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SUMMARY

We extend the common linear functional regression model to the case where the dependency
of a scalar response on a functional predictor is of polynomial rather than linear nature. Focusing
on the quadratic case, we demonstrate the usefulness of the polynomial functional regression
model, which encompasses linear functional regression as a special case. Our approach works
under mild conditions for the case of densely spaced observations and also can be extended to the
important practical situation where the functional predictors are derived from sparse and irregular
measurements, as is the case in many longitudinal studies. A key observation is the equivalence of
the functional polynomial model with a regression model that is a polynomial of the same order
in the functional principal component scores of the predictor processes. Theoretical analysis as
well as practical implementations are based on this equivalence and on basis representations
of predictor processes. We also obtain an explicit representation of the regression surface
that defines quadratic functional regression and provide functional asymptotic results for an
increasing number of model components as the number of subjects in the study increases. The im-
provements that can be gained by adopting quadratic as compared to linear functional regression
are illustrated with a case study that includes absorption spectra as functional predictors.

Some key words: Absorption spectra; Asymptotics; Functional data analysis; Polynomial regression; Prediction;
Principal component.

1. INTRODUCTION

Data that include a functional predictor in the form of a smooth random trajectory are in-
creasingly common. Typical scenarios in which such data arise include frequently monitored
trajectories such as in movement tracking (Faraway, 1997) and longitudinal studies where the
trajectory is probed through noisy and often sparse and irregularly spaced measurements. Regres-
sion models that can handle functional predictors are therefore needed for a variety of settings and
applications, and many aspects of these functional regression relations remain open problems.
We consider here the case where a functional predictor is paired with a scalar response. Examples
of such situations include various biological trajectories with regular observations as predictors
(Kirkpatrick & Heckman, 1989) and are also commonly encountered in biodemographic appli-
cations (Müller & Zhang, 2005). In many longitudinal studies, measurements of longitudinal
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Fig. 1. The functional predictor trajectories, consisting of 100 chan-
nel spectra of log-transformed absorbances, for 50 randomly selected

meat specimens.

trajectories are recorded only intermittently and often at time-points that do not conform with a
regular grid (Müller, 2005).

As an example of a typical functional regression problem, consider the sample of trajectories
in Fig. 1. Displayed are 50 randomly selected 100-channel absorption spectra that are used to
predict the composition of food samples. The spectra shown are from meat specimens and the
goal is to predict fat contents. These spectra have been densely sampled at 100 support points and
are seen to be quite smooth. Taking advantage of the smoothness of these trajectories is key to the
efficient modelling of regression relationships that include functional predictors. The functional
nature of the predictors and the measurements need to be adequately reflected in the statistical
modelling of such data (Rice, 2004; Zhao et al., 2004).

In this paper, we consider both densely and sparsely sampled longitudinal predictor data. In
many longitudinal studies for which one wishes to apply functional regression, the predictor
process must be inferred from noisy and sparse measurements (James et al., 2000; Yao et al.,
2005b). For the most appropriate analysis of a given set of data with functional predictors, one
desires a variety of readily available models, from which the data analyst can choose the most
appropriate approach. The situation is analogous to the case of ordinary regression models
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the extension of the linear model to the case of a polynomial functional relationship, analogous
to the extension of linear regression to polynomial regression in traditional regression settings
and highlight the important special case of a quadratic regression.

To achieve the regularization that is necessary for any functional regression model, we project
predictor processes on a suitable basis of the underlying function space, which is then truncated
at a reasonable number of included components. We implement this regularization through the
eigenbasis of the predictor processes, which leads to parsimonious representations. A key finding
is that the functional polynomial regression model can be represented as a polynomial regression
model in the functional principal component scores of the predictor process. Accordingly, it is
convenient to implement the model as polynomial regression in the principal components of
predictor processes. The representation in terms of functional principal components makes it
possible to include both densely and sparsely observed predictor trajectories, allows for simple
numerical implementation, and enables us to obtain asymptotic consistency results within the
framework of a general measurement model.

2. FUNCTIONAL LINEAR AND POLYNOMIAL REGRESSION

2·1. From functional linear to quadratic regression

The functional regression models we consider include a functional predictor paired with a
scalar response. The predictor process is assumed to be square integrable and is defined on a
finite domainT , with mean function E{X (t)} = μX (t) and covariance function cov{X (s), X (t)} =
G(s, t) for s, t ∈ T . The covariance function G can be decomposed by means of the eigenvalues
and eigenfunctions of the autocovariance operator of X . Denoting eigenvalue/eigenfunction
pairs by {(λ1, φ1), (λ2, φ2), . . .}, ordered according to λ1 � λ2 � · · ·, one obtains G(s, t) =∑

k λkφk(s)φk(t). The well-established linear functional regression model with scalar response
(Ramsay & Dalzell, 1991) is given by

E(Y | X ) = μY +
∫
T

β(s)Xc(s) ds, (1)

where Xc(t) = X (t) − μX (t) denotes the centered predictor process. The regression parameter
function β is assumed to be smooth and square integrable.

To estimate the function β, some form of regularization is needed, for which we employ trun-
cated basis representations of predictor processes X . We choose the orthonormal eigenfunctions
of predictor processes X as the basis; alternative choices such as the wavelet basis may prove
convenient in some applications (Morris & Carroll, 2006). When selecting the eigenbasis, one
takes advantage of the equivalence between the predictor process and the countable sequence of
uncorrelated functional principal components. These scores are the random coefficients ξk in the
Karhunen–Loève representation

X (t) = μX (t) +
∑

k

ξkφk(t), t ∈ T , (2)

with ξk = ∫
Xc(t)φk(t) dt . They are uncorrelated with zero mean and var(ξk) = λk .

While the functional linear model in (1) has been well investigated and has proven useful
in many applications, it is desirable to develop a class of more general parametric functional
regression models for situations where the functional linear model is inadequate. If a functional
linear model does not provide an appropriate fit, a natural alternative is to move from a linear
to a quadratic functional regression model, similarly to the situation in ordinary regression. This
approach follows the classical strategy to embed an ill-fitting model into a larger class of models.
It is thus natural to consider a quadratic regression relationship when moving one step beyond the
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functional linear model, or on occasion a functional relation that involves a polynomial of order
higher than 2. The functional linear model is always included as a special case.

The quadratic functional regression relationship involves a square integrable univariate linear
parameter function β(t) and a square integrable bivariate quadratic parameter function γ (s, t),
and is given by

E(Y | X ) = α +
∫
T

β(t)Xc(t) dt +
∫
T

∫
T

γ (s, t)Xc(s)Xc(t) dsdt, (3)

where α is an intercept. The linear part is seen to be the same as that in model (1), while a quadratic
term has been added. This term reflects that beyond the effect that the ensemble of the values
of Xc(t), t ∈ T , has on the response, the products {Xc(s)Xc(t)}, s, t ∈ T , and in particular the
square terms {Xc(t)}2, t ∈ T , are included as additional predictors.

Since the eigenfunctions {φk}k=1,2,... of the process X form a complete basis, the regression
parameter functions in (3) can be represented using this basis,

β(t) =
∞∑

k=1

βkφk(t), γ (s, t) =
∞∑

k,�=1

γ̃k�φk(s)φ�(t), (4)

for suitable sequences (βk)k=1,2,... and (γ̃k�)k,�=1,2,... with
∑

k β2
k < ∞ and

∑
k,� γ̃ 2

k� < ∞. Sub-
stituting representations (2) and (4) for the components in the quadratic model (3) and applying
the orthonormality property of the eigenfunctions, one finds that the functional quadratic model
in (3) can be alternatively expressed as a function of the scores ξk of predictor processes X ,

E(Y | X ) = α +
∞∑

k=1

βkξk +
∞∑

k=1

k∑
�=1

γk�ξkξ�, (5)

where γk� = 2γ̃k� for k � � and γk� = γ̃k� for k = �. We also note that model (3) implies the con-
straint μY = E(Y ) = α +∑

k γkkλk , i.e. the intercept has the representation α = μY −∑
k γkkλk .

2·2. Functional polynomial regression

Considering the more general case of a polynomial regression, we define the pth-order (p � 3)
functional polynomial model in analogy to (3) as follows:

E(Y | X ) = α +
∫
T

β(t)Xc(t) dt +
∫
T 2

γ (s, t)Xc(s)Xc(t) dsdt

+
∫
T 3

γ3(t1, t2, t3)Xc(t1)Xc(t2)Xc(t3) dt1dt2dt3

+
∫
T p

γp(t1, . . . , tp)Xc(t1) . . . Xc(tp)dt1 . . . dtp,

where again α is the intercept and β, γ, γ j ( j = 3, . . . , p) are the linear, quadratic and j th-order
regression parameter functions, defining the effects of the corresponding interactions. Using the
same arguments as those leading to (5), this model can also be written in terms of the predictor
functional principal components,

E(Y | X ) = α +
∑
j1 � 1

β j1ξ j1 +
∑

j1 � j2

γ j1 j2ξ j1ξ j2 +
∑

j1 � j2 � j3

γ j1 j2 j3ξ j1ξ j2ξ j3

+ · · · +
∑

j1 � ···� jp

γ j1... jpξ j1 . . . ξ jp , (6)

where the terms in this representation are self-explanatory.
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Functional quadratic regression 53

The interpretation of these polynomial models is complex. The presence of a j th-order inter-
action term means that the joint values of the predictor process at j time-points have an effect on
the outcome, in addition to the joint effects of the process values at � time-points for all � < j . For
the quadratic model, the interaction effects at two time-points are added to the effects at a single
time-point. The interaction effects are perhaps easier to understand in terms of the functional
principal components as in version (6), where the interpretation is the same as for the conventional
polynomial regression model, which includes all possible interaction terms. The functional prin-
cipal components themselves are projections of the predictor process in the directions determined
by the eigenfunctions and accordingly are interpreted in terms of the shape of their correspond-
ing eigenfunctions, often as contrasts between positively and negatively weighted parts of the
predictor process (Castro et al., 1986; Jones & Rice, 1992; Izem & Kingsolver, 2005).

For the models that are expressed in terms of the functional principal components of the
forms (5), (6), one can easily introduce variations by omitting some of the interaction terms. For
example, a noteworthy variation of the functional quadratic model is

E(Y | X ) = α +
∑

k

βkξk +
∑

k

γkkξ
2
k . (7)

If expressed in the form of (3), model (7) imposes a restriction on the quadratic parameter function
γ (s, t), which in this case will be of diagonal form γ (s, t) = ∑

k γkkφk(s)φk(t). This version of
the functional quadratic regression model does not include interaction terms.

2·3. Explicit representations

The functional population normal equations provide solutions for functional regression models
under certain regularity conditions (He et al., 2000). The functional least-squares deviation,
expressed in terms of the parameters βk and γk� in representation (4), is given by

Q {(βk), (γk�), k, �� �
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fixed or random time-points Ti = (Ti1, . . . , Ti Ni )
T is subject-specific but nonrandom for dense

designs, and is a random variable for sparse designs, assumed to be independently and identically
distributed as N and independent of all other random variables. The measurement errors εi j

are assumed to be independent and identically distributed with E(εi j ) = 0, E(ε2
i j ) = σ 2, and

independent of the functional principal components ξik in (2), leading to the representation

Ui j = Xi (Ti j ) + εi j = μX (Ti j ) +
∞∑

k=1

ξikφk(Ti j ) + εi j , Ti j ∈ T . (10)

Estimates μ̂X , Ĝ, λ̂k, φ̂k and σ̂ 2 of the underlying population mean function μX , covariance
function G, eigenvalues λk , eigenfunctions φk and error variance σ 2 are easily obtained by
applying a nonparametric functional approach (Yao et al., 2005a), implemented in the PACE
package, available at http://www.stat.ucdavis.edu/∼mueller/; compare also Rice & Silverman
(1991).

A key step is estimation of the regression parameter functions β and γ , based on representations
(4) and (9). The cross-covariance surfaces

C1(t) = cov{X (t), Y } =
∞∑

k=1

ηkφk(t), t ∈ T ,

(11)

C2(s, t) = E{X (s)X (t)Y } =
∞∑

k,�=1

ρk�φk(s)φ�(t), s, t ∈ T ,

can be estimated by using raw covariances C (1)
i (Ti j ) = {Ui j − μ̂X (Ti j )}Yi , 1 � j � Ni , and

C (2)
i (Ti j , Til) = {Ui j − μ̂X (Ti j )}{Uil − μ̂X (Til)}Yi , 1 � j � l � Ni , as input for one- and two-

dimensional smoothing steps; see (A2) in the Appendix for further details. One needs to remove
the diagonal elements C (2)

i (Ti j , Ti j ) prior to this smoothing step in order not to contaminate the
estimates with the measurement error in Ui j , in analogy to the situation for autocovariance surface
estimation (Yao et al., 2005a). The resulting estimates are denoted by Ĉ1 and Ĉ2. The bandwidths
for the one- and two-dimensional smoothing steps needed to obtain Ĉ1 and Ĉ2 are chosen by
generalized crossvalidation, similarly to the choices implemented in PACE; in related studies,
the resulting estimation errors were found to be not overly sensitive to these choices; see, e.g.
Liu & Müller (2009).

From (11) one then obtains estimates of the quantities ηk and ρk� in (9), k, � = 1, . . . , K ,
where K is the number of eigenfunctions included for approximating the predictor process X ,

η̂k =
∫
T

Ĉ1(t)φ̂k(t)dt, ρ̂k� =
∫
T

∫
T

Ĉ2(s, t)φ̂k(s)φ̂�(t) dsdt (k, � = 1, . . . , K ), (12)

by observing that the relations in (12) hold for the corresponding population quantities. Using
Ȳ = n−1 ∑n

i=1 Yi and plugging in the estimates (12), one then obtains estimates of the regression
coefficients in (5):

α̂ = Ȳ −
K∑

k=1

γ̂kk λ̂k, β̂k = λ̂−1
k η̂k, γ̂k� = (λ̂k λ̂�)−1ρ̂k� (k, � = 1, . . . , K ). (13)

Regarding estimation of γkk , for dense designs, we use the moment estimates τ̂D,k =
n−1 ∑n

i=1 ξ̂ 4
I,ik for fourth moments τk , where ξ̂I,ik is based on the integral method (15).

Neither the proposed estimation schemes nor the consistency results require Gaussianity for
the dense design case. The situation is different for the sparse case, where the integration-based
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estimates ξ̂ I
I,ik , used for the estimation of γkk , are not consistent, due to the sparseness of the

design. This difficulty can be overcome by making the assumption that τk = 3λ2
k (k = 1, 2, . . .),

which then makes it possible to extend the above estimation scheme to the sparse case, yielding

γ̂D,kk = (ρ̂kk − Ȳ λ̂k)
/(

τ̂k − λ̂2
k

)
, γ̂S,kk = λ̂−2

k (ρ̂kk − Ȳ λ̂k)/2, (14)

where subscripts D and S denote dense and sparse designs. The resulting estimates for the
regression functions are

β̂(t) =
K∑

k=1

β̂k φ̂k(t), γ̂ (s, t) =
K∑

k=1

k∑
�=1

γ̂k�φ̂k(s)φ̂�(t), s, t ∈ T ,

where β̂k and γ̂k� are as in (13), and γ̂kk is as in (14).
In the sparse case, for the simpler functional linear model (1), Gaussianity or other re-

strictive assumptions are not needed for consistent estimation of the regression parameter
function β. However, in the quadratic case, sparse designs require the additional assumption
τk = 3λ2

k (k = 1, 2, . . .) for consistent estimation of the parameter τk ; this assumption is satisfied
under Gaussianity, which, however, is not required at this stage. For data-based choice of the
number of included components K , a variety of options is available, including crossvalidation or
a variant of the Bayesian information criterion; we adopt the latter; see (A3) in the Appendix.

3·2. Prediction

We next aim for the prediction of an unknown response Y ∗, based on noisy observations
U∗ = (U∗

1 , . . . , U∗
N∗)T of a new predictor trajectory X∗(·), taken at T ∗ = (T ∗

1 , . . . , T ∗
N∗)T. For the

dense design case, the traditional integral estimates of functional principal components ξ∗
k , based

on the definition ξ∗
k = ∫ {X∗(t) − μX (t)}φk(t) dt , are

ξ̂∗
I,k =

N∗∑
j=2

{U∗
j − μ̂X (T ∗

j )}φ̂k(T ∗
j )(T ∗

j − T ∗
j−1) (k = 1, . . . , K ). (15)

The interaction and quadratic terms, as needed for the functional quadratic model, are obtained
directly by ξ̂∗

I,k ξ̂
∗
I,� (k, � = 1, . . . , K ).

Considering the sparse design case, define ξ∗ = (ξ∗
1 , . . . , ξ∗

K )T, φ∗
k = {φk(T ∗

1 ), . . . , φk(T ∗
N∗)}T,

the K × N ∗ matrix H = (λ1φ
∗
1 , . . . , λK φ∗

K )T and � = diag{λ1, . . . , λK }. The best prediction of
the elements of the matrix ξ∗ξ∗T, given U∗, is the conditional expectation E(ξ∗ξ∗T | U∗), for
which estimates under Gaussian assumptions are given by( ˆξ∗

k ξ∗
�

)
P,1 � k,� � K = Ê(ξ∗ξ∗T | U∗) = ξ̂∗ξ̂∗T + �̂ − Ĥ�̂−1

U∗ Ĥ T. (16)

Here ξ̂∗ = (ξ̂∗
P,1, . . . , ξ̂

∗
P,K )T is a vector of estimates ξ̂∗

P,k as in (A1), obtained in a conditioning

step. The estimate �̂U∗ of �U∗ is obtained by substituting estimates Ĝ and σ̂ 2 for G and σ 2.
For both dense and sparse designs, the functional quadratic prediction of the response Y ∗ from

the measurements U∗ is then given by

Ŷ ∗ = α̂ +
K∑

k=1

β̂k ξ̂
∗
k +

K∑
k=1

k∑
�=1

γ̂k�
ˆξ∗

k ξ∗
� , (17)

where ξ̂∗
k , ˆξ∗

k ξ∗
� refer to ξ̂∗

I,k , ξ̂∗
I,k ξ̂

∗
I,� as in (15) for dense designs and to ξ̂∗

P,k (A1), ( ˆξ∗
k ξ∗

� )P (16)

for sparse designs, while α̂, β̂k and γ̂k� are obtained as in (13) and (14).
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In many applications a simple empirical measure to gauge the strength of the regression relation
is useful. One such measure that coincides with the usual coefficient of determination in a simple
linear regression, and in general provides a comparison of the prediction error when using a
simple sample mean of the responses for prediction with that using a proposed predictor is the
following quasi-R2:

R̂2
Q = 1 −

∑n
i=1(Yi − Ŷi )2∑n
i=1(Yi − Ȳ )2

, (18)

where the predicted response Ŷi for the i th subject is as in (17). This quasi-R2 does not automat-
ically increase when predictors are added to a model and permits straightforward interpretation
and model comparison. The estimation scheme we have outlined for functional quadratic regres-
i((

i

(i(i i

ii i i(2

ii i
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πk = 1/λk + 1/ min1 � j � k(λ j − λ j+1),

α̂ − α = Op

(
1

n1/2h2

K∑
k=1

πk

λ2
k

+ ID K

N̄ 1/2

)
+ op

⎧⎪⎨
⎪⎩
⎛
⎝ ∞∑

k=K+1

γ 2
kk

⎞
⎠

1/2
⎫⎪⎬
⎪⎭ , (20)

‖β̂ − β‖ = Op

(
1

n1/2h2

K∑
k=1

πk

λk
+ Rβ,K

)
, (21)

‖γ̂ − γ ‖T 2 = Op

⎛
⎝ 1

n1/2h2

∑
1 � � � k � K

πk + π�

λkλ�

+ ID K 2

N̄ 1/2
+ Rγ,K

⎞
⎠ . (22)

We next consider the consistency of the prediction of Y ∗ for a new subject or sampling
unit. For dense designs, the prediction given the data (U∗

1 , . . . , U∗
N∗) targets E(Y ∗ | X∗) as in

(5). For sparse designs, due to the sparsity of the available measurements U∗ for the predic-
tor trajectory X∗, the target of the prediction is conditional on these measurements and thus
becomes

Ỹ ∗ = E{E(Y ∗ | X∗) | U∗} = α +
∞∑

k=1

βk E(ξ∗
k | U∗) +

∑
1 � � � k � ∞

γk�E(ξ∗
k ξ∗

� | U∗). (23)

THEOREM 2. Let Ŷ ∗ be the prediction (17) for both dense and sparse designs, E(Y ∗ | X∗) as
in (5), and Ỹ ∗ as in (23).

(i) Under (A1)–(A3) for dense designs, as n → ∞,

Ŷ ∗ − E(Y ∗ | X∗) = Op

⎛
⎝ 1

n1/2h2

∑
1 � � � k � K

πk + π�

λkλ�

+ K 2

N ∗1/2

⎞
⎠+ op(Rβ,K + Rγ,K ). (24)

(ii) Under (A2) and (A4) for sparse designs, as n → ∞,

Ŷ ∗ − Ỹ ∗ = Op

⎛
⎝ 1

n1/2h2

∑
1 � � � k � K

πk + π�

λkλ�

⎞
⎠+ op(Rβ,K + Rγ,K ). (25)

This result establishes the consistency of the prediction of the response, given the data for a new
subject. Extensions to more general polynomial models are analogous.

5. SIMULATION STUDIES

We studied the Monte Carlo performance of the functional quadratic model (3) in com-
parison with the functional linear model (1) for both dense and sparse designs. Each of
the 400 simulation runs consisted of a sample of n = 100 predictor trajectories Xi , with mean
function μX (s) = s + sin (s) (0 � s � 10) and a covariance function derived from two eigenfunc-
tions, φ1(s) = −5−1/2 cos (πs/10) and φ2(s) = 5−1/2 sin (πs/10) (0 � s � 10). The correspond-
ing eigenvalues were chosen as λ1 = 4, λ2 = 1 and λk = 0 (k � 3), the measurement errors in
(10) as εi j∼N (0, 0·52). To study the effect of Gaussianity, which is of interest especially for
the sparse design case, we considered two settings: (i) ξik ∼ N (0, λk), a Gaussian case; (ii) ξik

are generated from the mixture of two normals, N {(λk/2)1/2, λk/2) with probability 1/2 and
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58 FANG YAO AND HANS-GEORG MÜLLER

Table 1. Monte Carlo estimates of the 25th, 50th and 75th percentiles of relative prediction error,
comparing predictions obtained by the functional quadratic model and functional linear model
for both dense and sparse designs, based on 400 Monte Carlo runs with sample size n = 100.
The underlying regression function is quadratic or linear, and the principal components of the

predictor process are generated from Gaussian or mixture distributions
Gaussian Mixture

Design True Fitted 25th 50th 75th 25th 50th 75th

FQM 0·037 0·201 1·403 0·033 0·166 0·950166 0∞tANL∞_∈ ∞ T{∝′.5 ′ Td∝(·)T|∝∝T∞_′ ∞ 4 5967.9 Tm∝(A′.∈78 ′ Td∝[(′37)-∈845(′)]TJ∝∝T∞_∈ ∞ T{∝′ Tc 4.844 ′ Td∝(·)T|∝∝T∞_∞′. T{∝-′.′′′∞ Tc ′.∈78 ′ Td∝[(4′∞)-3344(∞)]TJ∝∝T∞_∈ ∞ T{∝′ Tc 5.344 ′ Td∝(·)T|∝∝T∞_′ ∞ T{∝-′.3′′′∞ Tc ′.∈78 ′ Td∝(95′)T|∝-39.337 -′..′′′4∞.′87 66∞_′ ∞ T{∝′.′.)T|∝∝T∞_′ ∞∞_′∈ T{∝-′.′′′∞ Tc ′.∈78 ′ Td∝[(∞66)-∈845(′)]TJ∝∝T∞_∈ ∞ T{∝′ Tc 4.844 ′ Td∝(·)T|∝∝T∞_∞6∈ T{∝-′.′′′∞ Tc ′.∈78 ′ Td∝[(∞66)-3344(′)]TJ∝∝T∞_∈ ∞ T{∝′ Tc 5.344 ′ Td∝(·)T|∝∝T∞_86′ T{∝-′.′7′′∞ Tc ′.∈78 ′ Td∝(95′)T|∝-39.337 -′..′′′4∞.′87 66∞_′ ∞ T{∝′.′.
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Fig. 2. Smooth estimates of the predictor mean function (a) and first (solid), second (dashed), third (dashed-dot) and
fourth (dotted) eigenfunctions (b), as well as the values of the Bayesian information criterion (A3), plotted against

the number of included functional principal components (FPCs) (c).

The task is to predict fat contents from the spectrum, setting the stage for a functional regression
analysis.

A subsample of 50 randomly selected spectra is displayed in Fig. 1, indicating that these
predictor trajectories are smooth. The estimated mean function is in Fig. 2(a). Four eigenfunctions
are selected for modelling, explaining more than 99.8% of the total variation, and are visualized
in Fig. 2(b). The estimated univariate linear function β(t) and the bivariate quadratic surface
γ (s, t) in Fig. 3 each exhibit several broad peaks and valleys; especially spectral values near 40
units are strongly weighted. The quadratic response surface obtained from the fitted quadratic
regression model is presented in Fig. 4.

For prediction, one typically will choose additional components, guided by one-leave-out
prediction errors. We compare the prediction performance of the proposed functional quadratic
model with functional linear regression and also with partial least-squares, a popular approach in
chemometrics; we refer to Xu et al. (2007) and the references therein. The results for prediction
errors and quasi-R2 (18) in dependence on the number of included components in Table 2
demonstrate that for more than three components, as required for a reasonably good prediction,
the error of the functional quadratic model is consistently smaller than that for partial least-
squares, which in turn is smaller than that of functional linear regression.
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Table 2. Medians of crossvalidated relative prediction errors (×104) and of quasi-R2 (18)
(R2

Q × 100), for varying numbers of components, comparing the functional quadratic model,
the functional linear model and partial least-squares for spectral data

Components 1 2 3 4 5 6 7 8 9 10

PE 101 84·4 16·9 6·58 2·30 1·79 1·08 1·18 0·60 0·50
FQM

R2
Q 24·6 32·5 77·8 94·1 98·5 97·8 99·0 99·3 99·6 99·8

PE 81·3 64·7 35·0 11·9 5·31 5·72 5·05 5·57 4·75 5·58
FLM

R2
Q 22·3 27·9 70·2 90·1 93·8 94·1 94·4 94·4 94·5 94·5

PE 80·1 26·0 12·5 10·1 6·40 5·87 5·68 5·05 4·10 4·04
PLS

R2
Q 23·1 76·5 86·9 90·8 93·8 94·2 94·6 94·8 96·4 96·5

FQM, functional quadratic model; FLM, functional linear model; PLS, partial least-squares.

APPENDIX

A1. Estimation procedures

Using the notation introduced in § 3, the estimates of ξ ∗
k obtained by the principal analysis by conditional

expectation procedure (Yao et al., 2005a) are given by

ξ̂ ∗
P,k = λ̂k φ̂

∗T
k �̂−1

U ∗ (U ∗ − μ∗
X ) (k = 1, . . . , K ), (A1)

where μ∗
X = (μX (T ∗

1 ), . . . , μX (T ∗
m))T. It follows from results in Müller (2005) that, as designs become

dense, ξ̂ ∗
I,k (15) and ξ̂ ∗

P,k (A1) can be considered asymptotically equivalent. Smoothing kernels κ1, κ2 are
compactly supported smooth densities with zero means and finite variances and are implemented with
suitable bandwidth sequences b and h. With f {θ, (s, t), (Ti j , Til )} = θ0 + θ11(s − Ti j ) + θ12(t − Til), the
one- and two-dimensional smoothers to estimate C1(t) and C2(s, t) in (11) are obtained by minimizing

n∑
i=1

Ni∑
j=1

κ1

(
Ti j − t

b

){
C (1)

i (Ti j ) − α0 − α1(t − Ti j )
}2

,

n∑
i=1

∑
1 � j � l � Ni

κ2

(
Ti j − s

h
,

Til − t

h

)[
C (2)

i (Ti j , Til ) − f {θ, (s, t), (Ti j , Til )}
]2

, (A2)

with respect to α = (α0, α1)T and θ = (θ0, θ11, θ12)T, yielding Ĉ1(t) = α̂0(t) and Ĉ2(s, t) = θ̂0(s, t). The
number of included components is chosen by minimizing

BIC(K ) ∝
n∑

i=1

Ni∑
j=1

⎡
⎣− 1

2σ̂ 2

{
Ui j − μ̂(Ti j ) −

K∑
k=1

ξ̂ik φ̂k(Ti j )

}2
⎤
⎦+ K log

(
n∑

i=1

Ni

)
. (A3)

A2. Technical assumptions and proofs

For model (3) or (5) to be well defined in the least-squares sense, we require the following moment
conditions for predictor processes. Let ν1 and ν2 be positive integers.

(A1) Assume that
∑∞

k=1 Eξ 4
k < ∞, E(ξν1

k ξ
ν2
� ) = Eξ

ν1
k Eξ

ν2
� for ν1 + ν2 = 3 and 1 � k, � < ∞;

E(ξν1
k ξ

ν2
� ) = Eξ

ν1
k Eξ

ν2
� for ν1 + ν2 = 4 and 1 � k � � < ∞.

Let b∗ = b∗(n), h∗ = h∗(n), h̃ = h̃(n) denote the bandwidths for estimating μ̂X (24), Ĝ (25) and σ̂ (2) in
Yao et al. (2005a). The Fourier transforms of κ1 and κ2 are given by κF,1(u) = ∫

exp(−iut)κ1(t) dt and
κF,2(u, v) = ∫

exp{−(iut + ivs)}κ2(s, t) ds dt , respectively.

(A2·1) Assume that max(b∗, h∗, h̃, b, h) → 0, min(nb∗4, nh̃4, nb4) → ∞, max(nb∗6, nh̃6, nb6) < ∞,
min(nh∗6, nh6) → ∞, max(nh∗8, nh8) < ∞, as n → ∞ and h = O{min(b1/2, b∗,1/2

1 , h̃1/2, h∗)}.
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(A2·2) Assume that κF,1 and κF,2 are absolutely integrable,
∫ |κF,1(u)|du < ∞,

∫ ∫ |κF,2(u, v)|dudv <∞.

(A2·3) Assume that n−1/2h−2
∑K̃

k=1

∑k
�=1(πk + π�)(λkλ�)−1 → 0, as n → ∞, where

DX = ∫
T 2{Ĝ(s, t) − G(s, t)}2dsdt, δk = min1 � j � k(λ j − λ j+1),

K̃ = inf{ j � 1 : λ j − λ j+1 � 2DX } − 1, πk = 1/λk + 1/δk .
(A4)

To obtain consistent functional principal component estimates for dense designs, we require both the
pooled data across all subjects and the data from each subject to be dense inT . Denote the sorted time-points
across all subjects by a0 � T(1) � · · · � T(Ñ ) � b0, and let � = max{T(m) − T(m−1) : m = 1, . . . , Ñ + 1},
where Ñ = ∑n

i=1 Ni , T = [a0, b0], t(0) = a0 and t(N+1) = b0. For the i th subject, suppose that the
time-points Ti j have been ordered nondecreasingly. Let �i = max{Ti j − Ti, j−1 : j = 1, . . . , Ni + 1} and
�∗ = max{�i : i = 1, . . . , n}, where ti0 = a0 and ti,ni +1 = b0, and N̄ = Ñ/n. Put Nmax = max{Ni : i =
1, . . . , n} and Nmin = min{Ni : i = 1, . . . , n}. Denote the distribution that generates Ui j for the i th sub-
ject at Ti j by Ui (t)∼U (t) with density gU (u; t). Let g∗

U (u1, u2; t1, t2) be the density of (U (s1), U (t2)) and
‖ f ‖∞ = supt∈T | f (t)| for any function with support T . The next assumptions are for the case of dense
designs, where (A3.3) is needed for consistent estimation of τ = E(ξ 4

k ) and (A3.4) for consistency of the
prediction.

(A3·1) Assume that � = O{min(n−1/2b∗−1, n−1/2h̃−1, n−1/2b−1, n−1/4h∗−1, n−1/4h−1)}, �∗ = O(1/N̄ ),
C1 N̄ � Nmin � Nmax � C2 N̄ for some C1, C2 > 0 and supt∈T E{U 4(t)} < ∞.

(A3·2) Assume that (d2/dt2)gU (u; t) is uniformly continuous on � × T and that {d2/(dt�1
1 dt�2

2 )}
g∗

U (u1, u2; t1, t2) is uniformly continuous on �2 × T 2, for �1 + �2 = 2, 0 � �1, �2 � 2.
(A3·3) Assume that K̃ 2 = o(N̄ 1/2), maxk � K̃ ‖φ′

k‖∞ = O(N̄ 1/2), E(‖X ′‖∞) < ∞ and E(‖X ′2‖2
∞) =

o(N̄ ), where K̃ is as in (A4).
(A3·4) Assume that K̃ 2 = o(N ∗1/2) and maxk � K̃ ‖φ′

k‖∞ = O(N ∗1/2).

For sparse designs, denote the marginal and joint densities of T , (T, U ) and (T1, T2, U1, U2) by gT (t),
gU (t ; u), g∗

U (t1, t2; u1, u2). The following assumptions are only needed for sparse designs; (A4·1) and
(A4·2) guarantee basic regularity and smoothness requirements, while the Gaussian assumption (A4·3) is
needed for consistency of predictions., U

T, U
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and as a consequence, σ̂ 2 − σ 2 = Op(n−1/2h∗−2 + n−1/2h̃−1). Considering eigenvalues λk of multiplicity
one, φ̂k can be chosen such that

pr

(
sup

1 � k � K̃

|λ̂k − λk | � DX

)
= 1, sup

t∈T
|φ̂k(t) − φk(t)| = Op

(
πk

n1/2h∗2

)
(k = 1, . . . , K̃ ).

LEMMA A2. Under (A1), (A2), (A3·1)–(A3·3) for dense designs or under (A1), (A2), (A4·1) and
(A4·2) for sparse designs, it holds for any K � K̃ that

β̂k − βk = Op

(
πk

n1/2h2λk

)
, γ̂k� − γk� = Op

(
πk + π�

n1/2h2λkλ�

)
(k, � = 1, . . . , K ), (A5)

γ̂D,kk − γkk = Op

(
πk

n1/2h2λ2
k

+ 1

N̄ 1/2

)
, γ̂S,kk − γkk = Op

(
πk

n1/2h2λ2
k

)
(k = 1, . . . , K ), (A6)

where β̂k , γ̂k� are as in (13) for � < k, and γ̂D,kk , γ̂S,kk are as in (14).

Proof of Lemma A2. It is easy to show the rate for β̂k , by observing that λ−1
k < πk from (A4) and

η̂k − ηk = Op(πkn−1/2h−2), λ̂−1
k − λ−1

k = Op(n−1/2h∗−2λ−2
k ) from Lemma A1. Regarding γ̂k� for k >

�, note that ρ̂k� − ρk� = Op{(φk + π�)n−1/2h−2} and (λ̂k λ̂�)−1 − (λkλ�) = Op{n−1/2h∗−2� 1
2 �1�

(λp ©‖)−1})92387(from)-387(Lemma)]TJ
0 0 1 r5
/T1_2 1 Tf 6.493 0 Tj
/T1_1 1 T2661 6004 Tc 0.848393(a.)-38inhat ˆh−1
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