
Biometrics 67, 445–453

June 2011
DOI: 10.1111/j.1541-0420.2010.01472.x

Dependence Calibration in Conditional Copulas:
A Nonparametric Approach

Elif F. Acar,∗ Radu V. Craiu, and Fang Yao

Department of Statistics, University of Toronto, 100 St. George Street, Toronto, Ontario M5S 3G3, Canada
∗email: elif@utstat.toronto.edu

Summary. The study of dependence between random variables is a mainstay in statistics. In many cases, the strength
of dependence between two or more random variables varies according to the values of a measured covariate. We propose
inference for this type of variation using a conditional copula model where the copula function belongs to a parametric copula
family and the copula parameter varies with the covariate. In order to estimate the functional relationship between the copula
parameter and the covariate, we propose a nonparametric approach based on local likelihood. Of importance is also the choice
of the copula family that best represents a given set of data. The proposed framework naturally leads to a novel copula
selection method based on cross-validated prediction errors. We derive the asymptotic bias and variance of the resulting
local polynomial estimator, and outline how to construct pointwise confidence intervals. The finite-sample performance of our
method is investigated using simulation studies and is illustrated using a subset of the Matched Multiple Birth data.
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1. Introduction
Understanding dependence is an important, yet challenging,
task in multivariate statistical modeling. One often needs to
specify a complex joint distribution of random variables to
have a complete view of the dependence structure. The chal-
lenge of constructing such multivariate distributions can be
significantly reduced if one uses a copula model to separate the
marginal components of a joint distribution from its depen-
dence structure. Sklar’s theorem (1959) is central to the the-
oretical foundation needed for the use of copulas as it states
that a multivariate distribution can be fully characterized by
its marginal distributions and a copula, that is, a multivariate
distribution function having uniform [0, 1] marginals.

In what follows, we focus on the bivariate case only for
simplicity, the arguments being extendable to more than two
dimensions. Let Y1 and Y2 be continuous random variables of
interest with joint distribution function H and marginal dis-
tributions F1 and F2, respectively. Sklar’s theorem ensures the
existence of a unique copula C : [0, 1]2 → [0, 1], which satisfies
H(y1, y2) = C{F1(y1), F2(y2)}, for all (y1, y2) ∈ R

2.
In the last 20 years, copulas have been widely used in a vari-

ety of applied work. We refer the reader to Embrechts, McNeil,
and Straumann (2002); Cherubini, Luciano, and Vecchiato
(2004); and Frees and Valdez (1998) for applications specific
to finance and insurance. In survival analysis, Clayton (1978),
Shih and Louis (1995), Wang and Wells (2000), and the mono-
graph by Hougaard (2000) present the copula techniques to
model multivariate time-to-event data and competing risks.
As a direct result of their wide applicability, a large num-
ber of parametric families of copulas, typically indexed by a
real-valued parameter θ, have been proposed in the literature
to represent different dependence patterns. While the copula
family describes the functional form, within each family it

is the copula parameter, θ, that controls the strength of the
dependence. A comprehensive introduction on copulas and
their properties can be found in Nelsen (2006) and the con-
nections between various copulas and dependence concepts
are discussed in detail by Joe (1997). If a parametric form is
assumed for the copula function, estimation can be achieved
using maximum likelihood estimation for the single copula
parameter (Genest, Ghoudi, and Rivest, 1995; Joe, 1997). Al-
ternatively, estimation can be performed fully nonparamet-
rically by using kernel estimators (Fermanian and Scaillet,
2003; Chen and Huang, 2007).

Although copulas have been in use in the applied sta-
tistical literature for more than 20 years, the covariate ad-
justment for copulas has been considered only recently. The
extension of Sklar’s theorem for conditional distributions
(Patton, 2006) allows us to adjust for covariates. For instance,
if, in addition to Y1 and Y2, we have information on a covari-
ate X, then the influence of X on the dependence between Y1

and Y2 can be modeled by the conditional copula C(· |X),
which is the joint distribution function of U1 ≡ F1 |X (Y1 |x)
and U2 ≡ F2 |X (Y2 |x) given X = x, where Yk |X = x has cdf
Fk |X (. |x), k = 1, 2. Patton (2006) showed that for each x in
the support of X, the joint conditional distribution is uniquely
defined by

HX (y1, y2 |x) = C{F1 |X (y1 |x), F2 |X (y2 |x) |x},
for all (y1, y2) ∈ R

2.
(1)

Conditional copulas have been used mostly in the context
of financial time series to allow for time-variation in the de-
pendence structure via likelihood inference for ARMA models
(Jondeau and Rockinger, 2006; Patton, 2006; Bartram, Tay-
lor, and Wang, 2007).
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The main contribution of the current work is to provide
a nonparametric procedure to estimate the functional rela-
tionship between the copula parameter and the covariate(s).
Our motivation is to relax the parametric assumptions about
this relationship. Since a parametric model will only find fea-
tures in the data that are already incorporated a priori in the
model, parametric approaches might not be adequate if the
dependence structure does not fall into a preconceived class
of functions.

In Section 4, we investigate the impact of gestational age
on the dependence between twin birth weights using a sub-
set of the Matched Multiple Birth Data Set. Among the twin
live births, we consider those who were delivered between 28
and 42 weeks of gestation and in which both twins survived
for the first year of life. Our initial investigation, shown in
Figure 1, indicates a relatively stronger dependence between
the birth weights (in grams) of the preterm (28–32 weeks)
and postterm (38–42 weeks) twins compared to the twins de-
livered at term (33–37 weeks). This suggests the need of such
nonparametric approach as an exploratory tool for detecting
the underlying functional relationship between the copula pa-
rameter and the covariate.

Smoothing methods for function estimation have been sub-
stantially studied for various problems. In this article, we use
the local polynomial framework (see Fan and Gijbels, 1996,
for a comprehensive review) for the covariate adjusted copula
estimation via local likelihood-based models (Tibshirani and
Hastie, 1987). In practice, all inferential methods for copulas
must be accompanied by a strategy to select among a num-
ber of copula families the one that best approximates the data
at hand. Choosing an appropriate family of copulas to fit a
given set of data is challenging and has recently attracted
considerable interest. Some methods for copula selection in-
clude goodness-of-fit tests based on the empirical copula
(Durrleman, Nikeghbali, and Roncalli, 2000), on the Kendall
process (Genest and Rivest, 1993; Wang and Wells, 2000; Gen-
est, Rémillard, and Beaudoin, 2007), and on kernel density es-
timation (Fermanian, 2005; Craiu and Craiu, 2008). Our esti-
mation procedure naturally leads to a novel copula selection
method based on cross-validated prediction errors (CVPE).
Besides being data-adaptive, the proposed selection criterion
makes comparisons across copula families possible due to its
general applicability.

The article is organized as follows. In Section 2, we present
the proposed estimation procedure, discuss aspects related to
copula selection, and derive the asymptotic bias and variance
of the nonparametric estimator used for constructing point-
wise confidence bands. Section 3 contains our simulation stud-
ies and in Section 4 we use the Matched Multiple Birth Data
Set to investigate the influence of the gestational age on the
strength of dependence between the twin birth weights. Dis-
cussion and conclusions are presented in Section 5. Technical
details and additional simulated and real data examples can
be found in the Web Appendix.

2. Methodology
2.1 Proposed Method
Let Y1 and Y2 be continuous variables of interest and X be a
continuous variable that may affect the dependence between
Y1 and Y2. We consider the model (1) with the conditional
density hX (Y1, Y2 |x; θ, α1, α2) in which our main interest lies
in the conditional copula parameter θ, while the conditional
marginal densities f1 |X and f2 |X are characterized by α1 and
α2, respectively,

hX (y1, y2 |x; θ, α1, α2) = f1 |X (y1 |x; α1) f2 |X (y2 |x; α2)

× c(u1, u2 |x; θ, α1, α2),

where uk = Fk |X (yk |x; αk ), k = 1, 2 and c(u1, u2 |x; θ, α1, α2)
is the conditional copula density. Here, we impose a minimal
requirement that the parameters that govern the marginals
are different from the copula parameter. It is easy to see that
such a requirement is not restrictive, for instance, in a re-
gression setting, marginals may correspond to mean effects
and the copula to covariance structure. Hence, the estima-
tion can be performed in two stages, first for the marginal
parameters and then for the copula. Then, by replacing the
estimates F̂1 |X (y1 |x) and F̂2 |X (y2 |x) in (1), we can estimate
the functional form of the copula parameter.

Since our main focus is on the dependence structure, we
assume that the conditional marginal distributions F1 |X and
F2 |X are known, and consider the following model:

(U1i , U2i ) |Xi ∼ C{u1i , u2i | θ(xi )},
where θ(xi ) = g−1{η(xi )}, i = 1, . . . , n.
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Here, g−1 : R → Θ is the known inverse link function, which
ensures that the copula parameter has the correct range, and η
is the unknown calibration function to be estimated. The term
calibration emphasizes that the level of dependence is adjusted
for the covariate effect on the copula parameter. Analogous
to the generalized linear models one needs to choose an ap-
propriate link function, since there is no guarantee that the
estimate of θ is in the correct parameter range for the partic-
ular copula family under consideration. For instance, for the
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represents best the data at hand. For the qth copula family,
the bandwidth selection process yields the optimal bandwidth
h∗

q . For each left-out sample point (U1i , U2i , Xi ), we obtain the
estimate for the conditional copula’s parameter θ̂

(−i)
h ∗

q
, which,

in turn, leads to the best candidate model from the qth family,
Cq {U1i , U2i | θ̂(−i)

h ∗
q

(Xi )}, with i = 1, . . . , n, q = 1, . . . , Q. We use
the conditional expectation formula to measure the predictive
ability for each of the candidate models. Within family Cq , the
best conditional prediction for U1i is

Ê(−i)
q (U1i |U2i , Xi ) =

∫ 1

0

U1cq

{
U1, U2i | θ̂(−i)

h ∗ (Xi )
}

dU1.

Then, the CVPE is used to define the model selection criterion

CVPE(Cq ) =
n∑

i=1

[{
U1i − Ê(−i)

q (U1i |U2i , Xi )
}2

+
{
U2i − Ê(−i)

q (U2i |U1i , Xi )
}2]

. (4)

The copula family Cq , which yields the minimum CVPE(Cq )
value, is selected. This criterion can be justified as follows.
If we denote M0 the true copula family and M the working
copula family, then the first part in (4) normalized by 1/n
is an approximation of EM 0 [{U1 − EM (U1 |U2, X)}2 |U2, X ],
which is minimized when the model M is correctly specified,
that is, M = M0. A similar result holds for the second part
in (4).

2.3 Asymptotic Properties
Before presenting the main results, we will introduce some
notation. Let fX (·) > 0 be the density function of the co-
variate X. Denote the moments of K and K2 respectively
by μj =

∫
tj K(t)dt and νj =

∫
tj K2(t)dt, and write the ma-

trices S =
(
μj+�

)
0�j,��p

, S∗ =
(
νj+�

)
0�j,��p

, the (p + 1) × 1
vectors sp = (μp+1, . . . , μ2p+1)T , as well as the unit vec-
tor e1 = (1, 0, . . . , 0)T . For simplicity, we use �(θ, U1, U2) =
ln c(U1, U2 | θ) for the log-copula density and denote its first
and second derivatives with respect to θ by �′(θ, U1, U2) =
∂�(θ, U1, U2)/∂θ and �′′(θ, U1, U2) = ∂2�(θ, U1, U2)/∂θ2, respec-
tively. For a fixed point x lying in the interior of the support
of fX , define σ2(x) = −E

(
�′′[g−1{η(x)}, U1, U2] |X = x

)
.

For our derivations, we require the assumptions given in
the Appendix. The assumption (A1) is to ensure that the
copula density satisfies the first- and second-order Bartlett
identities. Further discussion on condition (A1) for certain
copula families can be found in Hu (1998) and Chen and Fan
(2006). The mild regularity conditions in (A2) are commonly
adopted in nonparametric regression.

Typically, an odd-order polynomial fit is preferred to an
even-order fit in local polynomial modeling, as the latter in-
duces a higher asymptotic variance (see Fan and Gijbels,
1996, for details). Therefore, we consider only the odd-order
fits in the asymptotic expressions for the conditional bias
and variance. The following theorem summarizes the main
results, denoting the collection of covariate/design variables
{X1, . . . , Xn } by X, while the technical details are deferred to
the Web Appendix.

Theorem 1: Assume that (A1) and (A2) hold, h → 0 and
nh → ∞ as n → ∞, for an odd-order local polynomial fit of

degree p,

Bias(η̂(x) |X) = eT
1 S−1sp

η(p+1)(x)
(p + 1)!

hp+1 + op (hp+1),

var(η̂(x) |X) =
1

nhf (x)[(g−1)′{η(x)}]2σ2(x)
eT

1 S−1S∗S−1e1

+ op

( 1
nh

)
.

As a direct corollary of Theorem 1, we obtain the asymp-
totic conditional bias and variance of the copula parameter
estimator, θ̂(x) = g−1{η̂(x)}.

Corollary 1: Assume that conditions of Theorem 1 holds,
then

Bias(θ̂(x) |X) = eT
1 S−1sp

η(p+1)(x)
g′{θ(x)}(p + 1)!

hp+1 + op (hp+1),
(5)

var(θ̂(x) |X) =
1

nhf (x)σ2(x)
eT

1 S−1S∗S−1e1 + op

( 1
nh

)
.

(6)

One can use the result of Corollary 1 to approximate the
bias and variance of the estimated copula parameter. The
unknown quantity σ2(x) in the variance expression can be
approximated by

σ̂2(x) = −
∫ 1

0

∫ 1

0

�′′{θ̂(x), U1, U2}c{U1, U2 | θ̂(x)} dU1 dU2,

(7)

where c(·, ·) is the density corresponding to the underlying
copula family. The approximate 100(1 − α)% pointwise con-
fidence bands for the copula parameter are given by,

θ̂(x) − b̂(x) ± z1−α/2V̂ (x)1/2, (8)

where b̂(x) and V̂ (x) are the estimated bias and variance
based on (5) and (6), and z1−α/2 is the 100(1 − α/2)th quantile
of the standard normal distribution. In practice, estimating
the bias can be difficult due to unknown higher order deriva-
tives (see Fan and Gijbels, 1996, for further discussion on bias
correction). Alternatively, when variability plays a dominant
role in (8), one may use a smaller bandwidth to bring the bias
down to negligible levels (Fan and Zhang, 2000).

In practice, the estimation of the conditional marginal dis-
tributions may have an impact on the inference of the copula
parameter. If the marginal distributions can be adequately
characterized by a parametric model, as in the example con-
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the Web Appendix using the twin data set. It is not surprising
that, due to the uncertainty in the nonparametric marginals,
the bootstrap bands are wider than the asymptotic ones using
(8). Thus in the absence of an adequate parametric marginal
model, we suggest the use of the raw bootstrap approach. Nev-
ertheless, the construction of more computationally efficient
and theoretically justified inference procedures is of great im-
portance and constitutes a central topic of our future efforts.

3. Simulation Study
This section illustrates the finite sample performance of the
local copula parameter estimation and the copula selection
method. We consider the Clayton, Frank, and Gumbel fami-
lies of copulas in simulations. These choices cover a wide range
of situations as the Clayton and Gumbel copulas are known to
exhibit strong and weak lower tail dependence, respectively,
while the Frank copula is symmetric and shows no tail depen-
dence. Basic properties of these copulas can be found in the
Appendix.

The inverse link functions are chosen as g−1(t) = exp(t)
for the Clayton copula, g−1(t) = t for the Frank copula, and
g−1(t) = exp(t) + 1 for the Gumbel copula, so that the result-
ing copula parameter estimates will be in the correct range.

We generate the data {(U1i , U2i |Xi ) : i = 1, . . . , n} from
the Clayton copula under each of the following models:

(1) Linear calibration function : η(X) = 0.8X − 2

(U1, U2) |X ∼ C{u1, u2 | θ = exp(0.8X − 2)}
where X ∼ Uniform (2, 5),

(2) Quadratic calibration function: η(X) = 2 − 0.3(X −
4)2

(U1, U2) |X ∼ C [u1, u2 | θ = exp{2 − 0.3(X − 4)2}]
where X ∼ Uniform (2, 5).

We first generate the covariate values Xi from Uniform
(2, 5). Then, for each i = 1, . . . , n, we obtain the copula pa-
rameter, θi = exp{η(xi )}, imposed by the given calibration
and link functions, and simulate the pairs (U1i , U2i ) |Xi from
the Clayton copula with the parameter θi . The true copula
parameter varies from 0.67 to 7.39 in the linear calibration
model, and from 2.22 to 7.39 in the nonlinear one. Under each
model, we conduct experiments with sample sizes n = 200 and
n = 500, each replicated m = 100 times. Additional simula-
tion results in which the true underlying model is based on
the Frank copula are included in the Web Appendix.

To estimate the copula parameter, we perform the local
linear estimation, with p = 1, under each family, as well as
the parametric estimation in which η is assumed to be lin-
ear in X. By performing the estimation also under the Frank
and Gumbel families, we investigate the impact of the cop-
ula (mis)specification. We compare our proposed approach
with the parametric estimation when the underlying calibra-
tion function is correctly specified, as in the first model, and
when it is misspecified, as in the second one. For the band-
width parameter, we consider 12 candidate values, ranging
from 0.33 to 2.96, equally spaced on a logarithmic scale. All
results reported are based on the local estimates at the cho-
sen optimum bandwidth, which is given by the cross-validated
likelihood criterion (3).

Since the accuracy of the calibration estimation is not di-
rectly comparable across different copula families, we convert
the copula parameters to a common scale provided by the
Kendall’s tau measure of association, a widely used approach
in copula inference (Trivedi and Zimmer, 2007). The popula-
tion version of Kendall’s tau can be expressed in terms of a
conditional copula function

τC (x) = 4
∫ 1

0

∫ 1

0

C(u1, u2 |x) dC(u1, u2 |x) − 1.

For each of the three families, we report the connection be-
tween θ and Kendall’s tau in the Appendix. Table 1 displays
the Monte Carlo estimates of the integrated mean square er-
ror (IMSE) along with the integrated square Bias (IBIAS2)
and integrated Variance (IVAR),

IBIAS2(τ̂ ) =
∫
X
[E{τ̂ (x)} − τ (x)]2 dx,

IVAR(τ̂ ) =
∫
X

E([τ̂ (x) − E{τ̂ (x)}]2) dx,

IMSE(τ̂ ) =
∫
X

E[{τ̂ (x) − τ (x)}2] dx

= IBIAS2(τ̂ ) + IVAR(τ̂ ).

From Table 1, we see that the parametric estimation per-
forms better under the linear calibration model when it is
using the correct functional form. However, when there is no
known parametric model for the calibration function, the pro-
posed nonparametric approach better captures the covariate
effect on the copula parameter. The results also show that the
performance of the estimation deteriorates as the properties
of the used copula family significantly depart from the true
one. Since the Frank copula, having no tail dependence, is
closer to the Clayton copula than is the Gumbel copula, it
yields better results in all simulation scenarios compared to
Gumbel.

We also construct the approximate 90% pointwise confi-
dence bands for the copula parameter under the correctly se-
lected Clayton family, where the bias is much smaller than the
variance as noticed in Table 1. We thus use half of the opti-
mum bandwidth to assess σ2(x) in (7) while further reducing
the bias to a negligible level (Fan and Zhang, 2000). To be
consistent, for each Monte Carlo sample, the confidence inter-
vals obtained for the copula parameter are converted to the
Kendall’s tau scale. Figure 2 displays the confidence bands
for the Kendall’s tau, averaged over 100 Monte Carlo samples
(n = 200). For comparison, we present the Monte Carlo based
confidence bands obtained from 100 estimates of Kendall’s
tau, which agree well with our proposal.

For the copula selection, we calculate the cross-validated
prediction errors (4) and evaluate the performance by count-
ing the number of times the Clayton copula is selected. The
results show that we successfully identify the true copula fam-
ily, 91% (n = 200) and 99% (n = 500) of the times under the
linear calibration model; and 97% (n = 200) and 100% (n =
500) of the times under the quadratic calibration model.



450 Biometrics, June 2011

Table 1
Integrated Squared Bias (IBIAS 2), Integrated Variance (IVAR), and Integrated Mean Square Error (IMSE, multiplied by 100)

of the Kendall’s tau estimator. The last column shows the averages of the bandwidths h∗ selected using (3).

Linear calibration model

Parametric estimation Local estimation

n IBIAS2 IVAR IMSE IBIAS2 IVAR IMSE h∗

Clayton 200 0.024 0.305 0.329 0.017 0.553 0.570 2.183
500 0.018 0.136 0.154 0.020 0.228 0.248 2.283

Frank 200 0.490 0.596 1.086 0.044 0.963 1.007 1.848
500 0.479 0.265 0.744 0.060 0.437 0.497 1.644

Gumbel 200 3.739 1.115 4.660 3.704 1.716 5.389 2.095
500 3.499 0.429 3.928 3.510 0.556 4.066 2.385

Quadratic calibration model

Parametric estimation Local estimation

n IBIAS2 IVAR IMSE IBIAS2 IVAR IMSE h∗

Clayton 200 0.414 0.129 0.543 0.040 0.288 0.328 1.392
500 0.423 0.046 0.469 0.027 0.113 0.140 0.910

Frank 200 0.324 0.276 0.600 0.123 0.504 0.627 1.779
500 0.357 0.090 0.447 0.114 0.188 0.302 1.238

Gumbel 200 4.914 0.696 5.610 4.808 1.301 6.109 1.977
500 4.862 0.246 5.108 4.761 0.497 5.258 1.676
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Figure 2. Simulation study: 90% confidence intervals for the Kendall’s tau under the Clayton copula with the linear
(left panel) and quadratic (right panel) calibration models: truth (solid line), averaged local linear estimates (dashed line),
approximate confidence intervals (dotted line), and Monte Carlo confidence intervals (dotdashed line).

4. Data Example: Gestational Age-Specific Birth
Weight Dependence in Twins

We now apply our proposed method to a subset of the
Matched Multiple Birth Data Set. The data containing all
twin births in the United States from 1995 to 2000 enable de-
tailed investigation of twin gestations. In our application, we
consider the twin live births in which both babies survived
their first year of life with mothers of age between 18 and
40. Of interest is the dependence between the birth weights
of twins (in grams), denoted by BW1 and BW2, respectively.
The gestational age, GA, is an important factor for prenatal

growth and is therefore chosen as the covariate. We consider
a random sample of 30 twin live births for each gestational
age (in weeks) between 28 and 42.

The scatterplot and histograms of the birth weights, for
n = 450 twin pairs, are given in Figure 3a, from which the
marginals are seen to be fitted well by parametric cubic
regression models with normal noise, shown in Figure 3c
and 3d. The resulting coefficients, all significant at 1% level,
are plugged into Uki = Φ[{BMi = μ̂k i (GA)}/σ̂k ], k = 1, 2, i =
1, . . . , n, to transform the response variables to uniform scale,
where μ̂k are the cubic fit and σ̂k are the estimated standard
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Figure 4. Twin birth data: the Kendall’s tau estimates under three copula families: global constant estimate (dashed
line), global linear estimates (dotdashed line), local linear estimates at the optimum bandwidth (longdashed line), and an
approximate 90% confidence interval (dotted lines).

dependence and a measured covariate, we allow the copula
parameter to change according to a calibration function of the
covariate. Statistical inference for the calibration function is
obtained using local polynomial estimation. The methodology
proposed here leads to a novel conditional copula selection
procedure, in which we use prediction accuracy to select, via
cross-validation, among a number of copula families, the one
that best approximates the data at hand.

Our simulation study conveys that (i) the nonparametric
estimator of the calibration function is flexible enough to cap-
ture nonlinear patterns and (ii) the copula selection procedure
performs well in the cases studied so far. The data analysis
reveals a gestational age specific dependence pattern in the
birth weights of twins that, to our knowledge, has not been
detected before and may be of scientific interest.

Although in this article we focus our attention on bivariate
copulas, it is possible to extend our method to more general
multivariate copulas. In addition, if more covariates are of
potential interest for the conditional copula model, then we
recommend a careful selection of the variables prior to esti-
mation of the calibration function, as the computational cost
increases significantly with each covariate added to the model.
We are currently working on extending the framework of the
work presented here by considering mixtures of conditional
copulas in order to increase the spectrum of applications that
can be tackled using our approach.

6. Supplementary Materials
A Web Appendix containing technical details (referenced in
Sections 2.1 and 2.3), and additional simulated and real data
examples, is available under the Paper Information link at the
Biometrics website http://www.biometrics.tibs.org.
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Appendix

Regularity Assumptions
Let N (x) denote the neighborhood of an interior point x.

(A1) �′{θ(x), U1, U2} and �′′{θ(x), U1, U2} exist and are con-
tinuous on N (x) × (0, 1)2, and can be bounded by inte-
grable functions of u1 and u2 in N (x).

(A2) The functions fX (·), η(p+2), g′′(·), and σ2(·) are continu-
ous in N (x), and σ2(x′) � c for x′ ∈ N (x) and some
c > 0. Without loss of generality, the kernel density
K(·) has a compact support [−1, 1].

Copula Families Used in Our Implementations
The Clayton family has the copula function

C(u1, u2) =
(
u−θ

1 + u−θ
2 − 1

)− 1
θ , θ ∈ (0,∞),

with Kendall’s τ =
θ

θ + 2
.

The Frank family has the copula function

C(u1, u2) = −1
θ

ln

{
1 +

(e−θu 1 − 1)(e−θu 2 − 1)
e−θ − 1

}
,

θ ∈ (−∞,∞) \ {0},

with Kendall’s τ =1+ 4
θ
{D1(θ)−1}, where D1(θ)= 1

θ

∫ θ

0
t

e t −1dt
is the Debye function.
The Gumbel family has the copula function

C(u1, u2) = exp
[
− {(− ln u1)θ (− ln u2)θ } 1

θ

]
, θ ∈ [1,∞),

with Kendall’s τ = 1 − 1
θ
.
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Web Appendix A: Technical Details

The score and hessian functions

The score vector ∇L(β, x) and hessian matrix ∇2L(β, x) used in the Newton-Raphson

algorithm are given by, denoting xi,x = (1, Xi − x, . . . , (Xi − x)p)T ,

∇L(β, x) =
∂L(β, x, p, h)

∂β

=

n∑
i

∂

∂β

{
ℓ(g−1(xT

i,xβ), U1i, U2i)
}

Kh(Xi − x)

=
n∑
i

ℓ′(g−1(xT
i,xβ), U1i, U2i) [(g−1)′(xT

i,xβ)] xi,x Kh(Xi − x),

(1)

∇2L(β, x) =
∂2L(β, x, p, h)

∂β2

=

n∑
i

∂

∂β

{
ℓ′(g−1(xT

i,xβ), U1i, U2i)[(g
−1)′(xT

i,xβ)] xi,x

}
Kh(Xi − x)

=
n∑

i=1

{
ℓ′′(g−1(xT

i,xβ), U1i, U2i) [(g−1)′(xT
i,xβ)]2

+ ℓ′(g−1(xT
i,xβ), U1i, U2i) (g−1)′′(xT

i,xβ)
}

xi,x xT
i,x Kh(Xi − x).

(2)
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Derivations of Asymptotic Bias and Variance

Let H = diag{1, h, . . . , hp}, W = diag{Kh(X1 − x), . . . , Kh(Xn − x)},

Xx =




1 X1 − x · · · (X1 − x)p

1 X2 − x · · · (X2 − x)p

...
...

...

1 Xn − x · · · (Xn − x)p


.

Define (p+1)×(p+1) matrices Sn =
∑n

i=1 xi,xx
T
i,x Kh(Xi−x) and S∗

n =
∑n

i=1 xi,xx
T
i,x K2

h(Xi−

x), with entries Sn,j =
∑n

i=1(Xi − x)j Kh(Xi − x) and S∗

n,j =
∑n

i=1(Xi − x)j K2
h(Xi − x).

The proofs of Theorem 1 and Corollary 1 rely on the following Taylor expansion

0 = ∇L(β̂, x) ≈ ∇L(β, x) + ∇2L(β, x){β̂ − β},

where β = (β0, β1, . . . , βp)
T is the vector of true local parameters and β̂ = (β̂0, β̂1, . . . , β̂p)

T

is the local likelihood estimator, yielding

β̂ − β ≈ −
(
∇2L(β, x)

)
−1

∇L(β, x).

Hence, the leading terms in the asymptotic conditional bias and variance can be written as

E(β̂ | X) − β ≈ −E
(
∇2L(β, x) | X

)
−1

E (∇L(β, x) | X) , (3)

V ar(β̂ | X) ≈ E
(
∇2L(β, x) | X

)
−1

V ar (∇L(β, x) | X) E
(
∇2L(β, x) | X

)
−1

. (4)

In the following we approximate three terms appearing in (3) and (4). The expectation of

the kernel weighted local score function is

E (∇L(β, x) | X) =

n∑
i=1

E{ ℓ′ (g−1(xT
i,xβ), U1i, U2i) | X} [(g−1)′(xT

i,xβ)] xi,x Kh(Xi − x).

Since, for each i = 1, 2, . . . , n, we have (U1i, U2i) | Xi ∼ C(u1, u2 | g−1(η(Xi))), from the first

order Bartlett’s identity we have

0 = E{ ℓ′ (g−1(η(Xi)), U1i, U2i) | X} = E{ ℓ′ (g−1(xT
i,xβ + ri), U1i, U2i) | X},
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by a pth degree polynomial,

ri =
∞∑

j=p+1

βj(Xi − x)j = βp+1(Xi − x)p+1 + op{(Xi − x)p+1}.

If g−1 is continuous and twice differentiable, then

ℓ′ (g−1(η(Xi)), U1i, U2i) ≈ ℓ′ (g−1(xT
i,xβ), U1i, U2i) + [ ri (g−1)′(xT

i,xβ) ] ℓ′′ (g−1(xT
i,xβ), U1i, U2i),

and, after taking conditional expectations,

E{ℓ′ (g−1(xT
i,xβ), U1i, U2i) | X} ≈ − [ ri (g−1)′(xT

i,xβ) ] E{ ℓ′′ (g−1(xT
i,xβ), U1i, U2i) | X}.

Hence, we obtain

E (∇L(β, x) | X) ≈ −E{ ℓ′′ (g−1(η(x)), U1, U2) | x} [(g−1)′(η(x))]2 XT
x Wr,

where r = (r1, r2, . . . , rn)T .

Taking conditional expectation of the hessian matrix in (2) yields

E
(
∇2L(β, x) | X

)
≈ E

(
ℓ′′(g−1(η(x)), U1, U2) | x

)
[(g−1)′(η(x))]2 Sn.

The variance of the weighted local score function is

V ar (∇L(β, x) | X) ≈ [(g−1)′(η(x))]2 V ar{ ℓ′ (g−1(η(x)), U1, U2) | x} S∗

n.

The second order Bartlett’s identity implies

σ2(x) = −E
(
ℓ′′(g−1(η(x)), U1, U2) | x

)
= V ar{ ℓ′ (g−1(η(x)), U1, U2) | x}.

Hence, we obtain

E(β̂ | X) − β ≈ S−1
n XT

x W r,

V ar(β̂ | X) ≈
1

[(g−1)′(η(x))]2 σ2(x)
S−1

n S∗

nS−1
n .

The approximations Sn = nf(x)H S H {1 + op(1)} and S∗

n = nh−1f(x)HS∗H{1 + op(1)}

are outlined in Fan and Gijbels (1996). The entries of XT
x Wr can be written as
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kj =
n∑

i=1

ri(Xi − x)jKh(Xi − x)

=

n∑
i=1

{ ∞∑
m=p+1

βm(Xi − x)m
}

(Xi − x)jKh(Xi − x)

= βp+1 Sn,j+p+1 + op {nhj+p+1}.

Letting sn = (Sn,p+1, Sn,p+2, . . . , Sn,2p+1)
T , we obtain XT

x Wr = βp+1 sn + op {nhp+1}.

Hence, the bias and variance expressions become

E(β̂ | X) − β ≈ H−1S−1 sp βp+1 hp+1{1 + op(1)},

V ar(β̂ | X) ≈
1

nh f(x) [(g−1)′(η(x))]2 σ2(x)
H−1S−1 S∗ S−1H−1 {1 + op(1)}.

The result of Theorem 1 is obtained by considering the first entry in the above expressions.

Since

η̂(x) − η(x) = g(θ̂(x)) − g(θ(x)) ≈ g′(θ(x)) {θ̂(x) − θ(x)},

we reach the result of Corollary 1 by dividing the asymptotic bias and variance of the local

calibration estimator by g′(θ(x)) and [g′(θ(x))]2, respectively.

Web Appendix B: Simulations Study under the Frank Copula

This additional simulation study presents the results for the data {(U1i, U2i | Xi) : i =

1, 2, . . . , n} generated from the Frank copula under each of the following models:

(1) Linear calibration function : η(X) = 25 − 4.2 X

(U1, U2) | X ∼ C(u1, u2 | θ = 25 − 4.2 X ) where X ∼ Uniform(2, 5),

(2) Nonlinear calibration function: η(X) = 12 + 8 sin(0.4 X2)

(U1, U2) | X ∼ C(u1, u2 | θ = 12 + 8 sin(0.4 X2) ) where X ∼ Uniform(2, 5).

The true copula parameter varies from 4 to 16.6 in the linear calibration model, and

from 4 to 20 in the nonlinear one. Under each calibration model, we conduct M = 100

experiments with sample size n = 200. The local linear (p = 1) and parametric linear
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estimation are performed to estimate the copula parameter under the Clayton, Frank and

Gumbel copulas, and the results are converted to the Kendall’s tau scale. Web Table 1

summarizes the performance of the Kendall’s tau estimates in terms of integrated mean

square error, integrated square bias and integrated variance.

[Web Table 1 about here.]

We construct approximate 90% pointwise condence bands for the copula parameter under

the correctly selected Frank family, using half of the optimum bandwidth. Web Figure 1

displays the results in the Kendalls tau scale, averaged over 100 Monte Carlo samples. We

also present the Monte Carlo based condence bands obtained from 100 estimates of the

Kendalls tau.

[Web Figure 1 about here.]

Our copula selection method successfully identifies the Frank family 95% and 97% of the

times under the linear and nonlinear calibration model, respectively.

Web Appendix C: Framingham Heart Study

We analyze a subset of the Framingham Heart study to illustrate our proposed method-

ology. The data consist of 348 participants who had stroke incidence during the follow-up

study and the clinical data was collected on each participant during three examination

periods, approximately 6 years apart. Of interest is the dependence structure between the

log-pulse pressures of the first two examination periods, log(PP1) and log(PP2). It is known

that chronic malnutrition may occur after stroke, particularly in severe cases that result in

eating difficulties. Conversely, some patients may gain weight as a side effect of medication.

Therefore, as an indicator of health status, we consider the change in the body mass index

(∆BMI) as the covariate.

For the initial investigation, we categorize the change in BMI, and focus on the three
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extreme cases, namely quite stable (−0.2 6 ∆BMI 6 0.2), highly increased (∆BMI > 2)

and highly decreased (∆BMI < −2). From Web Figure 2, when there is a significant change in

BMI in either direction, the dependence between the pulse pressures seems weaker compared

to the case when BMI remains stable.

[Web Figure 2 about here.]

The scatterplot and histograms of the log-pulse pressures are given in Web Figure 3(a),

from which the marginals are seen to be well-modeled by linear regression models assuming

normal errors. We consider Uj = Φ((log(PPj) − µ̂j(∆ BMI))/σ̂j) to transform the response

variables to uniform scale, where µ̂j(∆ BMI)) are obtained from fitting linear models, σ̂j are

the estimated standard errors in the linear regression models and Φ is the c.d.f. of N(0, 1).

Web Figure 3(b) gives the scatterplot and histograms of the transformed random variables

Uj, j = 1, 2.

[Web Figure 3 about here.]

For comparison, the calibration function is estimated using both a parametric linear model

and the proposed nonparametric model with local linear (p = 1) specification under the

Clayton, Frank and Gumbel families. In the local linear estimation, the optimum bandwidths

are chosen as 9.47, 6.72, and 4.25, for the Clayton, Frank and Gumbel copulas, respectively.

We constructed approximate 90% confidence intervals under each family using half of these

bandwidth values. Web Figure 4 displays the results converted to the Kendall’s tau scale.

[Web Figure 4 about here.]

A natural interest in modeling the conditional dependence of log-pulse pressures at different

periods is to predict the latter from the previous measurement. Therefore, in copula selection,

we use the cross-validated prediction errors only for the second log-pulse pressure as the

selection criterion which chooses the Frank copula family. Since, at a given change in BMI,
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observing two high pulse pressures together or two low pulse pressures together would be

equally likely, our choice of Frank copula model seems practically sensible. The results

obtained using the nonparametric approach under the Frank copula indicates that the

dependence between two log-pulse pressures is stronger when BMI remains stable, as reflected

by a steady health status. However, the nonlinear pattern does not seem to be significant

as the parametric linear fit in fact falls within the approximate 90% pointwise confidence

bands, suggesting that the linear model may be already adequate.
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Web Figure 1. 90% confidence intervals for the Kendall’s tau under the Frank copula
with the linear (left panel) and quadratic (right panel) calibration models: truth (solid line),
averaged local linear estimates (dashed line), approximate confidence intervals (dotted line),
and Monte Carlo confidence intervals (dotdashed line)
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Web Figure 2. Scatterplots of the log-pulse pressures at different covariate ranges.
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Web Figure 4. The Kendalls tau estimates under three copula families: global linear
estimates (dot-dashed line), local linear estimates at the optimum bandwidth(long-dashed
line), and an approximate 90% pointwise condence bands (dotted lines).



12 Biometrics, 000 0000

Web Table 1

Integrated Squared Bias, Integrated Variance and Integrated Mean Square Error of the Kendall’s tau estimator
(multiplied by 100) and the averages of the selected bandwidths h

∗.

Linear Calibration Model

Parametric estimation Local estimation

IBIAS2 IVAR IMSE IBIAS2 IVAR IMSE h̄∗

Clayton 8.611 1.125 9.736 8.334 1.514 9.848 2.056

Frank 0.006 0.316 0.322 0.006 0.444 0.450 2.206

Gumbel 1.887 0.478 2.365 1.793 0.746 2.539 2.133

Nonlinear Calibration Model

Parametric estimation Local estimation

IBIAS2 IVAR IMSE IBIAS2 IVAR IMSE h̄∗

Clayton 18.192 3.470 21.662 10.593 2.833 13.426 0.822

Frank 6.162 0.673 6.835 0.127 1.280 1.407 0.468

Gumbel 9.597 1.183 10.780 3.504 2.067 5.571 0.569


