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SUMMARY

Bayes classifiers for functional data pose a challenge. One difficulty is that probability density
functions do not exist for functional data, so the classical Bayes classifier using density quotients
needs to be modified. We propose to use density ratios of projections onto a sequence of eigen-
functions that are common to the groups to be classified. The density ratios are then factorized
into density ratios of individual projection scores, reducing the classification problem to obtain-
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of the observed random curves. Functional classification is a rich topic with applications in
many areas of commerce, medicine, the sciences, chemometrics, and genetics (Leng & Müller,
2006; Song et al., 2008; Zhu et al., 2010, 2012; Francisco-Fernández et al., 2012; Coffey et al.,
2014). Within the functional data analysis framework (Wang et al., 2016), each observation is
viewed as a smooth random curve on a compact domain. Functional classification has recently
been extended to the related task of classifying longitudinal data (Wu & Liu, 2013; Wang &
Qu, 2014; Yao et al., 2016) and also has close connections with functional clustering (Chiou
& Li, 2008). The vast literature on functional classification includes distance-based classifiers
(Ferraty & Vieu, 2003; Alonso et al., 2012), k-nearest neighbour classifiers (Biau et al., 2005;
Cérou & Guyader, 2006; Biau et al., 2010), Bayesian methods (Wang et al., 2007), logistic
regression (Araki et al., 2009), and partial least squares (Preda & Saporta, 2005; Preda et al.,
2007).

Bayes classifiers based on density quotients are optimal in the sense of minimizing mis-
classification rates, and this provides one of the major motivations for developing methods of
nonparametric density estimation; see an unpublished 1951 technical report by E. Fix and J. L.
Hodges Jr, commented on by Rosenblatt (1956), Parzen (1962), Wegman (1972) and Silverman
& Jones (1989). However, for multiple predictors, unrestricted nonparametric approaches are
subject to the curse of dimensionality (Scott, 2015). This leads to very slow rates of convergence
in estimating the nonparametric densities for dimensions higher than three or four and renders
the resulting classifiers practically worthless. The situation is exacerbated in the case of func-
tional predictors, which are infinite-dimensional and hence afflicted by a particularly bad curse
of dimensionality, as small ball probabilities in function space imply that the expected number
of functions falling into balls with a small radius is so low that densities do not even exist in most
cases (Li & Linde, 1999; Delaigle & Hall, 2010).

Therefore, in order to define a Bayes classifier through density quotients with reasonably
good estimation properties, one needs to invoke sensible restrictions, for example on the class of
predictor processes. This approach was adopted by Delaigle & Hall (2012), who considered two
Gaussian populations with equal covariance using a functional linear discriminant, in analogy
to the linear discriminant, that corresponds to the Bayes classifier in the analogous multivariate
Gaussian case. Galeano et al. (2015) proposed a closely related functional quadratic method for
discriminating two general Gaussian populations, making use of a suitably defined Mahalanobis
distance for functional data. In contrast to these previous approaches, here we aim to construct
a nonparametric Bayes classifier for functional data. The idea is to project the observations onto
an orthonormal basis that is common to the two populations, and then construct density ratios
through products of the density ratios of the projection scores. The result corresponds to the Bayes
classifier if scores are independent. The densities themselves are nonparametrically estimated,
which is feasible as they are only one-dimensional. We establish the asymptotic equivalence of
the proposed functional nonparametric Bayes classifiers and their estimated versions, as well as
asymptotic perfect classification for the proposed classifiers.

The term perfect classification was introduced by Delaigle & Hall (2012) to refer to conditions
where the misclassification rate converges to zero as an increasing number of projection scores
is used, and we use the term in the same sense here. Perfect classification in the Gaussian
case requires there to be certain differences between the mean or covariance functions, while
such differences are not a prerequisite for the proposed nonparametric approach to succeed.
In the special case of Gaussian functional predictors, the proposed classifiers simplify to those
considered in Delaigle & Hall (2013). Additionally, we extend our theoretical results to cover
the practically important situation where the functional data are not fully observed, but rather are
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observed as noisy measurements made on a dense grid, whereas previous approaches were based
on the less realistic assumption of fully observed trajectories without noise.

2. FUNCTIONAL BAYES CLASSIFIERS

We consider the situation in which the observed data come from a common distribution (X , Y ),
where X is a fully observed square-integrable random function in L2(T ), with T being a compact
interval, and Y ∈ {0, 1} is a group label. Assuming that X shares the same distribution with X (k)

if X is from population�k (k = 0, 1), i.e., X (k) has the same distribution as X given Y = k , and
that πk = pr(Y = k) is the prior probability that an observation falls into�k , our goal is to infer
the group label Y of a new observation X . The optimal Bayes classification rule that minimizes
misclassification error classifies an observation X = x to �1 if

Q(x) = pr(Y = 1 | X = x)

pr(Y = 0 | X = x)
> 1,

where we denote realized functional observations by x and random predictor functions by X . Let
g0 and g1 denote the conditional densities of the functional observations X when conditioning
on the group labels 0 and 1, respectively, assuming that these conditional densities exist. Then
Bayes’ theorem implies that

Q(x) = π1g1(x)

π0g0(x)
. (1)

Since translation-invariant densities for functional data do not usually exist (Delaigle & Hall,
2010) and the density quotients are known only for certain classes of Gaussian processes (Baíllo
et al., 2011; Berrendero et al., 2016) we consider a sequence of approximations with an increasing
number of components and then use the density ratios (1).

Specifically, we represent x and the random X by projecting onto an orthogonal basis
{ψj}∞j=1, yielding the projection scores {xj}∞j=1 and {ξj}∞j=1, where xj = ∫

T x(t)ψj(t) dt and
ξj = ∫

T X (t)ψj(t) dt ( j = 1, 2, . . . ). As noted in Hall et al. (2001), when comparing the
conditional probabilities, it is sensible to project the data from both groups onto the same
basis. Our goal is to approximate the conditional probabilities pr(Y = k | X = x) by
pr(Y = k | the first J scores of x), where J → ∞. Then, by Bayes’ theorem,

Q(x) ≈ pr(Y = 1 | the first J scores of x)

pr(Y = 0 | the first J scores of x)
= π1 f1(x1, . . . , xJ )

π0 f0(x1, . . . , xJ )
, (2)

where f1 and f0 are the conditional densities for the first J random projection scores ξ1, . . . , ξJ .
Since estimating the joint density of (ξ1, . . . , ξJ ) is impractical and subject to the curse of

dimensionality when J is large, it is sensible to introduce conditions that simplify (2). A first sim-
plification is to assume that the auto-covariances of the stochastic processes which generate the
observed data have the same ordered eigenfunctions for both populations. Denote the mean func-
tions by μk(t) = E{X (k)(t)} and the covariance functions by Gk(s, t) = cov{X (k)(s), X (k)(t)},
with associated covariance operators

Gk : L2(T ) → L2(T ), Gk(f ) =
∫

T
Gk(s, t)f (s) ds.
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Assuming that Gk(s, t) is continuous, by Mercer’s theorem (see, e.g., Bosq, 2000) we have

Gk(s, t) =
∞∑

j=1

λjkφjk(s)φjk(t),

where λ1k � λ2k � · · · � 0 are the eigenvalues of Gk , φjk are the corresponding orthonormal
eigenfunctions (j = 1, 2, . . . ), and

∑∞
j=1 λjk < ∞ (k = 0, 1). The common eigenfunction

condition is then φj0 = φj1 = φj, where φj is the jth common eigenfunction (Flury, 1984; Benko
et al., 2009; Boente et al., 2010; Coffey et al., 2011). This assumption can be weakened to the
requirement of equality between the sets of eigenfunctions, ignoring their order, in which case one
can reorder the eigenfunctions and eigenvalues so that φj0 = φj1 = φj. Choosing the projection
directions {ψj}∞j=1 as the shared eigenfunctions {φj}∞j=1, one has cov(ξj, ξl) = 0 if j |= l, where
the scores ξj correspond to the functional principal components

∫
T {X (t)−μk(t)}φj(t) dt only if

μk ≡ 0.
A second simplification is to assume that the projection scores are independent under both

populations, whence the densities in (2) factorize and the criterion function can be rewritten by
taking logarithms as

QJ (x) = log
(
π1

π0

)
+

J∑
j=1

log
{

fj1(xj)

fj0(xj)

}
, (3)

where fjk is the density of the jth score under �k . We classify into �1 if and only if QJ (x) > 0.
Because of the zero-divided-by-zero problem, (3) is defined only on a set X with pr(X ∈ X ) = 1,
and our theoretical arguments in the following are restricted to this set. For the asymptotic analysis
we will consider the case where J = J (n) → ∞ as n → ∞. The independent projections
assumption is commonly made in functional data analysis, and is satisfied by a large class of
processes, including Gaussian processes. For processes with dependent projection scores, the
performance of our method will depend on how well the process can be approximated through
independent projection scores. Our proposed classifiers demonstrated good performance relative
to other classifiers even under violations of the independence assumption; see § 5·2.

When predictor processes X are Gaussian for group k = 0 or 1, the projection scores ξj are
independent and one may substitute Gaussian densities for the densities fjk in (3). Writing the jth
projection of the mean function μk(t) of �k as μjk = E(ξj | Y = k) = ∫

T μk(t)φj(t) dt, in this
special case of our general nonparametric approach one obtains the simplified version

QG
J (x) = log

(
π1

π0

)
+ 1

2

J∑
j=1

[
(log λj0 − log λj1)−

{
1

λ j1
(xj − μj1)

2 − 1

λ j0
(xj − μj0)

2
}]

. (4)

Here QG
J (X ) either converges to a random variable almost surely if

∑
j�1(μj1 −μj0)

2/λj0 < ∞
and

∑
j�1(λj0/λj1 − 1)2 < ∞, or else diverges to ∞ or −∞ almost surely, as J → ∞.

More details about the properties of QG
J (X ) can be found in the Supplementary Material. It is

apparent that (4) is the quadratic discriminant rule using the first J projection scores, which is the
Bayes classifier for multivariate Gaussian data with different covariance structures. If moreover
λj0 = λj1 (j = 1, 2, . . .), then one has equal covariances and (4) reduces to the functional linear
discriminant (Delaigle & Hall, 2012).

Downloaded from https://academic.oup.com/biomet/article-abstract/104/3/545/3848984
by Peking University user
on 09 February 2018



Functional Bayes classifiers 549

As the proposed method does not assume Gaussianity and allows for densities fjk of general
form in (3), one might expect better performance than Gaussian-based functional classifiers
when the distributions are non-Gaussian. This is borne out by the simulation results in § 5·2. The
densities of the projection scores can be estimated nonparametrically by kernel density estimation
(Silverman, 1986) as described in § 3.

3. ESTIMATION

Under the common eigenfunction assumption, we may write Gk(s, t)= cov{X (k)(s), X (k)(t)} =∑∞
j=1 λjkφj(s)φj(t) where the φj are the common eigenfunctions. We then estimate the φj, which

serve as the projection directions, by pooling data from the two groups in the training data to obtain
a joint covariance estimate for the joint covariance operator G = π0G0 + π1G1. Then φj is also
the jth eigenfunction of G with eigenvalue λj = π0λj0 +π1λj1. Assume that we have n = n0 +n1

functional predictors X (0)
1 , . . . , X (0)

n0 and X (1)
1 , . . . , X (1)

n1 sampled from �0 and �1. We estimate
the mean and covariance functions by μ̂k(t) and Ĝk(s, t), the sample mean and sample covariance
functions for group k , and estimate πk by π̂k = nk/n. Setting Ĝ(s, t) = π̂0Ĝ0(s, t)+ π̂1Ĝ1(s, t)
and denoting the jth eigenvalue-eigenfunction pair of Ĝ by (λ̂j, φ̂j), we obtain the projections
for a generic functional observation X as ξ̂j = ∫

T X (t)φ̂j(t) dt (j = 1, . . . , J ), denoting the pro-

jection scores of X (k)
i by ξ̂ijk , where we assume fully observed noise-free predictor trajectories.

The eigenvalues λjk are estimated by λ̂jk = ∫
T
∫
T Ĝk(s, t)φ̂j(s)φ̂j(t) ds dt, which is motivated by

λjk = ∫
T
∫
T Gk(s, t)φj(s)φj(t) ds dt, the pooled eigenvalues by λ̂j = π̂0λ̂j0 + π̂1λ̂j1, and the jth

projection scores μjk of μk(t) by μ̂jk = ∫
T μ̂k(t)φ̂j(t) dt. The resulting estimators for μk , Gk , φj

and λjk are consistent; see the Appendix.
We then proceed to obtain nonparametric estimates of the densities for each of the projection

scores by applying kernel density estimates (Silverman, 1986) to the sample projection scores
from group k . The kernel density estimate for the jth projection in group k is

f̂jk(u) = 1

nkhjk

nk∑
i=1

K

(
u − ξ̂ijk

hjk

)
, (5)

where u ∈ R and hjk = hλ̂1/2
jk are bandwidths adapted to the variance of the jth projection score

(see § § 4 and 5·1), leading to corresponding estimates of the density ratios f̂j1(u)/f̂j0(u) that
are used to obtain an estimated version of (3). An alternative estimate for the density ratios
based on nonparametric kernel regression (Nadaraya, 1964; Watson, 1964) is discussed in the
Supplementary Material. Writing x̂j = ∫

T x(t)φ̂j(t) dt, the estimated criterion function based on
the kernel density estimate is therefore

Q̂J (x) = log
π̂1

π̂0
+
∑
j�J

log
f̂j1(x̂j)

f̂j0(x̂j)
. (6)

In practice, the assumption that functional data are fully observed trajectories is often unre-
alistic. Rather, one encounters observations of the functions that have been taken on a regular
or irregular design, possibly with some missing observations, where the measurements are con-
taminated with measurement errors that one may assume are independent with zero mean and
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finite variance. In this situation, one can smooth the discrete observations using local linear ker-
nel smoothers, and then regard the smoothed trajectory as a fully observed functional predictor.
We provide theoretical justification for this approach by showing that one can obtain the same
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Condition 1 means that the covariance functions Gk(s, t) under�0 and�1 can be decomposed
as Gk(s, t) = cov{X (k)(s), X (k)(t)} = ∑

j λjkφj(s)φj(t), where φj are the common eigenfunc-
tions and λjk the associated eigenvalues. For our analysis, the common eigenfunctions serve as
projection directions and are assumed to be such that the projection scores become independent,
as is the case if predictor processes satisfy the more restrictive Gaussian assumption, for example;
see § 6 for further discussion. Additional assumptions are provided in the Appendix.

THEOREM 1. Under Conditions 1, 2 and A1–A9 in the Appendix, for any ε > 0 there exist a
set S with pr(S) > 1 − ε and a sequence J = J (n, ε) → ∞ such that pr(S ∩ [I {Q̃J (X ) � 0} |=
I {QJ (X ) � 0}]) → 0 as n → ∞.

Theorem 1 provides the asymptotic equivalence of the estimated classifier based on the kernel
density estimates (7) of presmoothed observations and the Bayes classifier I {QJ (x) � 0} based
on the first J projections. This implies that it suffices to investigate the asymptotics of the Bayes
classifier based on QJ to establish asymptotic perfect classification.

The next result states that the proposed nonparametric Bayes classifiers achieve perfect
classification under certain conditions. Let mj = μj/λ

1/2
j0 and rj = λj0/λj1.

THEOREM 2. Under Conditions 1, 2, A10 and A11, the Bayes classifier I {QJ (x) � 0} achieves
perfect classification as J → ∞ if

∑
j�1(rj − 1)2 = ∞ or

∑
j�1 m2

j = ∞.

This theorem extends previous results on perfect classification, such as those in Delaigle &
Hall (2012, 2013), to classifiers of a more general nonparametric form. The conditions for perfect
classification in Theorem 2 are sufficient but not necessary. The general case that we study
here has the interesting feature that when �1 and �0 are non-Gaussian, perfect classification
may occur even if the mean and covariance functions under the two groups are the same. This
may happen for instance when the distributions of the infinitely many independent projection
scores have different shapes, which provides information for discrimination. For example, the
projection scores ξj may be independent random variables with the same mean and variance for
both populations, but may follow normal distributions under�1 and Laplace distributions under
�0; see the Supplementary Material. In such cases, attempts at classification under Gaussian
assumptions are doomed, as mean and covariance functions are the same between the groups,
while the proposed nonparametric Bayes classifiers can reflect these differences.

5. NUMERICAL PROPERTIES

5·1. Practical considerations

We propose three practical implementations for estimating the projection score densities
fjk(·) that will be compared in our data illustrations, along with other previously proposed func-
tional classification methods. All of these methods involve choice of tuning parameters, namely
bandwidths and the number of components included; we describe below how these are specified.
Our first implementation is the nonparametric density classifier as in (6), where one estimates the
density of each projection by applying kernel density estimators to the observed sample scores
as in (5). The second implementation is the nonparametric regression approach detailed in the
Supplementary Material, where we apply kernel smoothing (Nadaraya, 1964; Watson, 1964) to
the scatterplots of the pooled estimated scores and group labels. For the kernel estimates we use
a Gaussian kernel for which the bandwidth multiplier h is chosen by ten-fold crossvalidation,
minimizing the misclassification rate.
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The third implementation is referred to as the Gaussian method. Each of the projections
is assumed to be normally distributed with mean and variance estimated by the sample mean
μ̂jk = ∑nk

i=1 ξ̂ijk/nk and sample variance λ̂jk = ∑nk
i=1(ξ̂ijk − μ̂jk)

2/(nk −1) of ξ̂ijk (i = 1, . . . , n).
We then use the density of N (μ̂jk , λ̂jk) as f̂jk(·). This Gaussian implementation differs from the
quadratic discriminant implementation discussed in Delaigle & Hall (2013) for example, as in
our approach we always force the projection directions for the two populations to be the same.
This has the practical advantage of providing more stable estimates for the eigenfunctions and is
a prerequisite for constructing nonparametric Bayes classifiers for functional predictors. For all
classifiers included in our comparisons, the number J of projections used is selected by ten-fold
crossvalidation, jointly with the selection of h for the nonparametric methods.

5·2. Simulation results

We illustrate the proposed Bayes classifiers in three simulation settings that involve varying
distributions and dependency assumptions for the projection scores. In the first two scenarios, the
samples are generated by X (k)

i (t) = μk(t)+∑50
j=1 Aijkφj(t) (i = 1, . . . , nk ; k = 0, 1), where nk

is the number of samples in �k . The Aijk are independent random variables with mean zero and
variance λjk , which are generated under two distribution scenarios: Scenario A, where the Aijk
are normally distributed; and Scenario B, where the Aijk are centred exponentially distributed. In

Scenario C, we generate samples with uncorrelated but dependent scores by X (k)
i (t) = μk(t)+∑50

j=1(Aijk/Bik)φj(t), where the Aijk are the same as in Scenario B and the Bik are independent

and follow the same distribution as χ2
30/30.

In each setting, we generate n training samples, each having 1/2 chance of being from �0 or
�1, and we let φj be the jth function in the Fourier basis, where φ1(t) = 1, φ2(t) = √

2 cos(2π t),
φ3(t) = √

2 sin(2π t), and so on, for t ∈ [0, 1]. We set μ0(t) = 0 and set μ1(t) = 0 or
t for the same- or different-mean scenarios, respectively. The variances of Aijk under �0 are
λj0 = exp(−j/3), and those under �1 are λj1 = exp(−j/3) or exp(−j/2) (j = 1, . . . , 50) for
the same- or different-variance scenarios, respectively. The random functions are sampled at 51
equally spaced time-points from 0 to 1, with small measurement errors in the form of independent
Gaussian noise with mean zero and variance 0·01 added to each observation for all scenarios. We
use modest sample sizes of n = 50 and n = 100 for training the classifiers, and 500 samples for
evaluating the predictive performance.

Each simulation experiment is repeated 500 times, with the goal of comparing the predictive
performance of the following functional classification methods: the centroid method (Delaigle &
Hall, 2012); the proposed nonparametric Bayes classifier in three versions, where estimation is
based on Gaussian densities, nonparametric densities or nonparametric regression, as discussed
in § 5·1; logistic regression; the functional quadratic discriminant as in Galeano et al. (2015); and
Gaussian process logistic regression (Rasmussen & Williams, 2006) with squared exponential
function and automatic relevance determination. The functional quadratic discriminant was never
the winner in any scenario of our simulation study, so we omit it from the tables. We show
in Table 1 the results corresponding to presmoothing the predictors by local linear smoothers
with crossvalidation bandwidth choice. Since all classifiers show improved performance when
presmoothing of the predictor functions takes place, the results obtained without presmoothing
are relegated to the Supplementary Material.

For Scenario A, the proposed nonparametric Bayes classifiers show superior performance in
those settings where covariance differences in the populations are present, whereas the logistic
methods work best in those cases where the differences lie exclusively in the mean. This is
because the proposed nonparametric Bayes classifiers take into account both mean and covariance
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Table 1. Misclassification rates (%), with standard errors in parentheses, for presmoothed
predictors in the three simulation scenarios

n μ λ Centroid Gaussian NPD NPR Logistic GP logistic
Scenario A (Gaussian case)

50 same diff 48·9 (0·14) 22·7 (0·17) 23·1 (0·20) 25·7 (0·21) 48·9 (0·13) 30·3 (0·30)
diff same 36·5 (0·24) 38·3 (0·22) 40·7 (0·22) 39·3 (0·23) 32·2 (0·26) 42·5 (0·26)
diff diff 33·4 (0·25) 18·0 (0·16) 18·4 (0·18) 20·3 (0·20) 28·1 (0·26) 24·9 (0·27)

100 same diff 48·9 (0·14) 17·1 (0·11) 18·1 (0·12) 19·4 (0·13) 49·1 (0·14) 20·3 (0·15)
diff same 29·8 (0·23) 31·6 (0·23) 33·6 (0·25) 31·9 (0·25) 25·4 (0·15) 34·7 (0·35)
diff diff 27·0 (0·24) 13·0 (0·11) 14·0 (0·12) 14·8 (0·13) 21·1 (0·14) 15·3 (0·15)

Scenario B (exponential case)
50 same diff 48·5 (0·15) 28·3 (0·18) 29·1 (0·21) 31·4 (0·24) 48·6 (0·14) 33·0 (0·29)

diff same 35·0 (0·24) 38·4 (0·22) 38·0 (0·22) 36·5 (0·23) 30·9 (0·23) 36·6 (0·25)
diff diff 30·3 (0·24) 20·2 (0·18) 20·9 (0·22) 21·4 (0·22) 27·0 (0·23) 23·3 (0·25)

100 same diff 48·5 (0·15) 25·1 (0·13) 24·0 (0·14) 25·0 (0·14) 48·4 (0·15) 24·3 (0·18)
diff same 29·2 (0·23) 33·3 (0·23) 32·3 (0·20) 31·1 (0·21) 25·4 (0·17) 30·0 (0·25)
diff diff 26·1 (0·22) 16·5 (0·14) 14·6 (0·13) 14·7 (0·13) 21·6 (0·16) 14·6 (0·16)

Scenario C (dependent case)
50 same diff 48·5 (0·15) 32·2 (0·20) 34·1 (0·23) 36·0 (0·24) 48·4 (0·15) 38·1 (0·28)

diff same 36·1 (0·25) 39·8 (0·24) 40·1 (0·22) 38·6 (0·23) 31·4 (0·24) 38·3 (0·24)
diff diff 31·6 (0·24) 24·6 (0·20) 25·6 (0·22) 26·3 (0·22) 27·5 (0·23) 26·7 (0·25)

100 same diff 48·6 (0·15) 29·5 (0·13) 29·7 (0·14) 30·8 (0·14) 48·7 (0·15) 31·2 (0·20)
diff same 31·0 (0·22) 35·1 (0·23) 34·6 (0·19) 32·8 (0·21) 25·8 (0·18) 31·6 (0·26)
diff diff 27·6 (0·23) 21·8 (0·16) 20·3 (0·14) 20·4 (0·16) 21·9 (0·16) 17·8 (0·24)

Centroid, the method of Delaigle & Hall (2012); Gaussian, NPD and NPR, the Gaussian, nonparametric density and
nonparametric regression implementations of the proposed Bayes classifiers, respectively; Logistic, functional logistic
regression; GP logistic, Gaussian process logistic regression.

differences between the populations. In Scenario B, the proposed Bayes classifiers continue to
outperform all other methods when covariance differences occur, especially when the sample
size is small. When there are differences between the covariances, the Gaussian implementation
performs the best when the sample size is small, while the nonparametric density implementation
and the Gaussian process logistic regression perform the best when the sample size is large. This
is likely due to the nonparametric classifiers having larger variance than the parametric classifiers
so that they require more training data to perform well.

Scenario C is more challenging than the other scenarios because of the dependency in the
projection scores, which violates Condition 2. Nevertheless, the proposed classifiers outperform
the others in the presence of covariance differences, especially if the sample size is small. Gaussian
process logistic regression performs best when differences exist in both the mean functions and
the covariance functions and when the sample size is large, owing to its capacity to handle
dependent predictors.

5·3. Data illustrations

We present four real-data examples to illustrate the performance of the proposed Bayes clas-
sifiers for functional data. We presmoothed the yeast data by a local linear smoother with
crossvalidation bandwidth choice, since the original observations are quite noisy, as can be seen
from Fig. 1; for the wine dataset and the attention deficit hyperactivity disorder dataset we used
the curves as provided in the data, which were already pre-processed and smooth. Following the
procedure described in Benko et al. (2009), we tested whether the eigenspaces generated by the

Downloaded from https://academic.oup.com/biomet/article-abstract/104/3/545/3848984
by Peking University user
on 09 February 2018



554 X. DAI, H.-G. MÜLLER AND F. YAO

G
en

e 
ex

p
re

ss
io

n
 l

ev
el

0 20 40 60 80

Time (minutes)

100

M
ea

n
 b

lo
o
d
–
o
x
y
g
en

 l
ev

el
–
d
ep

en
d
en

t 
si

g
n
al

0·6

0·4

0·2

0

–0·2

–0·4

–0·6
50 100

Time–point

150

0·8
(b)(a)

5

4

3

2

1

0

–1

–2

–3

Fig.1. (a)Geneexpressiontrajectoriesfortheyeastdata.(b)Meanbloodoxygenlevel-dependentsignalsfortheattentiondeficithyperactivitydisorderdata.Inbothpanels�0isrepresentedbydashedlinesand�1bysolidlines.Table 2.Ten-fold crossvalidation misclassification rates(%)over500repetitions, with standarderrorsinparentheses,forfourrealdatasets



Functional Bayes classifiers 555

Downloaded from https://academic.oup.com/biomet/article-abstract/104/3/545/3848984
by Peking University user
on 09 February 2018



556 X. DAI, H.-G. MÜLLER AND F. YAO

to bimodal while the other density is not. The nonparametric implementations of the proposed
Bayes estimators based on nonparametric regression and on nonparametric density estimation
are capable of reflecting such shape differences and therefore outperform the classifiers based on
Gaussian assumptions.

In all examples the quadratic discriminant outperforms the centroid method, suggesting that in
these examples there is information contained in the differences between the covariance operators
of the two groups to be classified. In the presence of such more subtle differences and additional
shape differences in the distributions of projection scores, the proposed nonparametric Bayes
methods are expected to work particularly well.

6. DISCUSSION

As the two groups to be classified often share common characteristics, the working assumption
that the covariance functions of the predictor functions share some common structure is not
unreasonable. We assume that the commonality between the covariances lies in the principal
modes of variation, and the projection scores reflect latent factors that differ between groups. The
common eigenfunction assumption is more general than the common or proportional covariance
assumption and leads to sensible directions of projection for constructing the proposed Bayes
classifiers, permitting meaningful between-group comparisons of variation (Benko et al., 2009;
Coffey et al., 2011).

To justify the common eigenfunction assumption in practice, we tested whether the sets of
eigenfunctions are common to two groups in real-data applications. Since our method allows
the eigenfunctions to have different orders, we implemented the test by following Benko et al.
(2009), i.e., testing whether the eigenspaces generated by the first J = 20 components are the
same; the null hypothesis was not rejected for any of the datasets. The common eigenspace
assumption is weaker than the common eigenfunction assumption because the former allows one
set of eigenfunctions to be a rotation of the other set.

Processes with independent projections are generated by a fixed set of orthonormal directions
of variation and a set of independent random variables representing the independent variation in
each of the directions. The independent projection assumption seems restrictive but is satisfied by
a reasonably large class of processes which includes Gaussian processes. This class of processes
is closed with respect to componentwise transformation. Processes generated by a nonlinear
transformation of a finite set of independent random variables are excluded from this class,
however, because the functional principal components in the infinite-dimensional space are then
restricted to lie on a certain manifold with dependent projections. Independent component analysis
(Hyvärinen & Oja, 2000) also assumes independence among components. For processes with
dependent projection scores, Bayes classifiers can be constructed through estimating (2), but
the joint densities may be practically estimated only for a small number of projections, due to
the curse of dimensionality. Even in cases with dependent projection scores, one may be able
to approximate the multivariate joint density through product densities, as corroborated by our
simulation results.

The proposed Bayes classifiers can be naturally extended to K-class classification by projecting
observations onto a set of eigenfunctions common to all groups, estimating projection densities
fjk (j = 1, . . . , J ; k = 1, . . . , K) from the projections ξjk for group k , and then classifying
into the group with highest posterior probability pr(Y = k | ξ1, . . . , ξJ ). This is equivalent to
classifying into group k∗ if the product density quotient of group k∗ over k is greater than 1 for all
k |= k∗.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes the description of our nonpara-
metric regression estimate, an example of perfect classification when the mean and the covariance
functions are the same, additional simulation results, and proofs of the theoretical results.

APPENDIX

Assumptions and additional results

For simplicity of presentation, throughout all proofs we adopt the simplifying assumptions mentioned in
the first paragraph of § 4. We remark that μ̂k , Ĝk , φ̂j and λ̂jk constructed from the sample mean, covariance,
eigenfunctions and eigenvalues of the completely observed functions are consistent estimates for their
corresponding targets, as per Hall & Hosseini-Nasab (2006). Theorem A1 below states that Q̂J (x) in (6) is
asymptotically equivalent to QJ (x) in (3), for all J . We define the kernel density estimator using the true
projection scores ξijk = ∫

T X (k)
i (t)φj(t) dt as

f̄jk(u) = 1

nkhjk

nk∑
i=1

K

(
u − ξijk

hjk

)
.

Let gjk be the density functions of the standardized functional principal components ξj/λ
1/2
j0 when k = 0

and of (ξj − μj)/λ
1/2
j1 when k = 1, let ĝjk be the kernel density estimates of gjk using the estimated

functional principal components, and let ḡjk be the kernel density estimates using the true functional
principal components, analogous to f̂jk and f̄jk . Delaigle & Hall (2010) provide the uniform convergence
rate of ĝjk to ḡjk on a compact domain, with a detailed proof given in Delaigle & Hall (2011); our derivations
utilize their result.

We make the following assumptions for k = 0, 1; Conditions A1–A4 here parallel assumptions (3.6)–
(3.9) in Delaigle & Hall (2010).

ConditionA1. For all large C > 0 and some δ > 0, supt∈T E�k {|X (t)|C} < ∞ and sups,t∈T :s |=t E�k [{|s−
t|−δ|X (s)− X (t)|}C] < ∞.

Condition A2. For each integer r � 1, λ−r
jk E�k [

∫
T {X (t) − E�k X (t)}φj(t) dt]2r is bounded uniformly

in j.

Condition A3. The eigenvalues {λj}∞
j=1 are all different, and so are the eigenvalues in each of the

sequences {λjk}∞
j=1, for k = 0, 1.

Condition A4. The densities gjk are bounded and have bounded derivative; the kernel K is a symmetric,
compactly supported density function with two bounded derivatives; for some δ > 0, h = h(n) = O(n−δ)
and n1−δh3 is bounded away from zero as n → ∞.
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Condition A5. The densities gjk are bounded away from zero on any compact interval within their
respective supports; that is, for all compact intervals I ⊂ supp(gjk), inf xj∈I gjk(xj) > 0 for k = 0, 1 and
j � 1.

ConditionA1 requires Hölder continuity for processes X , and is a slightly modified version of a condition
in Hall & Hosseini-Nasab (2006, 2009). Condition A2 is satisfied if the standardized functional principal
components have moments of all orders that are uniformly bounded. In particular, Gaussian processes
satisfy ConditionA2 since the standardized functional principal components identically follow the standard
normal distribution. Condition A3 is standard (Bosq, 2000); here the λj are the eigenvalues of the pooled
covariance operator. Conditions A4 and A5 are needed for constructing consistent estimators of the density
quotients. For the case of completely observed predictors, the following results state the equivalence of
the estimated classifiers I {Q̂J (X ) � 0} and I {Q̂R

J (X ) � 0} based on the completely observed predictor
functions, see the Supplementary Material, and the Bayes classifier using J components, I {QJ (X ) � 0}.

THEOREM A1. Under Conditions 1, 2 and A1–A5, for any ε > 0 there exists a set S with pr(S) > 1− ε
and a sequence J = J (n, ε) → ∞ such that pr(S ∩ [I {Q̂J (X ) � 0} |= I {QJ (X ) � 0}]) → 0 as n → ∞.

THEOREM A2. Under Conditions 1, 2 and A1–A5, for any ε > 0 there exists a set S with pr(S) > 1− ε
and a sequence J = J (n, ε) → ∞ such that pr(S ∩ [I {Q̂R

J (X ) � 0} |= I {QJ (X ) � 0}]) → 0 as n → ∞.

To obtain theoretical results under presmoothing, we require Conditions A6–A9 below, which parallel
assumptions (B2)–(B4) in the supplementary material of Kong et al. (2016).

Condition A6. For k = 0, 1, X (k) is twice continuously differentiable on T with probability 1, and∫
T E{d2X (k)(t)/dt2} dt < ∞.

Condition A7. For i = 1, . . . , n and k = 0, 1, {tikl : l = 1, . . . , mik} are considered deterministic and
arranged in increasing order. There exist design densities uik(t), uniformly smooth over i and satisfying∫

T uik(t) dt = 1 and 0 < c1 < inf i{inf t∈T uik(t)} < supi{supt∈T uik(t)} < c2 < ∞, which generate tikl

according to tikl = U −1
ik {l/(mik + 1)}, where U −1

ik is the inverse of Gik(t) = ∫ t
−∞ uik(s) ds.

Condition A8. For each k = 0, 1, there exists a common sequence of bandwidths w such that 0 < c1 <

inf i wik/w < supi wik/w < c2 < ∞, where wik is the bandwidth for smoothing X̃ (k)
i . The kernel function

K0 for local linear smoothing is twice continuously differentiable and compactly supported.

Condition A9. Let δik = sup{tik ,l+1 − tikl : l = 0, . . . , mik}, and define m = m(n) = inf i=1,...,n; k=0,1 mik .
Then supi,k δik = O(m−1), w is of order m−1/5, and mh5 → ∞, where h is the common bandwidth multiplier
in the kernel density estimator.

To obtain asymptotic perfect classification properties, we impose the following conditions on the
standardized functional principal components.

Condition A10. The densities gj0(·) and gj1(·) are uniformly bounded for all j � 1.

Condition A11. The first four moments of ξj/λ
1/2
j0 under �0 and those of (ξj − μj)/λ

1/2
j1 under �1 are

uniformly bounded for all j � 1.
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