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MIXTURE INNER PRODUCT SPACES AND THEIR APPLICATION
TO FUNCTIONAL DATA ANALYSIS
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University of Toronto∗, University of California, Davis† and Peking University‡

We introduce the concept of mixture inner product spaces associated
with a given separable Hilbert space, which feature an infinite-dimensional
mixture of finite-dimensional vector spaces and are dense in the underlying
Hilbert space. Any Hilbert valued random element can be arbitrarily closely
approximated by mixture inner product space valued random elements. While
this concept can be applied to data in any infinite-dimensional Hilbert space,
the case of functional data that are random elements in the L2 space of square
integrable functions is of special interest. For functional data, mixture in-
ner product spaces provide a new perspective, where each realization of the
underlying stochastic process falls into one of the component spaces and is
represented by a finite number of basis functions, the number of which cor-
responds to the dimension of the component space. In the mixture represen-
tation of functional data, the number of included mixture components used
to represent a given random element in L2 is specifically adapted to each
random trajectory and may be arbitrarily large. Key benefits of this novel
approach are, first, that it provides a new perspective on the construction
of a probability density in function space under mild regularity conditions,
and second, that individual trajectories possess a trajectory-specific dimen-
sion that corresponds to a latent random variable, making it possible to use
a larger number of components for less smooth and a smaller number for
smoother trajectories. This enables flexible and parsimonious modeling of
heterogeneous trajectory shapes. We establish estimation consistency of the
functional mixture density and introduce an algorithm for fitting the func-
tional mixture model based on a modified expectation-maximization algo-
rithm. Simulations confirm that in comparison to traditional functional prin-
cipal component analysis the proposed method achieves similar or better data
recovery while using fewer components on average. Its practical merits are
also demonstrated in an analysis of egg-laying trajectories for medflies.

1. Introduction. Introducing the concept of mixture inner product spaces is
motivated by one of the basic problems in functional data analysis, namely to ef-
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ficiently represent functional trajectories by dimension reduction. Functional data
correspond to random samples {X̃1, X̃2, . . . , X̃n} drawn from a square-integrable
random process defined on a finite interval D, X̃ ∈ L2(D). Random functions
X̃i are generally considered to be inherently infinite-dimensional and, therefore,
finite-dimensional representations are essential. A commonly employed approach
for dimension reduction is to expand the functional data in a suitable basis in func-
tion space and then to represent the random functions in terms of the sequence
of expansion coefficients. This approach has been very successful and has been
implemented with B-spline bases [Ramsay and Silverman (2005)] and eigenbases,
which consist of the eigenfunctions of the covariance operator of the underlying
stochastic process that generates the data. The estimated eigenbasis expansion then
gives rise to functional principal component analysis, which was introduced in a
rudimentary form in Rao (1958) for the analysis of growth curves. Earlier work
on eigendecompositions of square integrable stochastic processes [Gikhman and
Skorokhod (1969), Grenander (1950)] paved the way for statistical approaches.

There has been a substantial literature on functional principal component anal-
ysis, including basic developments [Besse and Ramsay (1986), Castro, Lawton
and Sylvestre (1986)], advanced smoothing methods and modes of variation [Rice
and Silverman (1991), Silverman (1996)], theoretical investigations [Boente and
Fraiman (2000), Hall and Hosseini-Nasab (2006), Kneip and Utikal (2001)] and
a unified framework that covers functional principal component analysis for func-
tional data with both sparse and dense designs and, therefore, brings many lon-
gitudinal data under this umbrella [Li and Hsing (2010), Yao, Müller and Wang
(2005), Zhang and Wang (2016)]. One of the attractions of functional principal
component analysis is that for any number of included components the result-
ing finite-dimensional approximation to the infinite-dimensional process explains
most of the variation. This has contributed to the enduring popularity of functional
principal component analysis [Chen and Lei (2015), Li and Guan (2014)], which
differs in essential ways from classical multivariate principal component analysis,
due to the smoothness and infinite dimensionality of the functional objects.

Existing methods assume a common structural dimension for this approxima-
tion [Hall and Vial (2006), Li, Wang and Carroll (2013)], where for asymptotic
consistency it is assumed that the number of included components, which is the
same for all trajectories in the sample, increases with sample size to ensure asymp-
totic unbiasedness. To determine an adequate number of components based on ob-
served functional data that is applied across the sample to approximate the underly-
ing processes reasonably well is crucial for the application of functional principal
component analysis. This is challenging for applications in which the trajectories
recorded for different subjects exhibit different levels of complexity. We introduce
here an alternative to the prevailing paradigm that the observed functional data are
all infinite-dimensional objects, which are then approximated through a one-size-
fits-all sequence of increasingly complex approximations. The proposed alterna-
tive model is to assume that each observed random trajectory is composed of only
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finitely many components, where the number of components that constitutes an
observed trajectory may be arbitrarily large without upper bound and varies across
the observed trajectories. This means that while each trajectory can be fully rep-
resented without residual by its projections on a finite number of components, the
overall process is still infinite-dimensional as no finite dimension suffices to rep-
resent it: For each fixed dimension d , there generally exist trajectories that require
more than d components for adequate representation. A key feature of this new
model is that the number of components used to represent a trajectory depends on
the trajectory to be represented.

In this paper, we develop the details of this model and show in data analysis
and simulations that its implementation leads to more parsimonious representa-
tions of heterogeneous functional data when compared with classical functional
principal component analysis. Its relevance for functional data analysis motivates
us to develop this model in the context of a general infinite-dimensional sepa-
rable Hilbert space; we note that all Hilbert spaces considered in this paper are
assumed to be separable. For any given infinite-dimensional Hilbert space and an
orthonormal basis of this space, we construct an associated mixture inner product
space (MIPS). The mixture inner product space consists of an infinite mixture of
vector spaces with different dimensions d, d = 1,2,3, . . . . We investigate proper-
ties of probability measures on these dimension mixture spaces and show that the
mixture inner product space associated with a given Hilbert space is dense in the
Hilbert space and is well suited to approximate individual Hilbert space elements
as well as probability measures on the Hilbert space.

The mixture inner product space concept has direct applications in functional
data analysis. It is intrinsically linked to a trajectory-adaptive choice of the num-
ber of included components, and moreover, can be harnessed to construct a den-
sity for functional data. The density problem when viewed in the Hilbert space L2

arises due to the well-known nonexistence of a probability density for functional
data with respect to Lebesgue measure in L2, which is a consequence of the low
small ball probabilities [Dabo-Niang (2002), Li and Linde (1999)] in this space.
The lack of a density is a drawback that negatively impacts various methods of
functional data analysis. For example, it is difficult to rigorously define modes,
likelihoods or other density-dependent methods, such as functional clustering or
functional Bayes classifiers. It has therefore been proposed to approach this prob-
lem by defining a sequence of approximating densities, where one considers the
joint density of the first K functional principal components, as K increases slowly
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target density by introducing a suitable measure for mixture distributions. This
density is a mixture of densities on vector spaces of various dimensions d and
its existence follows from the fact that a density exists with respect to the usual
Lebesgue measure for each component space, which is a finite-dimensional vector
space. Therefore, the proposed mixture inner product space approach is of rele-
vance for the foundations of the theory of functional data analysis.

The paper is organized as follows. We develop the concept of mixture inner
product spaces and associated probability measures on such spaces in Section 2
and then apply it to functional data analysis in Section 3. This is followed by
simulation studies in Section 4 and an application of the proposed method to a real
data set in Section 5. Conclusions are in Section 6. All proofs and technical details
are in the Appendix.

2. Random elements in mixture inner product spaces. In the theory of
functional data analysis, functional data can be alternatively viewed as random
elements in L2 or as realizations of stochastic processes. Under joint measurabil-
ity assumptions, these perspectives coincide; see Chapter 7 of Hsing and Eubank
(2015). We adopt the random element perspective in this paper, which is more con-
venient as we will develop the concept of a mixture inner product space (MIPS)
first for general infinite-dimensional Hilbert spaces, and will then take up the spe-
cial case of functional data and L2 in Section 3. In this section, we consider prob-
ability measures on Hilbert spaces and random elements that are Hilbert space
valued random variables.

2.1. Mixture inner product spaces. Let H be an infinite-dimensional Hilbert
space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let � = (φ1, φ2, . . .) be a
complete orthonormal basis (CONS) of H . We also assume that the ordering of
the sequence φ1, φ2, . . . is given and fixed. Define Hk, k = 0,1, . . . , as the linear
subspace spanned by φ1, φ2, . . . , φk , where H0 = ∅, and set Sk = Hk \ Hk−1 for
k = 1,2, . . . and S = ⋃∞

k=1 Sk , where also S = ⋃∞
k=1 Hk . Then S is an infinite-

dimensional linear subspace of H with inner product inherited from H . Since S

has an inner product and is a union of the k-dimensional subsets Sk , we refer to
S as mixture inner product space (MIPS). The definition of Sk depends on �, and
thus on the ordered sequence φ1, φ2, . . . , while S depends on � only in the sense
that any permutation of φ1, φ2, . . . yields the same space S = S(�). It is easy to
see that two CONS � = (φ1, φ2, . . .) and � = (ψ1,ψ2, . . .) result in the same
MIPS, that is, S(�) = S(�), if and only if for each k = 1,2, . . . , there exists a
positive integer nk < ∞, positive integers k1, k2, . . . , knk

< ∞ and real numbers
ak1, ak2, . . . , aknk

, such that φk = ∑nk

j=1 akj
ψkj

.
In the sequel, we assume a CONS � is pre-determined, and S(�) is simply

denoted by S. Let B(H) be the Borel σ -algebra of H and (�,E ,P ) a probability
space. A H -valued random element XH is a E -B(H) measurable mapping from
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� to H . Recall that S is an inner product space, and hence it has its own Borel
σ -algebra B(S). Therefore, S-valued random elements can be defined as E -B(S)

measurable maps from � to S. The following proposition establishes some basic
properties of MIPS, where it should be noted that S is a proper subspace of H ; for
example, h = ∑∞

k=1 2−kφk is in H but not S.

PROPOSITION 1. Let S be a MIPS of H . Then:

1. S is a dense subset of H .
2. S ∈ B(H) and B(S) ⊂ B(H).
3. Every S-valued random element XS is also an H -valued random element.

An important consequence of the denseness of S is that any H -valued random
element can be uniformly approximated by S-valued random elements to an ar-
bitrary precision: Consider ξj = 〈X,φj 〉 and Xk = ∑k

j=1 ξjφj . For each j, k =
1,2, . . . , define �j,k = {ω ∈ � : ‖X − Xk‖H < j−1} \ �j,k−1, with �1,0 = ∅.
Because ‖X(ω) − Xk(ω)‖H → 0 for each ω ∈ �, �j,1,�j,2, . . . form a mea-
surable partition of � for each j . Defining Yj (ω) = ∑∞

k=1 Xk(ω)1ω∈�j,k
, where

1ω∈�j,k
is the indicator function of �j,k , for each ω, there is a k such that Yj (ω) =

Xk(ω) ∈ S. Moreover, if A ∈ B(S), then Y−1
j (A) = ⋃∞

k=1(X
−1
k (A) ∩ �j,k) ∈ E ,

as each Xk is measurable. Therefore, each Yj is E -B(S) measurable, and hence
an S-valued random element. Finally, the construction of Yj guarantees that
supω∈� ‖X(ω) − Yj (ω)‖H < j−1 → 0 as j → ∞. This leads to the following
uniform approximation result.

THEOREM 1. If X is a H -valued random element and S is a MIPS of
H , there exists a sequence of S-valued random elements Y1, Y2, . . . , such that
supω∈� ‖X(ω) − Yj (ω)‖H → 0 as j → ∞.

From the above discussion, we see that in approximating X with precision j−1,
the number of components used for different ω might be different. For example,
if ω ∈ �j,k , then k components are used. This adaptivity of S-valued random el-
ements can lead to an overall more parsimonious approximation of X compared
to approximations with fixed choice of k. We characterize this property in the
following result. For each S-valued random element Y , the average number of
components of Y is naturally given by K(Y ) = ∑∞

k=1 kP (Y ∈ Sk).

PROPOSITION 2. Suppose k > 1 and 1 ≤ p < ∞. Let X be a H -valued ran-
dom element, ξj = 〈X,φj 〉 and Xk = ∑k

j=1 ξjφj . If {E(‖X−Xk‖p
H )}1/p < ε, then

there exists an S-valued random element Y such that {E(‖X − Y‖p
H )}1/p < ε and

K(Y ) < K(Xk), provided that the probability density fk of ξj is continuous at 0
and fk(0) > 0.

We note that the above result can be extended to the case p = ∞, where
{E(‖Z‖p

H )}1/p is replaced by inf{w ∈ R : P(ω ∈ � : ‖Z(ω)‖H ≤ w) = 1}.
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2.2. Probability densities on mixture inner product spaces. For S-valued ran-
dom elements X, defining K = K(X) = ∑∞

k=1 k1X∈Sk
and Xk =∑k

j=1〈X,φj 〉φj , then X = ∑∞
k=1 Xk1K=k , and X = Xk with probability πk =

P(K = k). Since each Xk is of finite dimension, if the conditional density
f (Xk | K = k) exists for each k, then it is possible to define a probability density
for X with respect to a base measure whose restriction to each Sk coincides with
the k-dimensional Lebesgue measure. In contrast, for general random processes, it
is well known that the small ball probability density does not exist [Delaigle and
Hall (2010), Li and Linde (1999)]. An intuitive explanation is that with the mixture
representation the probability mass of X is essentially concentrated on the mixture
components Sk , each of which has a finite dimension, with high concentration on
the leading components. The decay of the mixture proportions πk as k increases
then prevents the overall probability mass from escaping to infinity. Below we
provide the details of this concept of a mixture density associated with MIPS.

It is well known that each Hk is isomorphic to R
k , with associated Lebesgue

measure τk . Defining a base measure τ(A) = ∑∞
k=1 τk(A ∩ Sk) for A ∈ B(S),

where we note that τ depends on the choice of the CONS, as change in the CONS
leads to a different MIPS, the restriction of τ to each Sk is τk . Therefore, although τ

itself is not a Lebesgue measure, the restriction to each finite-dimensional subspace
Hk is.

For the random variables ξj = 〈X,φj 〉, j ≥ 1, for a S-valued random ele-
ment X assume that the conditional densities fk(ξ1, ξ2, . . . , ξk) = f (ξ1, ξ2, . . . , ξk |
K = k) exist. With πk = P(X ∈ Sk) = P(K = k), we then define the mixture den-
sity function

(1) f (x) =
∞∑

k=1

πkfk

(〈x,φ1〉, 〈x,φ2〉, . . . , 〈x,φk〉)1x∈Sk
∀x ∈ S.

Note that even though there are infinitely many terms in (1), for any given real-
ization x = X(·,ω), only one of these terms is nonzero due to the presence of the
indicator 1x∈Sk

and the fact that X ∈ S. Therefore, f is well defined for all x ∈ S

given
∑

k πk = 1.
The presence of the indicator function 1x∈Sk

implies that the mixture density
in (1) is distinct from any classical finite mixture model, where each component
might have the same full support, while here the support of the each mixture com-
ponent is specific to the component. The key difference to usual mixture models
is that our model entails a mixture of densities that are defined on disjoint subsets,
rather than on a common support. The following result implies that the problem of
nonexistence of a probability density in L2 can be addressed by viewing functional
data as elements of a mixture inner product space.

THEOREM 2. The measure τ is a σ -finite measure on S. In addition, if the
conditional density fk(ξ1, ξ2, . . . , ξk) exists for each k, then the probability distri-



376 Z. LIN, H.-G. MÜLLER AND F. YAO

bution PX on S induced by X is absolutely continuous with respect to τ . Moreover,
the function f defined in (1) is a probability density of PX with respect to τ .

We note that the domain of f is S. Although S is dense in H , since f is not
continuous, there is no natural extension of f to the whole space H . Nevertheless,
we can extend both τ and f to H in the following straightforward way. Define the
extended measure τ ∗ on H by τ ∗(A) = τ(A ∩ S) for all A ∈ B(H). To extend f ,
we simply define f (x) = 0 if x ∈ H \S. One can easily verify that τ ∗ is a measure
on H extending τ , and f is a density function of X with respect to τ ∗.

2.3. Constructing mixture inner product space valued random elements. In
this section, we focus on an important class of MIPS-valued random elements.
Let ξ̃1, ξ̃2, . . . be a sequence of uncorrelated centered random variables such that
joint probability densities f̃k of ξ̃1, ξ̃2, . . . , ξ̃k exist for all k. Suppose K is a
positive random integer with distribution π = (π1, π2, . . .) where K is indepen-
dent of ξ̃1, ξ̃2, . . . , and πk = Pr(K = k). Then we construct a random element
X = μ + ∑K

k=1 ξ̃kφk , where μ ∈ H . We refer to a MIPS with random elements
constructed in this way as a generative MIPS. Note that the mean element μ is
allowed to be in the space H . Therefore, the centered process X − μ, which is
the primary object that the MIPS framework targets, takes value in a MIPS. This
feature enhances the practical applicability of the MIPS framework. A generative
MIPS has particularly useful properties that we discuss next.

In order to define mean and covariance of X, we also need that E(‖X‖2
H ) < ∞;

a simple condition that implies this assumption is
∑∞

j=1(
∑∞

k=j πk)var(ξ̃j ) < ∞.
Indeed, with π∗

j = ∑∞
k=j πk ,

E
(‖X − μ‖2

H

) = E

(
K∑

j=1

ξ̃2
j

)
= EE

(
K∑

j=1

ξ̃2
j | K

)
=

∞∑
k=1

πkE

(
k∑

j=1

ξ̃2
j

)

=
∞∑

k=1

πk

k∑
j=1

var(ξ̃j ) =
∞∑

j=1

( ∞∑
k=j

πk

)
var(ξ̃j ) =

∞∑
j=1

π∗
j var(ξ̃j ) < ∞,

E(‖X‖2
H ) ≤ E(‖X − μ‖2

H) + ‖μ‖2
H < ∞, and (X − μ) is seen to be a S-valued

random element. Under the condition E(‖X − μ‖2
H) < ∞, E(X − μ) = 0, and

hence E(X) = μ. Without loss of generality, we assume μ = 0 in the following.
To analyze the covariance structure of X = ∑K

k=1 ξ̃kφk , consider ξk = 〈X,φk〉.
Then ξk = ξ̃k1K≥k , E(ξk) = 0, var(ξk) = π∗

k var(ξ̃k) and E(ξj ξk) = 0, and
ξ1, ξ2, . . . are seen to be uncorrelated centered random variables with variance
π∗

k var(ξ̃k). Furthermore, because K is independent of the ξ̃k , the conditional
density of ξ1, ξ2, . . . , ξk given K = k is the joint density of ξ̃1, ξ̃2, . . . , ξ̃k . If
E(‖X‖2

H ) < ∞, the covariance operator  for X exists [Hsing and Eubank
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(2015)]. The φk are eigenelements of , as

φk = E
(
X〈X,φk〉) = E(Xξk) = E(Xξ̃k1K≥k) = EE(Xξ̃k1K≥k | K)

=
∞∑

j=1

πjE(Xξ̃k1K≥k | K = j) =
∞∑

j=k

πjE

(
ξ̃k

j∑
m=1

ξ̃mφm

)

= π∗
k var(ξ̃k)φk,

(2)

where the last equality is due to uncorrelatedness of ξ̃1, ξ̃2, . . . . From (2), the eigen-
value λk corresponding to the kth eigenelement φk is

(3) λk = π∗
k var(ξ̃k).

Since φ1, φ2, . . . is a CONS of H ,  has no other eigenelement in H . Therefore,
 admits the eigendecomposition  = ∑∞

k=1 λkφk ⊗ φk , where (x ⊗ y)z = 〈x, z〉y
for x, y, z ∈ H . For the special case where H = L2, this feature establishes a con-
nection to traditional functional principal component analysis and suggests imple-
mentation of MIPS in this special case by adopting well studied functional princi-
pal component analysis methods; see the next section for details.

An important consequence of these considerations is that for each random el-
ement X̃ ∈ H with E(‖X̃‖2

H ) < ∞ and for which the covariance operator ̃ has
an eigendecomposition ̃ = ∑∞

k=1 λ̃kφ̃k ⊗ φ̃k (assuming w.l.o.g. that φ̃1, φ̃2, . . .

form a CONS of H ), there exists a MIPS S̃ and a S̃-valued random element
Z, such that the covariance operator  of Z has the same set of eigenelements.
To see this, define S̃ to be the MIPS generated by φ̃1, φ̃2, . . . and note that
ζk = 〈X̃, φ̃k〉, k ≥ 1, are uncorrelated random variables with variances λ̃k [Hsing
and Eubank (2015)]. Choose an independent random positive integer K with dis-
tribution π = (π1, π2, . . .) and πk > 0 for all k, and set Z = ∑K

k=1 ζkφ̃k . Since∑∞
j=1 π∗

j var(ζj ) ≤ ∑∞
j=1 var(ζj ) < ∞, we have E(‖Z‖2

H ) < ∞. Therefore, the
derivation in (2) applies to Z
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that the set of MIPS-valued random elements is dense in an Lp sense, as follows.
For 1 ≤ p < ∞, let Lp(�,E ,P ;H) be the space of H -valued random elements X

such that E(‖X‖p
H ) < ∞. It is well known [Vakhania, Tarieladze and Chobanyan

(1987)] that Lp(�,E ,P ;H) (with elements defined as equivalence classes) is a
Banach space with norm ‖X‖Lp = {E(‖X‖p

H )}1/p for every X ∈ Lp(�,E ,P ;H),
where for p = ∞, L∞(�,E ,P ;H) denotes the Banach space with the essential
supremum norm. Since each S-valued random element is also an H -valued random
element according to Proposition 1, the space Lp(�,E ,P ;S) is a subspace of
Lp(�,E ,P ;H). The following corollary states that Lp(�,E ,P ;S) is dense in
Lp(�,E ,P ;H), which is an immediate consequence of Theorem 1.

COROLLARY 1. If X is a H -valued random element and S is a MIPS of
H , there exists a sequence of S-valued random elements Y1, Y2, . . . , such that
‖X − Yj‖Lp → 0 as j → ∞ for 1 ≤ p ≤ ∞, that is, Lp(�,E ,P ;S) is a dense
subset of Lp(�,E ,P ;H).

Applying this result to the Hilbert space H = L2(D), which is the set of real
functions f : D → R such that

∫
D |f (t)|2 dt < ∞, where D is a compact subset

of R, for example, D = [0,1], we conclude that the set of MIPS-valued random
processes is dense in the space of all L2(D) random processes. This denseness
implies that when modeling functional data with MIPS-valued random processes,
the results are arbitrarily close to those one would have obtained with the tra-
ditional L2 based functional data analysis approaches in the L2 sense. A major
difference between the two approaches is that each functional element is always
finite-dimensional in the MIPS framework, as it belongs to one of the subspaces
Sk , where the MIPS is S = ⋃∞

k=1 Sk , as defined above, while in the classical L2

framework each element is infinite-dimensional. The denseness of MIPS in L2

provides additional justification for the adoption of this new approach.
As we will demonstrate below, modeling functional data in the MIPS frame-

work enjoys extra flexibility and parsimony in representing observed functional
data. And, as mentioned before, it provides a way to define probability densities
for functional data within the full MIPS space, avoiding ad hoc truncation ap-
proaches to which one must resort when tackling the density problem directly in
the traditional functional data space L2.

3.2. Model and estimation. In the following, we develop a MIPS based func-
tional mixture model from a practical modeling perspective. A practical motivation
to adopt a mixture model is that it enables adaptive choice of the number of com-
ponents that are included to represent a given functional trajectory. This adaption
is with respect to the complexity of the trajectory that is to be represented. The
basic idea is that trajectories that have more features and shape variation relatively
to other trajectories require a larger number of components to achieve a good rep-
resentation, while those that are flat and have little shape variation will require
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fewer components. This contrasts with the “one size fits all” approach of func-
tional principal component analysis or other expansions in basis functions, where
the expansion series always includes infinitely many terms.
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parametrized by θ[∞], that is,

(5) f
(
X(ω) | θ[∞]

) =
∞∑

k=1

πkfk

(
ξ1(ω), ξ2(ω), . . . , ξk(ω) | θk

)
1X(ω)∈Sk

.

For a generic parameter θ , we use θ0 to denote its true value, and θ̂ to denote
corresponding maximum likelihood estimators, for example, θ[∞],0 denotes the
true parameters of θ[∞].

To illustrate the key idea, we make the simplifying assumption of compactness
of the parameter space, which may be relaxed by introducing more technicalities.
The condition below characterizes the compactness of the parameter space � =∏∞

j=1 I[∞],j as a product of compact spaces, using Tychonoff’s theorem.

(A1) For each j = 1,2, . . . , I[∞],j is a nonempty compact subset of R, and thus
� = ∏∞

j=1 I[∞],j is compact (by Tychonoff’s theorem).

With eigenfunctions φ1, φ2, . . . estimated by decomposing the sample covari-
ance operator, the principal component scores ξik are estimated by ξ̂ik = 〈Xi, φ̂k〉
for each i = 1,2, . . . , n and k = 1,2, . . . , where φ̂k are the standard estimates of
φk . To quantify the estimation quality, we postulate a standard regularity condition
for X [Hall and Hosseini-Nasab (2006)] and a polynomial decay assumption for
the eigenvalues λ1 > λ2 > · · · > 0 [Hall and Horowitz (2007)].

(A2) For all C > c′ and some ε′ > 0, where c′ > 0 is a constant,
supt∈D E{|X(t)|C} < ∞ and sups,t∈D E[{|s − t |−ε′ |X(s) − X(t)|}C] < ∞.

(A3) For all k ≥ 1, λk − λk+1 ≥ C0k
−b−1 for constants C0 > 0 and b > 1, and

also πk = O(k−β) for a constant β > 1.

Note that
∑

k λk < ∞ and
∑

πk = 1 imply b > 1 and β > 1 and one also has
π∗

k = ∑∞
j=k πk = O(k−β+1). Condition (A3) also implies that λk ≥ C′k−b for a

constant C′ > 0 for all k. Therefore, if ρk = var(ξ̃k), the relation λk = π∗
k var(ξ̃k)

that was derived in (3) implies ρk = λk/π
∗
k ≥ Cρk−b+β−1 for a constant Cρ > 0

and for all k. Note that the case −b + β − 1 > 0, for which the variances of the ξ̃k

diverge, is not excluded.
Our next assumption concerns the regularity of mixture components fk(ξ̃1, ξ̃2,

. . . , ξ̃k) and gk(ξ̃1, ξ̃2, . . . , ξ̃k) = logfk(ξ̃1, ξ̃2, . . . , ξ̃k), where the dependence on
θk is suppressed when no confusion arises.

(A4) For k = 1,2, . . . , fk(· | θk) is continuous at all arguments θk . There ex-
ist constants C1,C2,C3 ≥ 0, −∞ < α1, α2 < ∞, 0 < ν1 ≤ 1, 0 < ν2 ≤ 2
and functions Hk(·) such that, for all k = 1,2, . . . , gk satisfies |gk(u) −
gk(v)| ≤ C1Hk(v)‖u − v‖ν1 + C2k

α2‖u − v‖ν2 for all u, v ∈ R
k , and

E{Hk(ξ1, ξ2, . . . , ξk)}2 ≤ C3k
2α1 .

In the following, we use α = max{α1, α2} and ν = min(2ν1, ν2). Note that
Hölder continuity is a special case for C1 = 0. Given (A3), one can verify that
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(A4) is satisfied for the case of Gaussian component densities with C1,C2,C3 > 0,
ν1 = 1, ν2 = 2, α1 > 2−1 max(1 − b,2b − 3β + 4) and α2 = max(0, b − β + 1).
The condition on |gk(u) − gk(v)| in (A4) implicitly assumes a certain growth rate
of d[k] as k goes to infinity. For instance, E{Hk(ξ1, ξ2, . . . , ξk)}2 is a function of
the parameter set θ[k]. By the compactness assumption on θ[∞], the parameters
have a common upper bound. With this upper bound, E{Hk(ξ1, ξ2, . . . , ξk)}2 can
be bounded by some function R of d[k]. By postulating E{Hk(ξ1, ξ2, . . . , ξk)}2 ≤
C3k

2α1 in (A4), we implicitly assert that the function R(d[k]) can be bounded by
a polynomial of k, with the exponent 2α1. We would need a larger value for α1
when d[k] grows faster with k. A similar argument applies to α2.

To state the needed regularity conditions for the likelihood function, we need
some notation. Let Qr = min(K, r), and define Zi = ∑Qr

j=1〈Xi,φj 〉φj , so that
Zi ∈ Sq, q ≤ r . The log-likelihood of a single observation Z is

Lr,1(Z | θ[r]) = log

{(
1 −

r−1∑
k=1

πk

)
fr(Z | θ[r])1Z∈Sr

+
r−1∑
k=1

πkfk(Z | θ[k])1Z∈Sk

}
.

(6)

The log-likelihood function of θ[r] for a sample Z1, . . . ,Zn accordingly is

(7) Lr,n(θ[r]) = n−1
n∑

i=1

Lr,1(Zi | θ[r]),

with maximizer θ̂[r]. We impose the following regularity condition on Lr(θ[r]) =
E{Lr,1(Z | θ[r])}.
(A5) There exist constants h1, h2, h3, a1, a2, a3 > 0 such that for all r ≥ 1,

Ur = {θ[r] : Lr(θ[r],0) − Lr(θ[r]) < h1r
−a1} is contained in a neighborhood

Br = {θ[r] : ‖θ[r],0 − θ[r]‖ < h2r
−a2} of θ[r],0, where θ[r],0 denotes the true

parameters of θ[r]. Moreover, Lr(θ[r],0) − Lr(θ[r]) ≥ h3r
−a3‖θ[r],0 − θ[r]‖2

for all θ[r] ∈ Ur .

Writing a = max{a1, a3}, we observe that (A5) is satisfied when each compo-
nent fk is Gaussian for any a > 1, and (A1) and (A3) hold. (A5) essentially states
that the global maximizer of Lr is unique and uniformly isolated from other local
maximizers with an order r−a . Such a condition on separability is necessary when
there are infinitely many mixture components in a model. We note that (A5) also
ensures identifiability of the global maximizer.

The next assumption is used to regulate the relationship between the mixture
proportions πk and the magnitude of gk(ξ̃1, ξ̃2, . . . , ξ̃k), by imposing a bound on
gk for increasing k.
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(A6) For a constant c < β − 1, E|gk(ξ̃1, ξ̃2, . . . , ξ̃k)| = O(kc−a), where a is de-
fined in (A5) and β in (A3) and gk(ξ̃1, ξ̃2, . . . , ξ̃k) = logfk(ξ̃1, ξ̃2, . . . , ξ̃k).

The constraint β > c + 1 in (A6) guarantees that in light of πk = O(k−β), as per
(A3), the mixture proportions πk decay fast enough relative to average magnitude
of gk(ξ̃1, ξ̃2, . . . , ξ̃k) to avoid a singularity that might arise in the summing oper-
ation to construct the density f in (1) when the magnitude of gk(ξ̃1, ξ̃2, . . . , ξ̃k)

grows too fast. This bound will prevent that too much mass is allocated to the
components with higher dimensions in the composite mixture density f . Such a
scenario would preclude the existence of a density and is avoided by tying the
growth of gk to the decline rate of the πk , as per (A6).

From a practical perspective, faster decay of the πk that places more probability
mass on the lower-order mixture components will help stabilize the estimation
procedure, as it is difficult to estimate the high-order eigenfunctions that are needed
for the higher order components. For the case of Gaussian component densities, a
simple calculation gives E|gk(ξ̃1, ξ̃2, . . . , ξ̃k)| = O(k log k), thus (A6) is fulfilled
for any c > a + 1. This will also imply that β > a + 2. An extreme situation arises
when πk = 0 for k ≥ k0 for some k0 > 0, that is, the dimension of the functional
space is finite and the functional model essentially becomes parametric. In this
case, the construction of the mixture density in functional space is particularly
straightforward.

The following theorem establishes estimation consistency for a growing se-
quence of parameters θ[rn] as the sample size n increases, and consequently
the consistency of the estimated probability density at any functional observa-
tion x ∈ S as argument. Define constants γ1 = (2b + 3)ν/2 + α − 2β , γ2 =
a + (γ1 + 2)1{γ1>−2}, and γ = min{ν/(2γ2),1/(2b + 2)}.

THEOREM 3. If assumptions (A0)–(A6) hold and rn = O(nγ−ε) for any 0 <

ε ≤ γ , then the global maximizer θ̂[rn] of L̂r,n(θ[rn]) satisfies

‖θ̂[rn] − θ[rn],0‖ p−→ 0,

where θ[rn] is defined in (4), and L̂r,n(θ[k]) is the likelihood function obtained by
plugging the estimated quantities φ̂k and ξ̂ik into Lr,n(θ[rn]) defined in (7). Conse-
quently, for any x ∈ S = ⋃∞

k=1 Sk , one has∣∣f (x | θ̂[rn]) − f (x | θ[∞],0)
∣∣ p−→ 0,

where f is the mixture probability density defined in (5).

We see from Theorem 3 that the number of consistently estimable mixture com-
ponents, rn, grows with a polynomial rate in terms of the sample size n. From (A4),
the proximity to a singularity of the component density fk is seen to increase as
α increases, indicating more difficulty in estimating fk , and thus restricting the
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rate of increase in rn. Faster decay rates of the eigenvalues λk , relative to the de-
cline rates in the mixture proportions πk and quantified by b and (b − β + 1),
respectively, lead to limitations in the number of eigenfunctions that can be reli-
ably estimated and this is reflected in a corresponding slowing of the rise of the
number of mixture components rn that can be included. The rate at which rn can
increase also depends on the decay of the πk as quantified by β .

3.3. Fitting algorithm. We present an estimation method based on the
expectation-maximization algorithm to determine the mixture probabilities πk for
k = 1,2 . . . , and the number Ki of components that are associated with each in-
dividual trajectory Xi . For simplicity, we assume that the mixture proportions πk

are derived from a known family of discrete distributions that can be parametrized
with one or few unknown parameters, denoted here by ϑ , simplifying the notation
introduced in Section 3.2. A likelihood for fitting individual trajectories with K

components can then be constructed. The following algorithm is based on fully
observed Xi . Modifications for the case of discretely observed data are discussed
at the end of the section.

To be specific, we outline the algorithm for the mixture density of Gaussian
processes, and use π ∼ Poisson(ϑ), that is, P(K = k | ϑ) = ϑke−ϑ/k!. Versions
for other distributions can be developed analogously. Assume that X1, . . . ,Xn are
centered without loss of generality. Projecting Xi onto each eigenfunction φj , we
obtain the functional principal component scores ξi1, ξi2, . . . of Xi . Given Ki = k,
(ξi1, ξi2, . . . , ξik) = (ξ̃i1, . . . , ξ̃ik) and

(8) (ξ̃i1, . . . , ξ̃ik)
T ∼N

(
0,�(k)

ρ

)
,

where �
(k)
ρ is the k × k diagonal matrix with diagonal elements ρj = var(ξ̃j ), j =

1,2, . . . , k. The likelihood f (Xi | Ki = k) of Xi conditional on Ki = k is then
given by

f (Xi | Ki = k) = 1√
(2π)k|�(k)

ρ |

× exp
[
−1

2
(ξi1, . . . , ξik)

(
�(k)

ρ

)−1
(ξi1, . . . , ξik)

T

]
.

(9)

Note that one needs the eigenvalues ρk to characterize the distribution of the
observations Xi given Ki . Based on equation (3), one can adopt standard func-
tional principal component analysis for the entire sample that contains realizations
of X, that is, extract the eigenvalues λk of G first and then utilize ρk = λk/π

∗
k .

This however requires to infer the unknown mixture proportions πk . To address
this conundrum, we treat Ki as a latent variable or missing value and adopt the
expectation-maximization paradigm, as follows:
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1. Obtain consistent estimates φ̂k(·) of φk(·) and λ̂k of λk , k = 1,2, . . . , from func-
tional principal component analysis by pooling the data from all individuals,
following some well-known procedures [Dauxois, Pousse and Romain (1982),
Hall and Hosseini-Nasab (2006)], followed by projecting each observation Xi

onto each φ̂k to obtain estimated functional principal component scores ξ̂ik . As
starting value for the Poisson parameter ϑ , we set ϑ = k, where k is the small-
est integer such that the fraction of variation explained by the first k principal
components exceeds 95%.

2. Plug in the estimate λ̂k for λk and calculate ρ̂k = λ̂k/π
∗
k , with πk = p(k | ϑ)

based on the current estimate of ϑ , which we denote by ϑ(t). Obtain the condi-
tional expectation of Ki given Xi ,

(10) E(Ki | Xi) =
∑∞

k=1 kf (Xi | Ki = k)P (Ki = k | ϑ(t))∑∞
k=1 f (Xi | Ki = k)P (Ki = k | ϑ(t))

,

where f (Xi | Ki = k) is given by (9). It is natural to use the nearest inte-
ger, denoted by Ei(Ki | Xi). The updated estimate of ϑ is given by ϑ(t+1) =
n−1 ∑n

i=1 Ei(Ki | Xi). Repeat this step until ϑ(t) converges. By the ascent prop-
erty of the EM algorithm, ϑ(t) converges to a local maximizer. In practice, this
step is repeated until a specified convergence threshold is reached that may be
defined in terms of the relative change of ϑ , that is, |ϑ(t+1) − ϑ(t)|/ϑ(t).

3. Each Xi is represented by Xi = ∑Ki

j=1 ξ̂ij φ̂j , where Ki is obtained as in (10).

In the numerical implementation, it is advantageous to only keep the positive
eigenvalue estimates ρ̂+

k , and to introduce a truncated Poisson distribution that is
bounded by K+

n = max{k : ρ̂+
k > 0},

(11) p+(
k | ϑ,K+

n

) = ϑk

k!(∑K+
n

�=0 ϑ�/�!)
≡ π+

k , k = 0,1, . . . ,K+
n .

Since the maximum likelihood estimate of ϑ in (11) based on the truncated Poisson
distribution is complicated and does not have an analytical form, it is expedient
to numerically maximize the conditional expectation of the log-likelihood with
respect to ϑ given the observed data Xi, i = 1, . . . , n, and the current estimate
ϑ(t),

n∑
i=1

E
{
logp+(

Ki | ϑ,K+
n

) | Xi,ϑ
(t)}

=
n∑

i=1

∑K+
n

k=1 logp+(k | ϑ,K+
n )f (Xi | Ki = k)p+(k | ϑ(t),K+

n )∑K+
n

k=1 f (Xi | Ki = k)p+(k | ϑ(t),K+
n )

,

(12)

and to consider the modified eigenvalues ρ+
k = λ+

k /(
∑K+

n

j=k π+
j ).



MIPS AND APPLICATION TO FDA 385

In many practical situations, the trajectories Xi are measured at a set of dis-
crete points ti1, . . . , timi

, rather than fully observed. This situation requires some
modifications of the estimation procedures. For step 1, the eigenfunctions φk ,
k = 1,2, . . . , can be consistently estimated via a suitable implementation of func-
tional principal component analysis, where for this estimation step unified frame-
works have been developed for densely or sparsely observed functional data [Li
and Hsing (2010), Zhang and Wang (2016)]. If the design points are sufficiently
dense, alternatively, individual smoothing as a preprocessing step may be applied
and one may then treat the pre-smoothed functions X̂1, . . . , X̂n as if they were
fully observed.

In situations where the measurements are noisy, a possible approach is
to compute the likelihoods conditional on the available observations Ui =
(Ui1, . . . ,Uimi

), where Uij = Xi(tij ) + εij with measurement errors εij that are
independently and identically distributed according N(0, σ 2) and independent of
Xi . Under joint Gaussian assumptions on X

(k)
i and the measurement errors, the

mi × mi covariance matrix of Ui is

(13) cov(Ui | k) =
{

k∑
r=1

ρrφr(tij )φr(ti�)

}
1≤j,�≤mi

+ σ 2Imi
≡ �

(k)
Ui

,

where Imi
denotes the mi × mi identity matrix. The likelihood f (Ui | K) is then

derived from N(μi,�
(k)
Ui

) with μi = {μ(ti1), . . . ,μ(timi
)}� and the estimation pro-

cedure is modified by replacing f (Xi | Ki = k) with f (Ui | Ki = k) in equation
(10). The following modifications are applied at steps 1 and 3: in step 1, the projec-
tions of the Xi onto the φk are skipped; in step 3, the functional principal compo-
nent scores ξik, k = 1, . . . ,Ki , are obtained in a final step by numerical integration
for the case of densely sampled data, ξik = ∫

Xi(t)φk(t) dt , plugging in eigenfunc-
tion estimates
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ment errors εik ∼ N(0, σ 2), that is, the actual observations are Uij = Xi(tij )+ εij ,
j = 1, . . . ,m. Two different levels were considered for σ 2, namely, 0.1 and 0.25.

The four settings differ in the choice of the latent trajectory dimensions Ki . In
the multinomial setting, Ki is independently sampled from a common distribution
(π1, . . . , π15), where the event probabilities π1, . . . , π15 are randomly generated
according to a Dirichlet distribution. In the Poisson setting, each Ki is indepen-
dently sampled from a Poisson distribution with mean ϑ = 6. In the finite setting,
each Ki is set to a common constant equal to 12, and in the infinite setting, each
Ki is set to a large common constant equal to 25, which mimics the infinite nature
of the process X. In the multinomial and Poisson settings the Ki vary from subject
to subject, while in the finite and infinite settings, they are the same across all sub-
jects. In the multinomial and finite settings, the K1, . . . ,Kn are capped by a finite
number that does not depend on n, whereas in the Poisson and infinite settings the
Ki are in principle unbounded and can be arbitrarily large. In our implementation,
we used the Gaussian–Poisson fitting algorithm described in Section 3.3 to obtain
fits for the generated data in all four settings.

For evaluation purposes, we generated a test sample of size 20,000 for each set-
ting. The population model components, such as the mean, covariance, eigenvalues
and eigenfunctions and also the rate parameter ϑ were estimated from the training
sample, while the subject-level estimates, Ki and the estimates of the functional
principal component were obtained from the generated data {U∗

ij , j = 1, . . . ,m}
that are observed for the ith subject in the test set X∗

i . Of primary interest is to
achieve good trajectory recovery with the most parsimonious functional data rep-
resentation possible, using as few components as possible to represent each trajec-
tory. The performance of the trajectory recovery is measured in terms of the av-
erage integrated squared error obtained for the trajectories in the test set, AISE =
n−1 ∑n

i=1
∫
T {X∗

i (t) − X̂∗
i (t)}2 dt . The parsimoniousness of the representations is

quantified by the average number of principal components Kavg = n−1 ∑n
i=1 Ki

that are chosen for the subjects. For the traditional functional principal compo-
nent analysis, this is always a common choice of Ki = K for all subjects. The
results are presented in Table 1. For comparison, the minimized average integrated
squared error for functional principal component analysis with its common choice
K for the number of components across all trajectories is also included in the last
column.

The results clearly show that in both Poisson and multinomial settings the
proposed mixture method achieves often substantially smaller average integrated
squared errors while utilizing fewer components on average than the traditional
functional principal component analysis. In contrast, in the fixed and infinite set-
tings, the proposed mixture method recovers trajectories with an error that is
comparable to that of traditional functional principal component analysis, using
roughly the same number of principal components. We conclude that the proposed
mixture model is substantially better in some situations where trajectories are not
homogeneous in terms of their structure, while the price to be paid for situations
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TABLE 1
Average integrated squared error (AISE) and average number Kavg of principal components across

all subjects. The first column denotes the type of data generation, either according to the mixture
setting where the number of components varies from individual to individual, or according to the
common setting, where the number of components is common for all subjects. The second column

denotes the distribution of the number of principal components in the mixture setting and the
number of common components in the common setting. The third column indicates the variance of
the measurement error. The fifth and seventh columns show the AISE and the average number Kavg

of chosen components for the proposed mixture model (MIPS) for the Gaussian process and
non-Gaussian process, respectively, while these values are displayed in the sixth and eighth columns

for functional principal component analysis (FPCA), along with the common choice K for the
number of components. The Monte Carlo standard error based on 100 simulation runs is given in

parentheses, multiplied by 100

Gaussian Non-Gaussian

Simulation setting MIPS FPCA MIPS FPCA

Mixture Multinomial σ 2 = 0.1 AISE 7.01(0.40) 7.67(0.28) 6.98(0.46) 7.70(0.44)

Kavg 9.23(1.21) 16.7(1.76) 8.97(1.12) 16.5(1.93)

σ 2 = 0.25 AISE 15.2(1.02) 17.5(0.81) 15.6(1.04) 17.9(1.19)

Kavg 8.66(1.32) 16.7(1.07) 8.58(1.08) 16.8(1.05)

Poisson σ 2 = 0.1 AISE 5.63(0.21) 6.32(0.23) 5.82(0.65) 6.61(0.89)

Kavg 6.78(0.14) 13.7(1.13) 6.68(0.27) 13.4(1.43)

σ 2 = 0.25 AISE 12.1(0.37) 13.9(0.32) 12.2(0.66) 14.0(1.05)

Kavg 6.63(0.16) 14.5(1.17) 6.28(0.23) 13.4(1.94)

Common Finite (K = 12) σ 2 = 0.1 AISE 6.55(0.07) 6.46(0.07) 6.56(0.07) 6.46(0.07)

Kavg 13.6(0.43) 12.1(0.47) 13.5(0.50) 12.2(0.56)

σ 2 = 0.25 AISE 15.7(0.19) 15.5(0.15) 15.8(0.23) 15.5(0.21)

Kavg 12.9(1.00) 12.6(1.03) 12.7(0.81) 12.6(0.99)

Infinite (K = 25) σ 2 = 0.1 AISE 13.2(0.01) 12.9(0.01) 13.3(0.12) 12.9(0.14)

Kavg 24.3(0.05) 25.0(0.00) 24.1(0.09) 25.0(0.00)

σ 2 = 0.25 AISE 32.0(0.53) 31.4(0.51) 31.9(0.38) 31.5(0.70)

Kavg

.7

(0.120.788 245.1301 Tm
-.0
0 Tc
())Tj
/F2 1 Tf
8.9664 0 0 8.9664 287.712 272.0941 Tm
-.0001 Tc
(25)Tj
/F5 1 Tf
.9998 0 TD
4419c2.7(0.000.788 245.1301 Tm
-.0185 Tc
[(av)-17.7(g)]TJ
8.9664 0 0 8.9664 242.946 246.48.2901 Tm
(6)Tj
/F5 1 Tf
.4999 0 TD
(.)T34419c2.7(0.020.788 245.1301 Tm
-.0
0 Tc
())Tj
/F2 1 Tf
8.9664 0 0 8.9664 287.712 272.0941 Tm
-.0001 Tc
(25)Tj
/F5 1 Tf
.9998 0 TD
4419c2.7(0



388 Z. LIN, H.-G. MÜLLER AND F. YAO

5. Application. Longitudinal data on daily egg-laying for female medflies,
Ceratitis Capitata, were obtained in a fertility study as described in Carey
et al. (1998). The data set is available at http://anson.ucdavis.edu/~mueller/data/
medfly1000.html. Selecting flies that survived for at least 25 days to ensure that
there is no drop-out bias yielded a subsample of n = 750 medflies. For each of the
flies, one has then trajectories corresponding to the number of daily eggs laid from
birth to age 25 days. Shown in the top-left panel of Figure 1 are the daily egg-laying
counts of 50 randomly selected flies. We apply a square-root transformation to the
egg counts to symmetrize the errors as a pre-processing step. Applying standard
functional principal component analysis yields estimates of the mean, covariance
and eigenfunctions, as shown in the right and bottom panels of Figure 1.

Visual inspection indicates that the egg-laying trajectories possess highly vari-
able shapes with different varying numbers of local modes. This motivates us to
apply the proposed functional mixture model. The goal is to parsimoniously re-
cover the complex structure of the observed trajectories. For evaluation, we con-
duct 100 runs of 10-fold cross-validation, where in each run, we shuffle the data
independently, and use 10% of the flies as validation set for obtaining the subject-
level estimates, which include the latent dimensions Ki and the functional princi-
pal component scores, and use the remaining 90% of the flies as training set. The

http://anson.ucdavis.edu/~mueller/data/medfly1000.html
http://anson.ucdavis.edu/~mueller/data/medfly1000.html


MIPS AND APPLICATION TO FDA 389

TABLE 2
Egg-laying data: 10-fold cross-validated relative squared errors (CVRSE), as obtained for the
proposed functional mixture model (MIPS) and for traditional functional principal component

analysis (FPCA), where the latter uses a common number K of components across all subjects, for
K = 0,2, . . . ,18 and Kavg is the mean of the number of principal components used by the proposed

method. The results are based on 100 random partitions with standard error in parentheses

FPCA K 0 2 4 6 8
CVRSE 3.3914(0.0070) 0.2038(0.0003) 0.1549(0.0002) 0.1388(0.0002) 0.1347(0.0001)

K 10 12 14 16 18
CVRSE 0.1340(0.0001) 0.1337(0.0001) 0.1336(0.0001) 0.1335(0.0001) 0.1334(0.0001)

MIPS CVRSE = 0.1319(0.0002) Kavg = 8.2684(0.0192)

resulting cross-validated relative squared errors are

CVRSE = n−1
10∑
l=1

∑
i∈Dl

([
m∑

j=1

{
Uij − X̂

−Dl

i (tij )
}2

]/ m∑
j=1

U2
ij

)
,

where Dl is the lth validation set containing 10% of subjects.
The results are reported in Table 2 for the proposed functional mixture model

and functional principal component analysis for different fixed values for the num-
ber of included components K . We find that the proposed method utilizes about
8 principal components on average (Kavg = 8.27) and with this number achieves
better recovery, compared to the results obtained by the traditional functional prin-
cipal component analysis using more components. Therefore, in this application,
the proposed mixture model provides both better and more parsimonious fits.

Figure 2 displays egg-laying counts for 6 randomly selected flies, overlaid with
smooth estimates obtained by the proposed mixture method and by traditional
functional principal component analysis using 8 components (similar to Kavg) and
also K = 3, a choice that explains 95% of the variation of the data and, therefore,
would be adopted by the popular fraction of variance explained selection criterion.
This figure indicates that the functional mixture method appears to adapt better
to the varying shapes of the trajectories. The estimated probability densities of
the first three mixture components and their mixture proportions are depicted in
Figure 3.

6. Discussion and concluding remarks. Density functions are important for
many statistical applications that require the construction of a likelihood, for ex-
ample, one could use maximum likelihood to find the best fit for a parametrized
class of densities. Similarly, Bayes classifiers for functional data can be based on
a density ratio. Densities can also be used for the estimation of modes and level
contours and also to estimate the shape and location of ridges in functional data
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(2003)]. As clustering of functional data is attracting increasing attention [Chiou
and Li (2007), Jacques and Preda (2014), Slaets, Claeskens and Hubert (2012)],
density-based clustering for functional data likely will be of increasing interest for
data analysis.

In addition to this relevance of densities in function space for functional data
applications, the foundational issue of the existence and construction of densities
in function space naturally puts the problem of obtaining a density for functional
data into focus. The fact that such a density does not exist in the often consid-
ered function space L2 demonstrates the scope of the problem. This has led to the
construction of a surrogate density, which can be based on a truncated expansion
of the functional data into functional principal components [Bongiorno and Goia
(2016), Delaigle and Hall (2010)]. This construction is a workaround that provides
a practical solution but leaves open the problem of finding a theoretical solution,
for which one has to move away from the whole space L2.

Motivated by practical consideration from applications of functional data anal-
ysis, we propose here a construction that provides a theoretical solution to the den-
sity problem by essentially considering random functions in L2 whose distribution
belongs to an infinite mixture of distributions on k-dimensional subspaces. Each
of the component distributions has a finite dimension k < ∞ and corresponds to
functions that can be fully described by an expansion into k components only. The
space is still infinite-dimensional overall, as the dimensions k are unlimited. This
mixture distribution approach has the advantage that an overall density can be well
defined theoretically under regularity assumptions. Moreover, the components of
the expansion can be estimated by applying a usual eigen-expansion that gives the
correct eigenfunctions even if the mixture structure is ignored. To obtain the cor-
rect eigenvalues, the mixture probabilities play a role, and they can be consistently
estimated under additional assumptions. We develop the construction of mixture
inner product spaces for which appropriate mixture densities can be found under
certain conditions in a framework of general infinite dimensional Hilbert spaces
that transcends functional data analysis and, therefore, may be of more general
interest. In data applications, the proposed mixture model tends to use fewer com-
ponents than standard functional principal component analysis, while achieving
the same or sometimes better approximations to the observed trajectories, which
demonstrates that mixture inner product spaces are also of practical interest.

APPENDIX: TECHNICAL PROOFS

PROOF OF PROPOSITION 1. Let x be an arbitrary element of H and ak =
〈x,φk〉. Since φ1, φ2, . . . form a complete orthonormal basis of H , we have ‖x‖2 =∑∞

k=1 a2
k < ∞. Now define xk = ∑k

j=1 ajφk . Then xk ∈ S for each k = 1,2, . . . .

Also, ‖x −xk‖2 = ∑∞
j=k+1 a2

j → 0 as k → ∞. This implies that for any h > 0, the
open ball B(x;h)
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To show part 2., note that Hk = ⋃k
j=1 Sj and hence S = ⋃∞

k=1 Sk =⋃∞
k=1

⋃k
j=1 Sj = ⋃∞

k=1 Hk . Since each Hk is a closed subset of H , and hence
Hk ∈ B(H), we conclude that S = ⋃∞

k=1 Hk is in B(H). To see B(S) ⊂ B(H),
we first note that, since the metric dS on S, defined by dS(x, y) = ‖x − y‖H for
all x, y ∈ S ⊂ H , is the restriction of the metric dH on H , the subspace topology
of S coincides with the topology induced by the metric dS . This implies that for
any open set A of S there exists an open subset B of H such that A = B ∩ S. As
both B and S are in B(H), we have A ∈ B(H). In other words, the collection τS

of all open sets of S is a subset of B(H). This implies B(S) ⊂ B(H), recalling
that B(S) is the smallest σ -algebra containing τS .

For part 3., we first note that B(S) = {B ∩ S : B ∈ B(H)}, by Lemma 3 in
Chapter II of Shiryayev (1984). Now, if B ∈ B(H), then B ∩ S ∈ B(S), and
hence X−1

S (B) = X−1
S (B ∩ S) ∈ E . Therefore, XS is also E -B(H) measurable,

and hence an H -valued random element. �

PROOF OF PROPOSITION 2. We prove the claim by explicitly constructing
such an S-valued random element Y , as follows. Let ε1 = {E(‖X − Xk‖p

H )}1/p

and δ = (ε − ε1)/2 > 0. Since fk(0) > 0 and fk is continuous at 0, if �δ =
{ω ∈ � : ξk(ω) ∈ (−δ/2, δ/2)}, then P(�δ) > 0. Define Y(ω) = Xk(ω) if ω /∈ �δ

and Y(ω) = Xk−1(ω) otherwise. If we define Z(ω) = ξk(ω)φk1�δ , then Y =
Xk − Z. Since {E(‖Z‖p

H )}1/p defines a norm on all H -valued random ele-
ments Z such that {E(‖Z‖p

H )}1/p < ∞ [Vakhania, Tarieladze and Chobanyan
(1987)], this implies that {E(‖X − Y‖p

H )}1/p = {E(‖X − Xk + Z‖p
H )}1/p ≤

{E(‖X − Xk‖p
H )}1/p + {E(‖Z‖p

H )}1/p < ε1 + δP (�δ) < ε. On the other hand,
the continuity of fk at 0 implies that P(ξk = 0) = 0, and hence we have K(Y ) =
K(Xk) − P(�δ) < K(Xk). �

PROOF OF THEOREM 2. Note that each Lebesgue measure τk is σ -finite. This
means that for each k there is a countable partition Sk1, Sk2, . . . of Sk such that
Skj ∈ B(S) and τk(Skj ) < ∞ for all j = 1,2, . . . . Since S = ⋃

k

⋃
j Skj , we know

that {Skj : j = 1, . . . , k = 1, . . .} forms a countable partition of S, where each Skj

has finite measure τ(Skj ) = τk(Skj ) < ∞. This shows that τ is σ -finite.
To show that PX is absolutely continuous to τ , suppose A ∈ B(S) and

τ(A) = 0, and define Ak = A ∩ Sk . Then τk(Ak) = 0 for all k. Note that
PX(A) = ∑∞

k=1 PX(Ak). Define ηk(x) = (〈x,φ1〉, 〈x,φ2〉, . . . , 〈x,φk〉) ∈ R
k for

each x ∈ Hk . Note that each ηk is a canonical isomorphic mapping between Hk and
R

k . Thus, the Lebesgue measure of ηk(Ak) is equal to τk(Ak) and is zero. Now,
PX(Ak) = P {(ξ1, ξ2, . . . , ξk) ∈ ηk(Ak),X = k} = P {(ξ1, ξ2, . . . , ξk) ∈ ηk(Ak) |
X = k}P(X = k) = πk

∫
ηk(Ak)

fk(t1, t2, . . . , tk) dt1 dt2 · · ·dtk = 0, where the last
equality is due the fact that the Lebesgue measure of ηk(Ak) is zero and the fact
that fk is a density function by assumption. Therefore, PX(A) = 0, and we con-
clude that PX is absolutely continuous w.r.t. τ .
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By the Radon–Nykodym theorem, there is a density f of PX on S with respect
to τ . Now we show that f defined in (1) is such a density. Let A ∈ B(S). As above
we define Ak = A ∩ Sk . Then A1,A2, . . . form a partition of A, and hence

(14)
∫
A

f dτ = ∑
k

∫
Ak

f dτ = ∑
k

πk

∫
Ak

fk dτk.

Now, for each k,

PX(Ak) = Pr
{
(ξ1, ξ2, . . . , ξk) ∈ η(Ak),K = k

}
= πk Pr

{
(ξ1, ξ2, . . . , ξk) ∈ η(Ak) | K = k

}
= πk

∫
η(Ak)

fk(t1, t2, . . . , tk) dt1 dt2 · · ·dtk = πk

∫
Ak

fk dτk.

(15)

Given (14) and (15), we conclude that
∫
A f dτ = ∑

k PX(Ak) = PX(A), and hence
f is a probability density function of PX w.r.t. τ . �

To simplify notation, we simply use r from now on, while one should be aware
that r grows to infinity as sample size n → ∞. The proof of Theorem 3 requires
several lemmas.

Let Ĝ(s, t) = n−1 ∑n
i=1 Xi(s)Xi(t) denote the empirical version of G(s, t) and

φ̂k be the kth eigenfunction of Ĝ. When it is clear from the context, we use G and
Ĝ to denote the corresponding covariance operator. Define �̂ = {∫D×D(Ĝ(s, t) −
G(s, t))2 ds dt}1/2 and for a constant C4 > 0,

(16) J ′ = {j − 1 : λj − λj+1 ≥ 2�̂}, and J = {
j ∈ J ′ : j ≤ C4n

1/(2b+2)}.
From �̂ = Op(n−1/2) [Hall and Hosseini-Nasab (2006)] and assumption (A3), we
have

P
(
C5n

1/(2b+2) ≤ supJ ≤ C4n
1/(2b+2)) → 1

for a positive constant C5 ≤ C4. The following lemma quantifies the estima-
tion quality of the eigenfunctions φ̂k and the principal component scores ξ̂ik . Let
ξ̂i,(k) = (ξ̂i,1, ξ̂i,2, . . . , ξ̂i,k) where ξ̂ij = 〈Xi, φ̂j 〉.

LEMMA 1. If assumptions (A0), (A2) and (A3) hold,

sup
n≥1

sup
k∈J

n2k−4(b+1)E‖φ̂k − φk‖4 < ∞;(17)

sup
n≥1

sup
k∈J

nk−2b−3E‖ξi,(k) − ξ̂i,(k)‖2 < ∞.(18)
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PROOF. The bound in (17) directly follows from Lemma 3.4 of Hall and
Hosseini-Nasab (2009), E(�̂4) = O(n−2) [Lemma 3.3 of Hall and Hosseini-
Nasab (2009)] and (A3). To show (18),

E‖ξ̂i,(k) − ξi,(k)‖2 =
k∑

j=1

E
(|ξ̂i,j − ξi,j |2) =

k∑
j=1

E
(〈Xi, φ̂j − φj 〉2)

≤
k∑

j=1

E
(‖Xi‖2‖φ̂j − φj‖2)

≤
k∑

j=1

{
E

(‖Xi‖4)
E

(‖φ̂j − φj‖4)}1/2

= {
E

(‖X‖4)}1/2
k∑

j=1

{
E

(‖φ̂j − φj‖4)}1/2
.

Then (18) follows with the fact E(‖X‖4) < ∞ and (17). �

We next examine the discrepancy between true and estimated likelihood func-
tions. Recall that Qr = min(K, r), Z = ∑Qr

j=1〈X,φj 〉φj , the log-likelihood of Z

with π∗
r = 1 − ∑r−1

k=1 πk ,

Lr,1(Z | θ[r]) = log

{
π∗

r fr(Z | θ(r))1Z∈Sr +
r−1∑
k=1

πkfk(Z | θ(k))1Z∈Sk

}
,

and Lr(θ[r]) = E{Lr,1(z | θ[r])}. Define the log-likelihood function of θ given
Z1, . . . ,Zn by Lr,n(θ[r]) = 1

n

∑n
i=1 Lr,1(Zi | θ[r]). The following lemma quantifies

the discrepancy between Lr,n(θ[r]) and Lr(θ[r]).

LEMMA 2. If the assumptions in Theorem 3 hold, then for each θ[r],

ra
∣∣Lr,n(θ[r]) − Lr(θ[r])

∣∣ p−→ 0.

PROOF. We first express Lr(θ[r]) = E{Lr,1(z | θ[r])} as follows:

Lr(θ[r]) = E log

{
π∗

r fr(Z | θ(r))1Z∈Sr +
r−1∑
k=1

πkfk(Zi | θ(k))1Z∈Sk

}

= EE

[
log

{
π∗

r fr(Z | θ(r))1Z∈Sr +
r−1∑
k=1

πkfk(Z | θ(k))1Z∈Sk

} ∣∣∣ Qr

]

= π∗
r E

[
log

{
π∗

r fr(Z | θ(r))
} | K ≥ r

]
(19)
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+
r−1∑
k=1

πkE
[
log

{
πkfk(Z | θ(k))

} | K = k
]

= π∗
r logπ∗

r +
r−1∑
k=1

πk logπk + π∗
r E

{
gr(ξ̃1, ξ̃2, . . . , ξ̃r )

}

+
r−1∑
k=1

πkE
{
gk(ξ̃1, ξ̃2, . . . , ξ̃k)

}
,

where (19) is obtained by noting that 1Z∈Sk
= 0 if Qr �= k, and 1Z∈Sk

= 1 if
Qr = k. Let Wn,i = Lr,1(Zi | θ[r]) − Lr(θ[r]). Then E(W/n,i) L r] kS 6 91.6Z
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We are now ready to quantify the discrepancy from the estimated likelihood
function L̂r,n by plugging in the estimated quantities φ̂k and ξ̂ik .

LEMMA 3. If the assumptions in Theorem 3 hold, then for each θ[r],

ra
∣∣L̂r,n(θ[r]) − Lr(θ[r])

∣∣ p−→ 0.

PROOF. Recall ξ̂i,(k) = (ξ̂i,1, ξ̂i,2, . . . , ξ̂i,k), and define

Yn,i = π∗
r

{
C1Hr(ξi,(r))‖ξ̂i,(r) − ξi,(r)‖ν11Zi∈Sr + C2r

α2‖ξ̂i,(r) − ξi,(r)‖ν21Zi∈Sr

}
+

r−1∑
k=1

πk

{
C1Hk(ξi,(k))‖ξ̂i,(k) − ξi,(k)‖ν11Zi∈Sk

+ C2k
α2‖ξ̂i,(k) − ξi,(k)‖ν21Zi∈Sk

}
.

By (A4), we have

∣∣L̂r,n(θ[r]) − Lr(θ[r])
∣∣ ≤ ∣∣Lr,n(θ[r]) − Lr(θ[r])

∣∣ + n−1
n∑

i=1

Yn,i .

From the condition r = nγ−ε in Theorem 3 and the definition of J in (16), we
have P {r ∈ J } → 1 as n → ∞. Thus, we may assume r ∈ J in the sequel.
With Lemma 1, if ν ′ ≤ 2, then E‖ξ̂i,(k) − ξi,(k)‖ν′ ≤ {E‖ξ̂i,(k) − ξi,(k)‖2}ν′/2 =
O(k(2b+3)ν′/2n−ν′/2) uniformly for k ≤ r and n. Since 2ν1 ≤ 2, ν2 ≤ 2, α =
max(α1, α2) and ν = min(2ν1, ν2), for some c0 > 0,

E
{∣∣Hk(ξi,(k))

∣∣‖ξ̂i,(k) − ξi,(k)‖ν1
} ≤ [

E
{
Hk(ξi,(k))

}2]1/2(
E‖ξ̂i,(k) − ξi,(k)‖2ν1

)1/2

= O
(
k(2b+3)ν/2+αn−ν/2)

,

E
{
kα2‖ξ̂i,(k) − ξi,(k)‖ν2

} = O
(
k(2b+3)ν/2+αn−ν/2)

.

Recall γ1 = (2b+3)ν/2+α −2β , γ2 = a + (γ1 +2)1γ1>−2, γ = min{ν/(2γ2),

1/(2b + 2)} in Theorem 3, implying γ γ2 ≤ ν/2, and hence,

E|Yn,i | ≤ (
π∗

r

)2
E

{
C1

∣∣Hr(ξi,(r))
∣∣‖ξ̂i,(r) − ξi,(r)‖ν1 + C2r

α2‖ξ̂i,(r) − ξi,(r)‖ν2
}

+
r−1∑
k=1

π2
k E

{
C1

∣∣Hk(ξi,(k))
∣∣‖ξ̂i,(k) − ξi,(k)‖ν1 + C2k

α2‖ξ̂i,(k) − ξi,(k)‖ν2
}

(22)

≤ c1r
−2β+2r(2b+3)ν/2+αn−ν/2 + c2

r−1∑
k=1

k−2β+(2b+3)ν/2+αn−ν/2

= c1r
γ1+2n−ν/2 + c2

r−1∑
k=1

kγ1n−ν/2 ≤ c3n
−ν/2rγ2−a ≤ c4r

−an−εγ2/2,
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where the last inequality is due to r = O(nγ−ε), and c1, c2, c3, c4 are positive con-
stants that do not depend on n. Setting δ = 3/(3+εν/γ2) < 1, by the Lyapunov in-
equality, raδE|Yn,i |δ ≤ raδ(E|Yn,i |)δ ≤ c4r

aδr−aδn−δεν/(2γ2) = c4n
−δεν/(2γ2) uni-

formly for n and r = O(nγ−ε). Although the Yn,i are not independent of Yn,j ,
they have the same distribution due to symmetry. Therefore, noting that 1 −
δ{1 + εν/(2γ2)} < 0, we have

sup
n≥1

n−δ
n∑

i=1

E
{
raδ|Yn,i |δ} ≤ sup

n≥1
c4n

−δnn−δεν/(2γ2)

= sup
n≥1

c4n
1−δ{1+εν/(2γ2)} = O(1).

(23)

The result raδE|Yn,i |δ = O(n−δεν/(2γ2)) also implies that

(24) lim
M→∞ sup

n≥1
n−δ

n∑
i=1

E
{
raδ|Yn,i |δ1|Yn,i |δ>M

} = 0.

Then the Cesàro-type uniform integrability is satisfied by raYn,i with expo-
nent δ < 1, based on (23) and (24), and the weak law of large numbers [Sung
(1999)] implies n−1 ∑n

i=1 raYn,i = op(1). This result, in conjunction with the fact
ra|Lr,n(θ[r]) − Lr(θ[r])| = op(1) and ra|L̂r,n(θ[r]) − Lr(θ[r])| ≤ ra|Lr,n(θ[r]) −
Lr(θ[r])| + n−1 ∑n

i=1 raYn,i , as well as Pr{r ∈ J } → 1, yields the result. �

PROOF OF THEOREM 3. By (A5), θ[r],0 is the maximizer of Lr(θ[r]). Let
h5 = min{h1, h2, h3} and Ua

r = {θ[r] : Lr(θ[r],0) − Lr(θ[r]) < h5r
−a}, whence

Ua
r ⊂ Ur ⊂ Br , where a = max(a1, a2), Ur and Br are defined in (A5). Moreover,

for all θ[r] ∈ Ua
r , there exists h4 > 0 not depending on r and θ[r], such that

(25) Lr(θ[r],0) − Lr(θ[r]) ≥ h4r
−a‖θ[r] − θ[r],0‖2.

From (A1), � = ∏∞
j=1 I[∞],j is compact due to Tychonoff’s theorem, which im-

plies that the convergence of ra|L̂r,n(θ[r]) − Lr(θ[r])| in Lemma 3 is uniform
over �. Thus, for any 0 < ε2 < h5, there exists Nε > 0 such that if n > Nε , then

Pr
({

ra
∣∣L̂r,n(θ[r],0) − Lr(θ[r],0)

∣∣ < ε2/2
} ∩ {

ra
∣∣L̂r,n(θ̂[r]) − Lr(θ̂[r])

∣∣ < ε2/2
})

(26)
> 1 − ε/2,

where θ̂[r] is a global maximizer of L̂r,n. Next, we show that

(27) Pr
{
ra

∣∣L̂r,n(θ̂[r]) − Lr(θ[r],0)
∣∣ < ε2/2

}
> 1 − ε/2.

If L̂r,n(θ̂[r]) ≥ Lr(θ[r],0), then 0 ≤ L̂r,n(θ̂[r]) − Lr(θ[r],0) ≤ L̂r,n(θ̂[r]) − Lr(θ̂[r])
since Lr(θ̂[r]) ≤ Lr(θ[r],0), due to the fact that θ[r],0 is the global maximizer
of Lr(·). Similarly, if L̂r,n(θ̂[r]) ≤ Lr(θ[r],0), then 0 ≤ Lr(θ[r],0) − L̂r,n(θ̂[r]) ≤
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Lr(θ[r],0) − L̂r,n(θ[r],0) since L̂r,n(θ[r],0) ≤ L̂r,n(θ̂[r]) due to the fact that θ̂[r] is
a global maximizer of L̂r,n(·). Combining these two cases yields |L̂r,n(θ̂[r]) −
Lr(θ[r],0)| ≤ max{|L̂r,n(θ̂[r])−Lr(θ̂[r])|, |Lr(θ[r],0)− L̂r,n(θ[r],0)|}. This result, in
conjunction with (26), yields (27).

Then applying the triangle inequality in conjunction with (26) and (27) leads
to Pr{ra|Lr(θ̂[r]) − Lr(θ[r],0)| < ε2} > 1 − ε. Since ε2 < h5, we have θ̂[r] ∈ Ua

r

with probability (1 − ε), and then apply (25) to conclude that Pr{‖θ̂[r] − θ[r],0‖ <

2ε/
√

h4} > 1 − ε, which yields the consistency of θ̂[r].
It remains to show the consistency of f (x | θ̂[r]) for any x ∈ ⋃∞

k=1 Sk ,
which implies that there exists some k0 < ∞ such that x ∈ Sk0 . Then f (x) =∑k0

k=1 fk(x | θk)1Sk
, as the indicator functions 1Sj

are all zero if j > k0. For suffi-
ciently large n such that k0 ≤ rn, θ[rn], and hence, θ1, . . . , θk0 are all consistently
estimated. The continuity of each fk with respect to θk in (A4) then implies that

|f (x | θ̂[r]) − f (x | θ[∞],0)| p−→ 0. �
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