, by exploiting structural information
of the predictor, our approach produces an effective estimation procedure that adapts to the
unknown manifold structure and the contamination level, while maintaining the flexibility of
functional nonparametric regression. Second, by careful theoretical analysis, we confirm that
the regression functional g can be estimated at a polynomial convergence rate with respect to
the sample size, especially when only the contaminated functional predictors are available. This
provides a new angle on functional nonparametric regression that is subject to a logarithmic rate
(Mas, 2012). Third, the contamination of predictors is explicitly accounted for and is shown to
be an integral part of the convergence rate, which has not been well studied even in classical
functional linear regression (Hall & Keilegom, 2007). Finally, we discover that the polynomial
convergence rate exhibits a phase transition phenomenon, depending on the interplay between the
manifold dimension and the contamination level. This type of phase transition had not previously
been observed in functional regression, and is of at least the same importance as those concerning
the estimation of mean or covariance functions (e.g., Cai & Yuan, 2011; Zhang & Wang, 2016).
Moreover, in the course of our theoretical development, we obtain some useful results that are of
independent interest, such as consistency of the estimated intrinsic dimension and tangent spaces
of the manifold in the presence of contamination.

2. Estimation of functional regression on the manifold

2.1. Step I: recovery of functional data

We assume that each predictor Xi is observed at mi design points Ti1, . . . , Timi ∈ D. We denote
the observed value at Tij by X ∗

ij = Xi(Tij) + ζij, where ζij is random noise with mean zero
and is independent of all Xi and Tij. The collection Xi = {(Ti1, X ∗

i1), . . . , (Timi , X ∗
imi

)} represents
all measurements for the realization Xi, and {X1, . . . , Xn} constitutes the observed data for the
predictor. We clarify that although each trajectory Xi as a whole function resides on the manifold
M, the mi-dimensional vector Vi = {Xi(Ti1), . . . , Xi(Timi)} does not. Consequently, the manifold
assumption in Cheng & Wu (2013) is violated for Vi.

When inf i mi is sufficiently large or grows with the sample size, a scenario commonly referred
to as the dense design, we may recover each function Xi based on the observed data Xi by individual
smoothing estimation. Popular smoothing techniques include the local linear smoother (Fan,
1993) and spline smoothing (Ramsay & Silverman, 2005). By applying one of these methods,
one obtains an estimate X̂i of Xi, referred to as the contaminated version of Xi, which is used in
subsequent steps to estimate g. To be specific, we consider the local linear estimate of Xi(t) given
by b̂1 such that
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(b̂1, b̂2) = arg min
(b1,b2)∈R2
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mi

mi∑
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{
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ij − b1 − b2(Tij − t)
}2K

(
Tij − t

hi

)
,

where K is a compactly supported symmetric density function and hi is the bandwidth. It can be
shown that b̂1 = (R0S2 − R1S1)/(S0S2 − S2

1 ), where

Sr(t) = 1

mihi

mi∑
j=1

K

(
Tij − t

hi

)(
Tij − t

hi

)r

,

Rr(t) = 1

mihi

mi∑
j=1

K

(
Tij − t

hi

)(
Tij − t

hi

)r

X ∗
ij

for r = 0, 1 and 2.
The estimate b̂1 does not have a finite mean squared error, as its denominator is zero with

positive probability for a finite sample. To overcome this issue, we adopt the technique of ridging
(Fan, 1993; Seifert & Gasser, 1996; Hall & Marron, 1997) to estimate Xi(t) by the following
ridged local linear estimate:

X̂i(t) = R0S2 − R1S1

S0S2 − S2
1 + δ1{|S0S2−S2

1 |<δ}
, (2)

where δ > 0 is a sufficiently small constant that depends on mi, such as δ = m−2
i .

When supi mi is relatively small or bounded by a constant, a scenario commonly referred to as
the sparse design, the procedure proposed by Yao et al. (2005a) can be used to recover individual
Xi. We refer readers to the Supplementary Material for details of such a procedure.

2.2. Step II: estimation of the manifold dimension and tangent space

To characterize the manifold structure, we first estimate the intrinsic dimension d of the
manifold M. We adopt the maximum likelihood estimator proposed by Levina & Bickel (2004),
replacing the unobservable Xi with the contaminated version X̂i. For a given x ∈ M, define
Ĝi(x) = ‖x − X̂i‖L2 and let Ĝ(k)(x) be the kth order statistic of Ĝ1(x), . . . , Ĝn(x). Then the
intrinsic dimension d is estimated by

d̂ = 1

k2 − k1 + 1

k2∑
k=k1

d̂k (3)

with

d̂k = 1

n

n∑
i=1

d̂k(X̂i), d̂k(x) =
⎧⎨
⎩ 1

k − 1

k−1∑
j=1

log
Ĝ(k)(x) + �

Ĝ(j)(x) + �

⎫⎬
⎭

−1

, (4)

where � is a positive constant depending on n, and k1 and k2 are tuning parameters. The constant
� regularizes d̂k(x) to overcome the additional variability introduced by the contamination of
the predictor. We conveniently set � = 1/ log m̄ with m̄ = n−1∑n

i=1 mi and refer readers
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to Levina & Bickel (2004) for the choices of k1 and k2. When the observed data are sparsely
sampled, the distance Ĝi(x) can be better estimated by the procedure of Peng & Müller (2008).

Now we proceed to estimate the tangent space at the given point x as follows.

Step 1. Determine a neighbourhood of x, N̂L2(hpca, x) = {X̂i : ‖x − X̂i‖L2 < hpca, i =
1, . . . , n}, where hpca > 0 is a tuning parameter.

Step 2. Compute the local empirical covariance function

Ĉx(s, t) = 1

|N̂L2(hpca, x)|
∑

X̂ ∈N̂L2 (hpca,x)

{X̂ (s) − μ̂x(s)}{X̂ (t) − μ̂x(t)} (5)

and obtain the eigenfunctions ϕ̂1, ϕ̂2, . . . , ϕ̂d̂ corresponding to the d̂ leading eigenvalues, where

μ̂x = |N̂L2(hpca, x)|−1∑
X̂ ∈N̂L2 (hpca,x) X̂ is the local mean function and |N̂L2(hpca, x)| denotes

the number of observations in N̂L2(hpca, x).

Step 3. Estimate the tangent space at x by T̂xM = span{ϕ̂1, ϕ̂2, . . . , ϕ̂d̂}, the linear space

spanned by the first d̂ estimated eigenfunctions.

2.3. Step III: local linear regression on the tangent space

Finally, we utilize the local manifold structure by projecting all the X̂i onto the estimated
tangent space T̂xM, obtaining the local coordinate ξ̂i = (〈X̂i, ϕ̂1〉, . . . , 〈X̂i, ϕ̂d̂〉)T for X̂i. Then,
the estimate of g(x) is given by

ĝ(x) = eT
1(Q̂

TŴ Q̂)−1Q̂TŴY , Q̂ =
(

1 1 · · · 1
ξ̂1 ξ̂2 · · · ξ̂n

)T

, (6)

where Ŵ = diag{Khreg(‖x − X̂1‖L2), Khreg(‖x − X̂2‖L2), . . . , Khreg(‖x − X̂n‖L2)} with Kh(t) =
K(t/h)/hd̂ and bandwidth hreg, Y = (Y1, . . . , Yn)

T, and eT
1 = (1, 0, . . . , 0) is an n × 1 vector.

Here, the matrix Q̂ incorporates the estimated geometric structure that is encoded by the local
eigenbasis ϕ̂1, . . . , ϕ̂d̂ . We emphasize that in the above estimation procedure, which is illustrated

in Fig. 1(a), all the steps are based on the contaminated sample {X̂1, . . . , X̂n} rather than the
unavailable functions {X1, . . . , Xn}. When the predictor x is also measured only at mx discrete
points t1, . . . , tmx , we impute it by the procedures in § 2.1 and replace x in (4)–(6) with the imputed
curve x̃ to obtain an estimate of g(x̃).

2.4. Tuning parameter selection

There are several tuning parameters to be determined in our estimation procedure. For the
parameters k1 and k2 in (3) for estimating the intrinsic dimension, k1 = 10 and k2 = 20 are
suggested by Levina & Bickel (2004). However, we have found that k1 = 20 and k2 = 30
generally work better in our setting, perhaps partially because of the contamination, which
requires a relatively large local neighbourhood to offset it.

For the individual smoothing presented in § 2.1, we employ the following leave-one-out cross-
validation to select the bandwidth hi (Fan & Gijbels, 1996; Lee& Solo, 1999). Let X̂i,h,−j(x)
be the leave-one-out estimate of Xi(t), i.e., the estimate computed according to (2) using all
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Fig. 1. (a) An illustration of functional regression on a manifold, where dots represent the observed X̂i and squares the
projected x̂i. (b) An illustration of the asymptotic result of (8) for d = 2.

of (Ti1, X ∗
i1), . . . , (Timi , X ∗

imi
) except (Tij, X ∗

ij ). We then select hi from a pool of candidates to

minimize the cross-validation error cv(h) = ∑mi
j=1{X ∗

ij − X̂i,h,−j(Tij)}2.
For the bandwidths hpca in (5) and hreg in (6), we choose the pair (hpca, hreg) from a pool H of

candidate pairs to minimize the leave-one-out cross-validation error cv(hpca, hreg) = ∑n
i=1{Yi −

ĝhpca,hreg,−i(X̂i)}2, where ĝhpca,hreg,−i denotes the leave-one-out estimate of g with parameters

(hpca, hreg) without using the pair (X̂i, Yi). The pool H will be constructed in such a way that
every N̂L2(hpca, X̂i) contains at least d̂ + 1 samples for every pair (hpca, hreg) in H, in order to
ensure sufficient data for local estimation.

3. Theoretical properties

We focus on the scenario where inf i mi increases with the sample size n, and defer the case of
supi mi � m0 < ∞ to future research because of the additional technical challenges associated
with it. Without loss of generality, assume mi 	 m, where an 	 bn means 0 < lim inf an/bn <

lim sup an/bn < ∞. We further assume that the ζij, and similarly Tij and Xi, are independent and
identically distributed. We emphasize that the theoretical development below can be modified
to accommodate fixed designs, weak dependence and heterogeneous distributions. However,
because achieving such generality would involve considerably more technicalities without adding
further insight, it is not pursued here.

The discrepancy between X̂i and Xi, quantified by ‖X̂i − Xi‖L2 , is called the contamination of
Xi. The decay of this contamination is intimately linked to the consistency of our estimates of the
intrinsic dimension, the tangent space, and eventually the regression functional g(x). Moreover,
the convergence rate of ĝ(x) is found to exhibit a phase transition phenomenon, depending on the
interplay between the intrinsic dimension and the decay of the contamination. To set the stage, we
start with a property of contamination in recovery of functional data by the individual smoothing
approach in § 2.1. Specifically, we study the pth moment of contamination when X̂i is the ridged
local linear estimate in (2). Our result below for an arbitrary pth moment has not appeared before
in the literature; see Fan (1993) for the p = 2 case only.

Let �(ν, L) denote the Hölder class with exponent ν and Hölder constant L, which repre-
sents the set of 
ν�-times differentiable functions F whose derivative F (
) for 
 = 
ν� satisfies
|F (
)(t)−F (
)(s)| � L|t−s|ν−
 for s, t ∈ D, where 
ν� denotes the largest integer strictly smaller
than ν. We require the following mild assumptions, and we assume hi 	 h0 without loss of
generality.
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Assumption 1. The kernel K is differentiable with a bounded derivative, and is such that∫ 1
−1 K(u) du = 1,

∫ 1
−1 uK(u) du = 0 and

∫ 1
−1 |u|pK(u) du < ∞ for all p > 0.

Assumption 2. The sampling density fT is bounded away from zero and infinity, i.e., for some
constants CT ,1, CT ,2 ∈ (0, ∞), CT ,1 = inf t∈D fT (t) � supt∈D fT (t) = CT ,2.

Assumption 3. We have that X ∈ �(ν, LX ), where LXX

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa041#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa041#supplementary-data
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N̂L2(hpca, x) is a good estimate; see the Supplementary Material for details. Consequently, the
local manifold structure can be consistently estimated in the sense of the following theorem.

Theorem 1. Suppose that Assumptions 5 and 7 hold.

(i) Then d̂ is a consistent estimator of d when min{k1, k2} → ∞ and max{k1, k2}/m → 0.
(ii) If hpca → 0 and hpca � max{m−β+ε , n−1/(d+2)} for an arbitrarily small but fixed constant

ε > 0, then the eigenbasis {ϕ̂k}d
k=1 derived from Ĉx in (5) is close to an orthonormal basis

{φk}d
k=1 of TxM in the sense that for each x ∈ M,

ϕ̂k = φk + Op(h
3/2
pca)uk + Op(hpca)u

⊥
k (k = 1, . . . , d), (8)

where uk ∈ TxM, u⊥
k ⊥ TxM and ‖uk‖L2 = ‖u⊥

k ‖L2 = 1.

In light of Theorem 1(i), we shall present subsequent results by conditioning on the event
d̂ = d. For part (ii), which is illustrated in Fig. 1(b), the condition hpca � m−β+ε suggests that
hpca will be larger than the contamination by an arbitrarily small polynomial order of m. This is
required to ensure that the discrepancy between the estimated local neighbourhood N̂L2(hpca, x)
and the uncontaminated neighbourhood NL2(hpca, x) = {Xi : ‖x−Xi‖L2 < hpca, i = 1, . . . , n} is
asymptotically negligible, suggested by a lemma in the Supplementary Material. The curvature
at x is a constant that is absorbed into the Op terms and so does not influence the asymptotic rate.
However, in practice it is often more difficult to estimate the tangent structure at a point with
larger curvature.

We are now ready to state the results on the estimated regression functional. Recall that ĝ(x)
in (6) is obtained by applying the local linear smoother to the coordinates of contaminated
predictors within the estimated tangent space at x. It is well known that the local linear estimator
does not suffer from boundary effects, i.e., the first-order behaviour of the estimator on the
boundary is the same as in the interior (Fan, 1992). However, the contamination of the predictor
has a different impact, and we shall address the interior and boundary cases separately. Let
X = {(X1, X̂1), . . . , (Xn, X̂n)} and Mh = {x ∈ M : inf y∈∂M d(x, y) � h}, where ∂M denotes
the boundary of M and d(· , ·) is the distance function on M. For points sufficiently far away from
the boundary of M, we have the following result about the convergence rate of the estimator ĝ(x).

Theorem 2. Suppose that Assumptions 1 and 5–7 hold. Let x ∈ M\Mhreg and hpca satisfy
the conditions of Theorem 1(ii). For an arbitrarily small but fixed constant ε > 0, suppose that
hreg → 0, hreg > hpca and min{nhreg, mβh5/3+ε

reg } → ∞. Then

E
[{ĝ(x) − g(x)}2

∣∣ X
] = Op

(
h4 + 1

m2βh2+2ε
reg

+ 1

nhd

)
. (9)

In addition, if hpca 	 max{m−β , n−1/(d+2)}, and if hreg 	 n−1/(d+4) when m � n(3+ε)/{β(d+4)}
and hreg 	 m−β/(3+ε) otherwise, then

E
[{ĝ(x) − g(x)}2

∣∣ X
] = Op

{
n−4/(d+4) + m−4β/(3+ε)

}
. (10)

We highlight the following observations from this theorem. First, according to our analysis
in the Supplementary Material, the first two terms on the right-hand side of (9) correspond to
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contamination dominates, the convergence is slightly slower for boundary points than for interior
points. This is the price we pay for the boundary effect when the predictor is contaminated, which
is in contrast with the classical result on the local linear estimator (Fan, 1993).

4. Simulation study

To demonstrate the performance of our method, we conduct simulation studies for three dif-
ferent manifolds, namely, the three-dimensional rotation group SO(3), the Klein bottle and the
mixture of two Gaussian densities.

For the SO(3) manifold we set Xi(t) = ∑9
k=1 zikbk(t), where b2
−1(t) = cos{(2
 −

1)π t/10}/51/2 and b2
(t) = sin{(2
 − 1)π t/10}/51/2. To generate the random variables zik ,
for a vector r = (r1, r2, r3) and a variable θ ∈ R we define

R(r, θ) = (1 − cos θ)rrT +
⎛
⎝ cos θ −r3 sin θ r2 sin θ

r3 sin θ cos θ −r1 sin θ

−r2 sin θ r1 sin θ cos θ

⎞
⎠ .

Writing e2 = (0, 1, 0)T and e3 = (0, 0, 1)T, we set (zi1, . . . , zi9)
T = vec(Zi) with Euler angle

parameterization Zi = R(e3, ui)R(e2, vi)R(e3, wi), where the (ui, vi) are uniformly sampled from
the two-dimensional sphere S2 = [0, 2π) × [0, π ] and the wi are uniformly sampled from the
unit circle S1 = [0, 2π).

For the Klein bottle we set Xi(t) = ∑4
k=1 zikbk(t) with bk(t) as in the SO(3) setting. We

set zi1 = (2 cos vi + 1) cos ui, zi2 = (2 cos vi + 1) sin ui, zi3 = 2 sin vi cos(ui/2) and zi4 =
2 sin vi sin(ui/2), where ui and vi are independently sampled from the uniform distribution on
(0, 2π). Here (u, v) �→ (z1, z2, z3, z4) is a parameterization of the Klein bottle with intrinsic
dimension d = 2.

For the Gaussian mixture we set Xi(t) = exp{−(t − ui)
2/2}/(2π)1/2 + exp{−(t −

vi)
2/2}/(2π)1/2 with (v1, v2)

T uniformly sampled from a circle with diameter 0.5, similar to
the form used in Chen & Müller (2012).

The functional predictor Xi is observed at mi points Ti1, . . . , Timi in the interval [0, 1] with
heteroscedastic measurement errors ζij ∼ N (0, σ 2

ij ), where σij is determined by the signal-to-noise

ratio snrX = var{X (Tij) | Tij}/σ 2
ij = 4. The response is generated by Yi = 4 sin(4Zi) cos(Z2

i ) +
2�(1 + Zi/2) + εi with Zi = ∫ 1

0 X 2
i (t)t dt and �(α) = ∫∞

0 sα−1 exp(−s) ds. The noise εi added
to the response Y is a centred Gaussian variable with variance σ 2

ε that is determined by the signal-
to-noise ratio snrY = var(Y )/σ 2

ε = 2. To see the effect of the manifold structure on regression,
we normalize the functional predictor in all settings to the unit scale, i.e., we multiply X by the
constant c = 1/{E(‖X ‖2)}1/2 so that the result satisfies E(‖X ‖2) = 1. Such a scaling does not
change the geometric structure of the manifolds except for their size. We find empirically that
to account for at least 95% of the variance of the data, more than 10 principal components are
needed in all settings, i.e., the dimensions of the contaminated data are considerably larger than
their intrinsic dimensions.

For evaluation, we generate independent test data of size 5000 and compute the root mean
squared error using the test data. In the test data, each predictor is also discretely measured and
contaminated by noise in the same way as in the training sample. We compare our method with
nonparametric estimators based on functional Nadaraya–Watson smoothing, functional condi-
tional expectation, the functional mode, the functional conditional median, and a multi-method
that averages estimates from the methods of functional conditional expectation, the functional
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Table 1. Results of simulation studies for densely observed data: reported are the Monte
Carlo averages of root mean squared errors based on 100 independent simulation

replicates, with the corresponding standard errors in parentheses
SO(3) manifold Klein bottle Gaussian mixture

n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000
FLR 22.1 (0.34) 21.8 (0.23) 21.6 (0.20) 61.3 (0.62) 61.2 (0.39) 6.09 (0.35) 29.6 (1.43) 29.0 (1.26) 28.8 (0.99)

FNW 16.2 (0.58) 15.7 (0.43) 15.5 (0.32) 31.8 (4.05) 29.1 (1.79) 28.3 (0.68) 18.7 (1.46) 17.5 (0.83) 17.0 (0.65)

FCE 15.3 (0.66) 14.1 (0.52) 13.2 (0.30) 29.7 (1.46) 27.1 (1.04) 26.1 (0.81) 21.1 (1.32) 20.4 (0.93) 19.8 (0.64)

FMO 25.4 (1.16) 23.0 (0.94) 22.0 (0.85) 46.2 (3.07) 41.2 (2.20) 38.3 (1.87) 35.9 (2.80) 33.6 (2.05) 32.2 (1.61)

FCM 20.2 (0.60) 18.6 (0.52) 17.2 (0.35) 39.1 (2.67) 33.9 (1.61) 30.9 (1.02) 27.3 (1.71) 25.1 (1.05) 23.2 (0.83)

MUL 18.2 (0.59) 16.6 (0.48) 15.4 (0.31) 34.0 (2.13) 30.0 (1.24) 27.7 (0.92) 24.6 (1.49) 23.1 (1.07) 21.8 (0.81)

FREM 10.1 (0.72) 8.16 (0.56) 6.38 (0.25) 16.5 (1.39) 12.3 (1.11) 9.51 (0.74) 10.5 (1.32) 8.08 (0.86) 6.12 (0.75)

FLR, functional linear regression; FNW, functional Nadaraya–Watson smoothing; FCE, functional conditional expec-
tation; FMO, functional mode, FCM, functional conditional median; MUL, multi-method; FREM, the proposed
functional regression on the manifold.

mode and the functional conditional median (Ferraty & Vieu, 2006). Functional linear regression
is also included to illustrate the impact of a nonlinear relationship. The tuning parameters in these
methods, such as the number of principal components for functional linear regression and the
bandwidth for the nonparametric methods, are selected by 10-fold cross-validation.

Here we focus on the scenario of dense functional data, and refer readers to the Supplementary
Material for simulation studies with sparsely observed data. Specifically, we set mi = m = 100
and Tij = tj, where t1, . . . , tm are equally spaced over [0, 1]. Three sample sizes are considered,
n = 250, 500 and 1000. We repeat each study 100 times independently, and the results are
presented in Table 1. First, we observe that the proposed method shows favourable numerical
performance in all simulation settings. Second, as the sample size grows, the reduction in root
mean squared error is more prominent for the proposed method than for the other methods. For
example, for our method the relative reduction in root mean squared error from n = 250 to
n = 500 is 25.5% and the reduction from n = 500 to n = 1000 is 22.7%, whereas for the
functional Nadaraya–Watson estimator the corresponding reductions are 8.49% and 2.75%. This
suggests that the proposed estimator may have a faster convergence rate. Furthermore, it provides
evidence for the polynomial rate stated in Theorems 2 and 3. Based on these theorems, the relative
reduction is expected to be 1−(n1/n2)

2/(d+4) as the sample size increases from n1 to n2, since the
data are sufficiently dense that the convergence rate is dominated by the intrinsic dimension. In
the setting of the Klein bottle, it is about 20.6%, and the empirical relative reduction is 22.7% from
n1 = 500 to n2 = 1000. Similar observations can be made for the other settings. In contrast, the
existing kernel methods manage no better than a logarithmic rate, providing numerical evidence
for the theory of Mas (2012). Third, as the intrinsic dimension goes up, the relative reduction
in root mean squared error for our estimator decreases, suggesting that the intrinsic dimension
plays an important role in determining the convergence rate. Finally, different manifolds result
in different constants hidden in the Op terms in Theorems 2 and 3. For example, according to
Table 1, those in the SO(3) setting seem smaller than their counterparts in the Klein bottle setting.

5. Real data examples

We apply our method to the analysis of three real datasets. For the purpose of evaluation, we
train our method on 75% of each dataset and reserve the remaining 25% as test data. The root
mean squared error is computed on the held-out test data. We repeat this procedure 100 times on
random partitions of the datasets; the results are summarized in Table 2.

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa041#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa041#supplementary-data
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Table 2. Results for the real data analysis: reported are the Monte Carlo averages of root
mean squared errors based on 100 independent simulation replicates, with the corres-
ponding standard errors in parentheses; the values for the diffusion tensor imaging and

systolic blood pressure data are scaled by 0.1 for visualization
FLR FNW FCE FMO FCM MUL FREM

MSP 2.56 (0.43) 2.42 (0.33) 1.97 (0.35) 2.66 (0.46) 2.82 (0.45) 2.31 (0.35) 1.06 (0.34)

DTI 1.14 (0.09) 1.28 (0.12) 1.36 (0.13) 1.78 (0.16) 1.25 (0.14) 1.33 (0.13) 0.96 (0.09)

SBP 1.34 (0.18) 1.57 (0.17) 1.64 (0.16) 2.33 (0.26) 1.68 (0.19) 1.76 (0.17) 1.15 (0.11)

FLR, functional linear regression; FNW, functional Nadaraya–Watson smoothing; FCE, functional conditional
expectation; FMO, functional mode, FCM, functional conditional median; MUL, multi-method; FREM, the pro-
posed functional regression on manifold; MSP, meat spectrometric data; DTI, diffusion tensor imaging data; SBP,
systolic blood pressure data.
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For example, from such images, some properties of white matter, such as fractional anisotropy of
water diffusion, can be derived. It has been shown that fractional anisotropy is related to multiple
sclerosis (Ibrahim et al., 2011).

To predict cognitive performance based on fractional anisotropy profiles, we analyse data col-
lected by Johns Hopkins University and the Kennedy-Krieger Institute. The data contain n = 340
profiles of multiple sclerosis patients, recorded from a grid of 93 points, and paced auditory serial
addition test scores, which quantify cognitive function (Gronwall, 1977). Figure 2(b) shows all the
fractional anisotropy profiles, which are considerably more complex than the spectrometric data.
The average estimated intrinsic dimension is 5.82 with a standard error of 0.098. By contrast, the
average number of principal components for functional linear regression is 11.98 with a standard
error of 5.22. According to Table 2, our method provides the most accurate prediction, while the
performance of all the other functional nonparametric methods deteriorates substantially.

Our third example concerns prediction of the systolic blood pressure of healthy men and uses
anonymous data from the Baltimore Longitudinal Study ofAging. In the study, 1590 healthy male
volunteers were scheduled to visit the Gerontology Research Center bi-annually. Their systolic
blood pressure and current age were recorded at each visit. The design of the data is sparse and
irregular, as many visits were missed by participants or not on the schedule; see Pearson et al.
(1997) for more details. We aim to predict the average systolic blood pressure in late middle age,
between the ages of 55 and 60, based on the blood pressure trajectory between ages 45 and 55.
After excluding subjects who had at most one visit between ages 45 and 55 and no visit between
ages 55 and 60, we are left with a subset of the data containing n = 323 subjects with on average
4.2 visits per subject, shown in Fig. 2(c). The average of the estimated intrinsic dimensions is 2.4
with a standard error of 0.069, while the average number of principal components for functional
linear regression is 4 with a standard error of 2.01. From Table 2 it can be seen that our method
outperforms the others significantly.

Acknowledgement

Yao’s research was partially supported by the National Natural Science Foundation of China
and the Key Laboratory of Mathematical Economics and Quantitative Finance, Peking University,
Ministry of Education.

Supplementary material

Supplementary material available at Biometrika online includes additional details and sim-
ulation studies for sparse functional data, proofs of the main theorems, auxiliary results, and
technical lemmas with proofs.

References

Aswani, A., Bickel, P. & Tomlin., C. (2011). Regression on manifolds: Estimation of the exterior derivative. Ann.
Statist. 39, 48–81.

Bhattacharya, R. & Lin, L. (2017). Omnibus CLTs for Fréchet means and nonparametric inference on non-
Euclidean spaces. Proc. Am. Math. Soc. 145, 413–28.

Bhattacharya, R. & Patrangenaru, V. (2003). Large sample theory of intrinsic and extrinsic sample means on
manifolds. I. Ann. Statist. 31, 1–29.

Bhattacharya, R. & Patrangenaru, V. (2005). Large sample theory of intrinsic and extrinsic sample means on
manifolds. II. Ann. Statist. 33, 1225–59.

Cai, T. & Yuan, M. (2011). Optimal estimation of the mean function based on discretely sampled functional data:
Phase transition. Ann. Statist. 39, 2330–55.

Cardot, H., Ferraty, F. & Sarda, P. (1999). Functional linear model. Statist. Prob. Lett. 45, 11–22.

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa041#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaa041#supplementary-data


180 Z. Lin and F. Yao

Cardot, H. & Sarda, P. (2005). Estimation in generalized linear models for functional data via penalized likelihood.
J. Mult. Anal. 92, 24–41.

Chen, D. & Müller, H. (2012). Nonlinear manifold representations for functional data. Ann. Statist. 40, 1–29.
Cheng, M. & Wu, H. (2013). Local linear regression on manifolds and its geometric interpretation. J. Am. Statist.

Assoc. 108, 1421–34.
Coifman, R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F. & Zucker, S. W. (2005). Geometric

diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proc. Nat. Acad. Sci.
102, 7426–31.

Cornea, E., Zhu, H., Kim, P. & Ibrahim, J. G. (2017). Regression models on Riemannian symmetric spaces. J. R.
Statist. Soc. B 79, 463–82.

Dai, X. & Müller, H.-G. (2018). Principal component analysis for functional data on Riemannian manifolds and
spheres. Ann. Statist. 46, 3334–61.

Delaigle, A. & Hall, P. (2010). Defining probability density for a distribution of random functions. Ann. Statist.
38, 1171–93.

Fan, J. (1992). Design-adaptive nonparametric regression. J. Am. Statist. Assoc. 87, 998–1004.
Fan, J. (1993). Local linear regression smoothers and their minimax efficiencies. Ann. Statist. 21, 196–216.
Fan, J. & Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. London: Chapman and Hall.
Ferraty, F., Keilegom, I. V. & Vieu, P. (2012). Regression when both response and predictor are functions. J.

Mult. Anal. 109, 10–28.
Ferraty, F. & Vieu, P. (2006). Nonparametric Functional DataAnalysis:Theory and Practice. NewYork: Springer.
Gronwall, D. M. A. (1977). Paced auditory serial-addition task: A measure of recovery from concussion. Percept.

Motor Skills 44, 367–73.
Hall, P. & Keilegom, I. V. (2007). Two sample tests in functional data analysis starting from discrete data. Statist.

Sinica 17, 1511–31.
Hall, P. & Marron, J. S. (1997). On the shrinkage of local linear curve estimators. Statist. Comp. 516, 11–17.
Hall, P., Müller, H.-G. & Wang, J.-L. (2006). Properties of principal component methods for functional and

longitudinal data analysis. Ann. Statist. 34, 1493–517.
Huckemann, S., Hotz, T. & Munk, A. (2010). Intrinsic shape analysis: Geodesic PCA for Riemannian manifolds

modulo isometric Lie group actions. Statist. Sinica 20, 1–58.
Ibrahim, I., Tintera, J., Skoch, A., Jirøu, F., Hlustik, P., Martinkova, P., Zvara, K. & Rasova, K. (2011).

Fractional anisotropy and mean diffusivity in the corpus callosum of patients with multiple sclerosis: The effect
of physiotherapy. Neuroradiology 53, 917–26.

Jongen, P., Ter Horst, A. & Brands, A. (2012). Cognitive impairment in multiple sclerosis. Minerva Medica 103,
73–96.

Kudraszow, N. L. & Vieu, P. (2013). Uniform consistency of kNN regressors for functional variables. Statist. Prob.
Lett. 83, 1863–70.

Lang, S. (1995). Differential and Riemannian Manifolds. New York: Springer.
Lang, S. (1999). Fundamentals of Differential Geometry. New York: Springer.
Lee, T. C. & Solo, V. (1999). Bandwidth selection for local linear regression: A simulation study. Comp. Statist.

14, 515–32
Levina, E. & Bickel, P. (2004). Maximum likelihood estimation of intrinsic dimension. In Proc. 17th Int. Conf.

Neural Information Processing Systems (NIPS’04). Cambridge, Massachusetts: MIT Press, pp. 777–84.
Li, Y. & Hsing, T. (2010). Uniform convergence rates for nonparametric regression and principal component analysis

in functional/longitudinal data. Ann. Statist. 38, 3321–51.
Lila, E. & Aston, J. A. D. (2016). Smooth principal component analysis over two-dimensional manifolds with an

application to neuroimaging. Ann. Appl. Statist. 10, 1854–79.
Lin, L., Mu, N., Cheung, P. & Dunson, D. (2019). Extrinsic Gaussian processes for regression and classification

on manifolds. Bayesian Anal. 14, 887–906.
Lin, L., St Thomas, B., Zhu, H. & Dunson, D. B. (2016). Extrinsic local regression on manifold-valued data. J.

Am. Statist. Assoc. 112, 1261–73.
Lin, Z. & Yao, F. (2019). Intrinsic Riemannian functional data analysis. Ann. Statist. 47, 3533–77.
Loh, P.-L. & Wainwright, M. J. (2012). High-dimensional regression with noisy and missing data: Provable

guarantees with non-convexity. Ann. Statist. 40, 1637–64.
Mas, A. (2012). Lower bound in regression for functional data by representation of small ball probabilities. Electron.

J. Statist. 6, 1745–78.
Mukherjee, S., Wu, Q. & Zhou, D.-X. (2010). Learning gradients on manifolds. Bernoulli 16, 181–207.
Müller, H. G. & Stadtmüller, U. (2005). Generalized functional linear models. Ann. Statist. 33, 774–805.
Müller, H. G. & Yao, F. (2008). Functional additive models. J. Am. Statist. Assoc. 103, 1534–44.
Panaretos, V. M., Pham, T. & Yao, Z. (2014). Principal flows. J. Am. Statist. Assoc. 109, 424–36.
Patrangenaru, V. & Ellingson, L. (2015). Nonparametric Statistics on Manifolds and Their Applications to

Object Data Analysis. Boca Raton, Florida: CRC Press.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/108/1/167/5874121 by N
ational Science & Technology Library R

oot Adm
in user on 14 April 2021



Functional regression on the manifold 181

Pearson, J., Morrell, C., Brant, L., Landis, P. & Fleg, J. (1997). Age-associated changes in blood pressure in a
longitudinal study of healthy men and women. J. Gerontol. Med. Sci. 52, 177–83.

Peng, J. & Müller, H.-G. (2008). Distance-based clustering of sparsely observed stochastic processes, with
applications to online auctions. Ann. Appl. Statist. 2, 1056–77.

Ramsay, J. O. & Silverman, B. W. (1997). Functional Data Analysis. New York: Springer.
Ramsay, J. O. & Silverman, B. W. (2002). Applied Functional Data Analysis: Methods and Case Studies. New

York: Springer.
Ramsay, J. O. & Silverman, B. W. (2005). Functional Data Analysis. New York: Springer, 2nd ed.
Roweis, S. T. & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science 290,

2323–6.
Seifert, B. & Gasser, T. (1996). Finite-sample variance of local polynomials: analysis and solutions. J. Am. Statist.

Assoc. 91, 267–75.
Sober, B., Aizenbud, Y. & Levin, D. (2020). Approximation of functions over manifolds: A moving least-squares

approach. arXiv: 1711.00765v4.
Su, J., Kurtek, S., Klassen, E. & Srivastava, A. (2014). Statistical analysis of trajectories on Riemannian

manifolds: Bird migration, hurricane tracking, and video surveillance. Ann. Appl. Statist. 8, 530–52.
Tenenbaum, J. B., de Silva, V. & Langford, J. C. (2000). A global geometric framework for nonlinear

dimensionality reduction. Science 290, 2319–23.
Tsybakov, A. B. (2008). Introduction to Nonparametric Estimation. New York: Springer.
van der Maaten, L. & Hinton, G. (2008). Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–605.
Wu, H.-T. & Wu, N. (2018). Think globally, fit locally under the manifold setup: Asymptotic analysis of locally

linear embedding. Ann. Statist. 46, 3805–37.
Yao, F. & Müller, H. G. (2010). Functional quadratic regression. Biometrika 97, 49–64.
Yao, F., Müller, H.-G. & Wang, J.-L. (2005a). Functional data analysis for sparse longitudinal data. J. Am. Statist.

Assoc. 100, 577–90.
Yao, F., Müller, H. G. & Wang, J.-L. (2005b). Functional linear regression analysis for longitudinal data. Ann.

Statist. 33, 2873–903.
Yao, Z. & Zhang, Z. (2020). Principal boundary on Riemannian manifolds. J. Am. Statist. Assoc. 115, 1435–48.
Yuan, M. & Cai, T. T. (2010). A reproducing kernel Hilbert space approach to functional linear regression. Ann.

Statist. 38, 3412–44.
Yuan, Y., Zhu, H., Lin, W. & Marron, J. S. (2012). Local polynomial regression for symmetric positive definite

matrices. J. R. Statist. Soc. B 74, 697–719.
Zhang, X. & Wang, J.-L. (2016). From sparse to dense functional data and beyond. Ann. Statist. 44, 2281–321.
Zhou, L. & Pan, H. (2014). Principal component analysis of two-dimensional functional data. J. Comp. Graph.

Statist. 23, 779–801.

[Received on 14 April 2019. Editorial decision on 10 January 2020]




