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Table 1 The average classification error with the standard error (in parenthesis) in percentage (%) obtained
from 100 Monte Carlo repetitions for an additional model f (X) = 2−1 exp(2.5〈β1, X〉·〈β2, X〉)−1, while
all other settings remain unchanged as those in the paper

Method LDA QDA Centroid Logistic

Sparse PEFCS 12.5 (.20) 11.2 (.27) 46.7 (.37) 12.6 (.23)

FPCA 13.1 (.21) 11.8 (.23) 46.5 (.35) 13.4 (.26)

Dense PEFCS 12.1 (.25) 10.3 (.28) 46.2 (.42) 12.4 (.23)

FPCA 13.0 (.21) 11.6 (.23) 46.8 (.37) 13.4 (.26)

two types of data are substantively distinct, resulting in different approaches dealing
with potential sparseness, which has enriched the literature of these two areas in the
past decades.

The discussion on three types of sparsity by Aneiros and Vieu shreds insights into
the various notions of sparsity in functional data. The proposed probability-enhanced
functional cumulative slicing (PEFCS) to certain extent crossed the situations (i) and
(iii) specified in Aneiros and Vieu. The model assumption on sufficiency of projec-
tions of the functional predictor X on K index functions {β1, . . . , βK } serves the
purpose of dimension reduction to overcome the curse of dimensionality caused by
exponentially decaying small ball probability. This is in line with the semiparamet-
ric ideas such as projection pursuit (Chen et al. 2011; Ferraty et al. 2003, 2013;
Yao et al. 2015) and partial linear modeling (Aneiros-Pérez and Vieu 2006; Lian
2011), among others. We would like to emphasize that the PEFCS based on suf-
ficiency of linear projections includes (generalized) linear or additive regression as
special cases, and is “link-free” compared to multiple index modeling methods.
Sang, Nie, and Cao raised a question on the robustness to deviation from the lin-
ear sufficiency by considering a model f (X) = 2−1 exp(2.5〈β1, X〉 · 〈β2, X〉) − 1
(scaled to have a reasonable separation between two classes). An additional sim-
ulation was conducted keeping other settings unchanged. The results in Table 1
indicate that classifiers based on PEFCS still outperform those based on func-
tional principal component analysis (FPCA), with the quadratic being the winner
as expected from the multiplicative relation. However, the centroid classifier breaks
down using both methods, which may deserve a further study beyond the scope of
this paper. Following Aneiros and Vieu’s suggestion, one may consider to explore
even less structured models (e.g., fully nonparametric) to accommodate nonlinear
model sufficiency, which nevertheless would encounters the curse of dimensional-
ity.

A related issue emerges in the comments by Febrero-Bande as well as Biau and
Levrardand on the linearity condition of X (Assumption 2 in the paper). This is made on
the mean structure of X for the technical need, but does not imply finite dimensionality
of X that is often determined by the covariance structure, e.g., for a Gaussian process.
Thanks to the suggestion by Biau and Levrard, a possible remedy for non-elliptically
case is to construct a kernel dimension reduction method based on a reproducing kernel
Hilbert space embedding of X (Fukumizu et al. 2009). Another technical requirement
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(Assumption 3) is a sufficient condition to define a subspace of an L2 space for the
existence of index functions identified by the eigenfunctions of Σ−1Λ. The practical
implication is that the correlations among projections decay sufficiently fast. Readers
can refer to He et al. (2003) for concrete examples that do or do not satisfy such a
convergent double sum condition.

The current paper is concerned with the sparsity in observational grids in conjunc-
tion with the linear sufficiency in the context of index models. This type of sparsity
is specific to functional data and can obscure the nature of practical problems. The
challenges were pointed out by Febrero-Bande, including how to reconstruct loss
of information and discover whether the sparsity pattern is related to the process or
to the groups. Particularly, for each application, one may seek some tailored solu-
tions that lead to enhancements, which was elaborated in Febrero-Bande’s discussion
through data examples. We mention a comment on the noisily observed scheme
Ui j = Xi (ti j ) + εi j with εi j being an i.i.d. measurement error. This is a commonly
used observational scheme in nonparametric and functional data literature. Of inter-
est is the unobserved process X ∈ L2(T ) instead of the noise-prone values Ui j that
are not demanded to reside in L2(T ). Smoothing techniques are usually employed to
recover the underlying process on either subject or population level. It is contrary to
assuming fully observed trajectories Xi which can be regarded as an idealization of
the noise-contaminated model. Our proposal is intended to adapt to a general miss-
ing at random situation in a non-informative manner, while specific data may or may
not fully respect this mechanism and tailored solutions are more than welcome to be
considered. We do agree with Febrero-Bande that there is a great need of more exten-
sive and deeper comparative studies for functional classification, concerning various
aspects, including (but not limited to) models that are “structured” versus “flexible”
[for instance, the nonparametric functional regression in the sense of Ferraty and Vieu
(2006)], “sparse” versus “dense” designs, methods based on conditional distributions
Y |X versus X |Y , among others.

2 Relation to partial least squares

The discussion by Aguilera is mainly denoted to relating PEFCS to partial least squares
(PLS) that attempts to capture the maximal correlation between the functional pre-
dictor and the response. The idea of PLS has been seen advantageous over PCA for
regression and classification problems in both multivariate and functional data analy-
sis. In particular, Aguilera et al. (2010), Hall and Delaigle (2012), Preda and Saporta
(2005), Reiss and Ogden (2007), have studied PLS for functional linear regression
and classification problems via the approach of estimating the conditional distribution
of Y |X . The main problem with FPCA for regression or classification is to ignore
the relationship between the predictor and response, which has been also emphasized
in the current paper. The remedy we proposed based on a central subspace method
aims at the conditional distribution of X |Y instead of Y |X . A natural consideration
in the schemes of Y |X is to adopt various classifiers to the projections on the direc-
tions obtained by functional PLS, such as GLM-PLS (Escabias et al. 2007), LDA-PLS
(Preda and Saporta 2005), Centroid-PLS (Hall and Delaigle 2012). Pointed out by both
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Aguilera and Biau and Levrard, expanding PLS to sparsely observed functional data
is of considerable interest in not only classification but also more general context of
regression problems.

Biau and Levrard provided insightful comments on the approaches based on central
subspace and PLS that directly ranking or thresholding PLS scores would likely result
in a larger subspace due to choosing redundant directions that strongly correlate with
but do not belong to the central subspace. This remark enlightens an advantage of the
central subspace paradigm over correlation-based methods. As for PEFCS, a promising
alternative in the first step of the initial curve recovery has been suggested by both
Biau and Levrard and Aguilera in view of the advantage of PLS over FPCA. Although
nearly 100 % of information in X is preserved in our initial recovery by FPCA, the
truncated portion might still carry important information for classification in some
“not-so-pathological” cases. This suggestion is meaningful and may potentially boost
the performance of the current PEFCS method, as the subsequent construction of the
EDR space is based on the recovered data. Again this stresses the need of developing
PLS approach for regression and classification models in which the predictor process
is sparsely observed and contaminated with noise.

3 Implementation and numerical examples

Several discussions have contributed to various aspects of implementation of PEFCS
algorithm associated with sparsity, smoothing techniques, as well as computational
costs. The estimation of the mean and covariance structures sets the stage for recover-
ing the sparsely observed trajectories and the identification of the effective directions.
A valuable comment is made by Aneiros and Vieu on the weighting scheme of mea-
surements from each individual proposed in Li and Hsing (2010). Using the inverse
of the number of measurements for each subject as weights when pooling together
the data has been carefully studied in Li and Hsing (2010), and it is straightforward to
adopt this modification in PEFCS. In sparse setting, Hall et al. (2006) has shown that
the current mean and covariance estimation also enjoys the optimal rates of conver-
gence comparable to those in Li and Hsing (2010). As mentioned by Febrero-Bande,
the selection of optimal bandwidth of covariance estimation for sparse functional data
remains an open issue and deserves a further investigation. Nevertheless, based on our
experience and the study in Lin and Carroll (2000), it is suggested to ignore the within-
subject correlation in conjunction with cross-validation type search, at least when the
measurements are sparsely observed with noise. The issue with the non-negative def-
initeness of the covariance estimation is less pronounced in our implementation of
PACE algorithm, as we followed the suggestion made in Hall et al. (2008) to discard
the basis associated with negative eigenvalues. It has been shown theoretically that
this amendment leads to asymptotically negligible impact on the resulting covariance
estimator.

It is noted in Febrero-Bande’s discussion that the simulated predictor processes
and index functions may have too simple structures to demonstrate the advantage of
the proposed method that are intended for more complex situations. As responded in
Sect. 1, it is worth further investigations of extensive and deeper comparative studies
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exploring complicated patterns and shapes that warrant the need of advanced methods.
In modern scientific activities, such a demand of dealing with increasingly complex
data is ever growing, while the current work is an attempt to pioneer along the route.
A remark is also made by Febrero-Bande on underlying mechanisms that may lead
to various types of sparsity in functional data in light of the discussions on the data
examples. The sparsity mechanism is in fact largely unknown to statisticians and
has a close connection to the well-researched missing value problems in general.
For functional data of infinite-dimensional nature, this becomes a great challenge
from both conceptual and methodological considerations. We are still at infancy of
identifying such missing links and would like to invite capable hands on this direction
of research. In response to Sang, Nie, and Cao, it is a highly nontrivial task to adopt
information-based selection criteria, such as the AIC and BIC, as even for standard
central subspace methods, this remains as an open issue. To clarify the choices of
K and sn in simulation and data examples, we mention that the selection of both
parameters has been based on either testing-sample or cross-validated classification
error, i.e., sn was not chosen from explained variance in X as FPCA. As reported
in the paper, the structural dimension
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timal. Based on the proposal in Zhang and Liu (2014), Zhang and Liu suggested that
the generalization of PEFCS in an angle-based framework that minimizes a penalized
surrogate loss for sparse functional data can be feasible and promising. Zhang pro-
posed another idea to develop a model-free estimation for multi-class probabilities
by solving a series of multi-class weighted support vector machines (SVM) based on
the work in Liu and Shen (2006) and Wu et al. (2010), and again called for proper
adoption to sparse functional data. In response to these two proposals, we would like
to refresh the motivation of PEFCS for binary response owing to the homogeneity in
the central subspace if one applies inverse or cumulative slicing directly on the binary
response. It is important to note that, if the class size is large when the multi-category
classification faces more challenging, a direct FCS method proposed by Yao et al.
(2015) treating a continuous response may be well in place. Thus the difficulty of
dealing with multi-class problems for sparse functional data might not be as severe as
it appears, which only arises when the class size exceeds 2 to a moderate degree. Liu
and Zhang also suggested to employ a more general loss function than the weighted
SVM for estimating class probabilities, and the rationale is driven by the transition
behavior from soft to hard classifiers that were thoroughly studied in Liu et al. (2011)
but remains unknown for functional data classification.
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