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Abstract

The estimation of a regression function by kernel method for longitudinal or functional data is considered.
In the context of longitudinal data analysis, a random function typically represents a subject that is often
observed at a small number of time points, while in the studies of functional data the random realization is
usually measured on a dense grid. However, essentially the same methods can be applied to both sampling
plans, as well as in a number of settings lying between them. In this paper general results are derived for the
asymptotic distributions of real-valued functions with arguments which are functionals formed by weighted
averages of longitudinal or functional data. Asymptotic distributions for the estimators of the mean and
covariance functions obtained from noisy observations with the presence of within-subject correlation are
studied.These asymptotic normality results are comparable to those standard rates obtained from independent
data, which is illustrated in a simulation study. Besides, this paper discusses the conditions associated
with sampling plans, which are required for the validity of local properties of kernel-based estimators for
longitudinal or functional data.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Modern technology and advanced computing environments have facilitated the collection and
analysis of high-dimensional data, or data that are repeatedly measured for a sample of subjects.
The repeatedmeasurements are often recorded over a period of time, say on an closed and bounded
interval T . It also could be a spacial variable, such as in image or geoscience applications.
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When the data are recorded densely over time, often bymachine, they are typically termed func-
tional or curve data with one observed curve or function per subject, while in longitudinal studies
the repeatedmeasurements usually take place on a few scattered observational time points for each
subject.A significant intrinsic difference between two settings lies in the perception that functional
data are observed in the continuum without noise [2,3], whereas longitudinal data are observed at
sparsely distributed time points and are often subject to experimental error [4]. However, in prac-
tice functional data are analyzed after smoothing noisy observations [10], which indicates that the
differences between two data types related to the way inwhich a problem is perceived are arguably
more conceptual than actual. Therefore in this paper, kernel-based regression estimators obtained
from observations at discrete time points contaminated with measurement errors, rather than
observations in the continuum, are considered for these realistic reasons. In the context of kernel-
based nonparametric regression, the effects of sampling plans on the statistical estimators are also
investigated.
A vast literature has been developed in the past decade on the kernel-based regression for

independent and identically distributed data, for summary, see Fan and Gijbels [5]. There has
been substantial recent interest in extending the existing asymptotic results to functional or lon-
gitudinal data [8,11,14,13,9]. The issues caused by the within-subject correlation are rigorously
addressed in this paper. Hart and Wehrly [8] studied the Gasser–Müller estimator of the mean
function for repeated measurements observed on a regular grid by assuming stationary correla-
tion structure, and showed that the influence of the within-subject correlation on the asymptotic
variance is of smaller order compared to the standard rate obtained from independent data and
will disappear when the correlation function is differentiable at zero. Our asymptotic distribution
result is in fact consistent with that in Hart and Wehrly [8] and applicable for general covari-
ance structure without stationary assumption. This problem was also discussed by Staniswalis
and Lee [12] and Lin and Carroll [9], where they used the heuristic arguments of the local
property of local polynomial estimation and intuitively ignored the within-subject correlation
while deriving the asymptotic variances. This paper derives appropriate conditions that are re-
quired for the validity of the local property of kernel type estimators obtained from longitudi-
nal or functional data. These conditions also provide practical guidelines for various sampling
procedures.
The contribution of this paper is the derivation of general asymptotic distribution results in

both one-dimensional and two-dimensional smoothing context for real-valued functions with ar-
guments which are functionals formed by weighted averages of longitudinal or functional data.
These asymptotic normality results are comparable to those obtained for identically distributed
and independent data. These results are applied to the kernel-based estimators of the mean and
covariance functions, which yields asymptotic normal distributions of these estimators. In partic-
ular, to the best of our knowledge, no asymptotic distribution results are available up to date for
nonparametric estimation of covariance functions obtained from longitudinal or functional data
contaminated with measurement error. By comparison, Hall et al. [6,7] investigated asymptotic
properties of nonparametric kernel estimators of autocovariance, where the measurements were
only observed from a single stationary stochastic process or random field. Although the asymp-
totic distributions are derived for random design in this paper, the arguments can be extended
to fixed design and other sampling plans with appropriate modifications, and asymptotic bias
and variance terms can also be obtained in similar manner. This will provide theoretical basis and
practical guidance for the nonparametric analysis of functional or longitudinal data with important
potential applications which are based on the asymptotic distributions. Typical examples include
the construction of asymptotic confidence bands for regression functions and confidence regions
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for covariance surfaces, and also fast selection of bandwidth for covariance surface estimation
based on asymptotic mean squared error. Other applications in the context of smoothing indepen-
dent data can be explored for the smoothing of longitudinal or functional data using kernel-based
estimators.
The remainder of the paper is organized as follow. In Section 2we derive the general asymptotic

distributions of one- and two-dimensional smoothers obtained from longitudinal or functional data
for random design. These general asymptotic results are applied to commonly used kernel-type
estimators of the mean curve and covariance surface in Section 3. Extension to fixed design is
discussed in Section 4. A simulation study is presented to evaluate the derived asymptotic results
for correlated data in Section 5, while discussions, including potential applications of the resulting
asymptotic normality, are offered in Section 6.

2. General results of asymptotic distributions for random design

In this section we will define general functionals that are kernel-weighted averages of the
data for one-dimensional and two-dimensional smoothing. The introduced general functionals
include the most commonly used types of kernel-based estimators as special cases, such as
Gasser–Müller estimator, Nadaraya–Waston estimator, local polynomial estimator, etc. Since
Nadaraya–Waston and local polynomial estimators are mostly used in practice, their
asymptotic behaviors in terms of bias and variance for independent data have been thoroughly
studied in existing literature. However, for longitudinal or functional data, particularly in re-
gard to covariance surface estimators, the asymptotic behaviors of bias and variance of these
two commonly used estimators are still largely unknown. Therefore in Section 3, the gen-
eral asymptotic results developed in this section are applied to Nadaraya–Waston and local
polynomial estimators in both one-dimensional and two-dimensional smoothing settings. In
particular, the lack of asymptotic results for the covariance surface estimators of longitudi-
nal or functional data is an additional motivation for the definition of the two-dimensional
general functional that can be applied to develop the asymptotic distributions for these
estimators.
We first consider random design while extension to other sampling plans is deferred to Section

4. In classical longitudinal studies, measurements are often intended to be on a regular time grid.
However, since individuals may miss scheduled visits, the resulting data usually become sparse,
where only few observations are obtained for most subjects, with unequal numbers of repeated
measurements per subject and different measurement times Tij per individual. This sampling
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variance �2,

Yij = Xi(Tij ) + �ij = �(Tij ) +
∞∑

k=1

�ik�k(Tij ) + �ij , Tij ∈ T , (1)

where E�ij = 0, var(�ij ) = �2, and the number of observations, Ni(n) depending on the sample
size n, are considered random. We make the following assumptions,
(A1.1) The number of observationsNi(n)made for the ith subject or cluster, i = 1, . . . , n, is a r.v.

with Ni(n)
i.i.d∼ N(n), where N(n) > 0 is a positive integer-valued random variable with

lim supn→∞ EN(n)2/[EN(n)]2 < ∞ and lim supn→∞ EN(n)4/EN(n)EN(n)3 < ∞.

In the sequel the dependence ofNi(n) andN(n) on the sample size n is suppressed for simplicity;
i.e., Ni = Ni(n) and N(n) = N . The observation times and measurements are assumed to be
independent of the number of measurements, i.e., for any subset Ji ⊆ {1, . . . , Ni} and for all
i = 1, . . . , n,

(A1.2) ({Tij : j ∈ Ji}, {Yij : j ∈ Ji}) is independent of Ni .
Writing Ti = (Ti1, . . . , TiNi

)T and Yi = (Yi1, . . . , YiNi
)T , it is easy to see that the triples

{Ti , Yi , Ni} are i.i.d..
2.1. Asymptotic normality of one-dimensional smoother

To assume appropriate regularity conditions that are used to derive asymptotic properties, we
define a new type of continuity that differs from those which are commonly used. We say that
a real function f (x, y) : �p+q → � is continuous on x ∈ A ⊆ �p uniformly in y ∈ �q ,
provided that for any x ∈ A and � > 0, there exists a neighborhood of x not depending on y,
saying U(x) ⊆ �p, such that |f (x′, y) − f (x, y)| < � for all x′ ∈ U(x) and y ∈ �q .

For random design, (Tij , Yij ) are assumed to have the identical distribution as (T , Y )with joint
density g(t, y). Assume that the observation times Tij are i.i.d. with the marginal density f (t),
but dependence is allowed among Yij and Yik that are observations made for the same subject or
cluster. Also denote the joint density of (Tj , Tk, Yj , Yk) by g2(t1, t2, y1, y2), where j �= k. Let
�, k be given integers, with 0�� < k. We assume regularity conditions for the marginal and joint
densities, f (t), g(t, y), g2(t1, t2, y1, y2) and the mean function of the underlying process X(t),
i.e.,E[X(t)] = �(t), with respect to a neighborhood of a interior point t ∈ T , assuming that there
exists a neighborhood U(t) of t such that:

(B1.1) dk

duk f (u) exists and is continuous on u ∈ U(t), and f (u) > 0 for u ∈ U(t);

(B1.2) g(u, y) is continuous on u ∈ U(t) uniformly in y ∈ �; dk

duk g(u, y) exists and is continuous
on u ∈ U(t) uniformly in y ∈ �;

(B1.3) g2(u, v, y1, y2) is continuous on (u, v) ∈ U(t)2 uniformly in (y1, y2) ∈ �2;

(B1.4) dk

duk �(u) exists and is continuous on u ∈ U(t).

Let K1(·) be nonnegative univariate kernel functions in one-dimensional smoothing. The as-
sumptions for kernels K1 : � → � are as follows. We say that a univariate kernel function K1 is
of order (�, k), if∫

u�K1(u) du =
⎧⎨⎩
0, 0�� < k, � �= �,
(−1)��!, � = �,
�= 0, � = k,

(2)
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(B2.1) K1 is compactly supported, ‖K1‖2 = ∫
K2

1 (u) du < ∞;
(B2.2) K1 is a kernel function of order (�, �).

Let b = b(n) be a sequences of bandwidths that are used in one-dimensional smoothing. We
develop asymptotics as n → ∞, and require
(B3) b → 0, n(EN)b�+1 → ∞, b(EN) → 0, and n(EN)b2k+1 → d2 for some d with

0�d < ∞.
One could see in the proof of Theorem 1 that the assumptions (B3) combined with (A1.1) provide
the condition such that the local property of kernel-type estimators holds for longitudinal or
functional data with the presence of within-subject correlation.
Let {��}�=1,...,l be a collection of real functions �� : �2 → �, which satisfy:

(B4.1) ��(t, y) are continuous on {t} uniformly in y ∈ �;

(B4.2) dk

dtk
��(t, y) exists for all arguments (t, y) and are continuous on {t} uniformly in y ∈ �.

Then we define the general weighted averages

��n = 1

nENb�+1

n∑
i=1

Ni∑
j=1

��(Tij , Yij )K1

(
t − Tij

b

)
, � = 1, . . . , l.

and

�� = ��(t) = d�

dt�

∫
��(t, y)g(t, y) dy, � = 1, . . . , l.

Let

�	� = �	�(t) =
∫

�	(t, y)��(t, y)g(t, y) dy‖K1‖2, 1��, 	� l,

and H : �l → � be a function with continuous first order derivatives. We denote the gradient
vector ((�H/�x1)(v), . . . , (�H/�xl)(v))T by DH(v) and N̄ = ∑n

i=1 Ni/n.

Theorem 1. If the assumptions (A1.1), (A1.2) and (B1.1)–(B4.2) hold, then√
nN̄b2�+1[H(�1n, . . . ,�ln) − H(�1, . . . , �l )] D−→ N (
, [DH(�1, . . . , �l )]T
�[DH(�1, . . . , �l )]), (3)

where


 = (−1)kd

k!
∫

ukK1(u) du

l∑
�=1

�H

���
{(�1, . . . , �l )

T } dk−�

dtk−� ��(t), � = (�	�)1�	,�� l .

Proof. It is seen that N̄ can be replaced with EN by Slutsky Theorem under (A1.1).We now show
that √

n(EN)b2�+1[H(E�1n, . . . , E�ln) − H(�1, . . . , �l )] −→ 
. (4)
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Since (A1.1) and (A1.2) hold, and K1 is of order (�, k), using Taylor expansion to order k, one
obtains

E��n = 1

nb�+1E

⎧⎨⎩
n∑

i=1

1

EN

Ni∑
j=1

��(Tij , Yij )K1

(
t − Tij

b

)⎫⎬⎭
= 1

b�+1EN
E

⎧⎨⎩
N∑

j=1

E

[
��(Tj , Yj )K1

(
t − Tj

b

)∣∣∣∣N]
⎫⎬⎭

= 1

b�+1E

{
��(T , Y )K1

(
t − T

b

)}

= �� + (−1)k

k!
∫

ukK1(u) du
dk−�

dtk−� ��(t)b
k−� + o(bk−�). (5)

Then (4) follows from an l-dimensional Taylor expansion of H of order 1 around (�1, . . . , �l )
T ,

coupled with (5). If we can show√
n(EN)b2�+1[(�1n, . . . ,�ln)

T − (E�, . . . , E�ln)
T ] D−→ N (0, �), (6)

in analogy to Bhattacharya and Müller [1], and continuity of DH at (�1, . . . , �l )
T and apply-

ing similar arguments used in (5), we find DH(E�1n, . . . , E�ln) → DH(�1, . . . , �l ). Then
Carmér–Wold device yields√

n(EN)b2�+1[H(�1n, . . . ,�ln) − H(E�, . . . , E�ln)] D−→ N (0, DH(�1, . . . , �l )
T

�DH(�1, . . . , �l )), (7)

combined with (4), leading to (3).
It remains to show (6). Observing (A1.1) and (A1.2), one has

n(EN)b2�+1cov(��n, �	n)

= 1

b
E

⎧⎨⎩ 1

EN

⎡⎣ N∑
j=1

��(Tj , Yj )K1

(
t − Tj

b

)⎤⎦[ N∑
k=1

�	(Tk, Yk)K1

(
t − Tk

b

)]⎫⎬⎭
−EN

b
E

⎡⎣ 1

EN

N∑
j=1

��(Tj , Yj )K1

(
t − Tj

b

)⎤⎦

×E

[
1

EN

N∑
k=1

�	(Tk, Yk)K1

(
t − Tk

b

)]

≡ I1 − I2.
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It is obvious that I2 = O(b) = o(1) from the derivation of (5). For I1, it can be written as

I1 = 1

b
E

⎡⎣ 1

EN

N∑
j=1

��(Tj , Yj )�	(Tj , Yj )K
2
1

(
t − Tj

b

)⎤⎦

+1

b
E

⎡⎣ 1

EN

∑
1� j �=k �N

��(Tj , Yj )�	(Tk, Yk)K1

(
t − Tj

b

)
K1

(
t − Yk

b

)⎤⎦
≡ Q1 + Q2.

Applying (A1.1) and (A1.2), one has

Q1 = 1

b
E

⎧⎨⎩ 1

EN

N∑
j=1

E

[
��(Tj , Yj )�	(Tj , Yj )K

2
1

(
t − Tj

b

)∣∣∣∣N]
⎫⎬⎭

= 1

b
E

[
��(T , Y )�	(T , Y )K2

1

(
t − Y

b

)]
= ��	 + o(1).

Then (4) will hold, observing (A1.1) and the following argument that guarantees the local property
of the kernel-based estimators with the presence of within-subject correlation in longitudinal or
functional data,

Q2 = 1

bEN
E

⎧⎨⎩
N∑

1� j �=k �N

E

[
��(Tj , Yj )�	(Tk, Yk)K1

(
t − Tj

b

)
K1

(
t − Tk

b

)∣∣∣∣N]
⎫⎬⎭

= EN(N − 1)

bEN
E

[
��(T1, Y1)�	(T2, Y2)K1

(
t − T1

b

)]
K1

(
t − T2

b

)
= bEN(N − 1)

EN

∫
�4

��(t − ub, y1)�	(t − vb, y2)K1(u)K2(v)

×g2(t − ub, t − vb, y1, y2) du dv dy1 dy2

= bEN(N − 1)

EN

∫
�2

��(t, y1)�	(t, y2)g2(t, t, y1, y2) dy1 dy2 + o(b) = o(1),

i.e., the within-subject correlation can be ignored while deriving the asymptotic variance. �

2.2. Asymptotic normality of two-dimensional smoother

The general asymptotic result can be extended to two-dimensional smoothing. Let (�, k) de-
note the multi-indices � = (�1, �2) and k = (k1, k2), where |�| = �1 + �2 and |k| = k1 + k2.
In two-dimensional smoothing, more regularity assumptions are needed for joint densities. Let
f2(s, t) be the joint density of (Tj , Tk), and g4(s, t, s

′, t ′, y1, y2, y′
1, y

′
2) the joint density of

(Tj , Tk, Tj ′ , Tk′ , Yj , Yk, Yj ′ , Yk′) where j �= k, (j, k) �= (j ′, k′). Denote the covariance sur-
face by C(s, t) = cov(X(Tj ), X(Tk)|Tj = s, Tk = t). The following regularity conditions are
assumed, where U(s, t) is some neighborhood of {(s, t)},
(C1.1) d |k|

duk1 dvk2
f2(u, v) exists and is continuous on (u, v) ∈ U(s, t), and f2(u, v) > 0 for

(u, v) ∈ U(s, t);
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(C1.2) g2(u, v, y1, y2) is continuous on (u, v) ∈ U(s, t) uniformly in (y1, y2) ∈ �2; d |k|
duk1 dvk2

g2(u, v, y1, y2) exits and is continuous on (u, v) ∈ U(s, t) uniformly in (y1, y2) ∈ �2;

(C1.3) g4(u, v, u′, v′, y1, y2, y′
1, y

′
2) is continuous on (u, v, u′, v′) ∈ U(s, t)2 uniformly in

(y1, y2, y
′
1, y

′
2) ∈ �4;

(C1.4) d |k|
duk1 dvk2

C(u, v) exists and is continuous on (u, v) ∈ U(s, t).

Let K2 be nonnegative bivariate kernel functions used in the two-dimensional smoothing. The
assumptions for kernels K2 are as follows,

(C2.1) K2 is compacted supported with ‖K2‖2 = ∫
�2 K2

2 (u, v) du dv < ∞, and is symmetric
with respect to coordinates u and v.

(C2.2) K2 is a kernel function of order (|�|, |k|), i.e.,

∑
�1+�2=|l|

∫
�2

u�1v�2K2(u, v) du dv =

⎧⎪⎪⎨⎪⎪⎩
0, 0� |l| < |k|, |l| �= |�|,
(−1)|�||�|!, |l| = |�|,
�= 0, |l| = |k|.

(8)

Let h = h(n) be a sequence of bandwidths used in two-dimensional smoothing, while it
is possible that the bandwidths used for two arguments may be different. Since we will focus
on the estimator of the covariance surface that is symmetric about the diagonal, it is sufficient to
consider the identical bandwidths for the two arguments. The asymptotics is developed as n → ∞
as follows:

(C3) h → 0, nEN2h|�|+2 → ∞, hEN3 → 0, and nE[N(N − 1)]h2|k|+2 → e2 for some
0�e < ∞.

Similar to the one-dimensional smoothing case, assumptions (C3) and (A1.1) guarantee the local
property of the bivariate kernel-based estimators with the presence of within-subject correlation.
Let {��}�=1,...,l be a collection of real functions �� : �4 → �, � = 1, . . . , l, satisfying

(C4.1) ��(s, t, y1, y2) are continuous on {(s, t)} uniformly in (y1, y2) ∈ �2;

(C4.2) d |k|
dsk1dtk2

��(s, t, y1, y2) exit for all arguments (s, t, y1, y2) and are continuous on {(s, t)}
uniformly in (y1, y2) ∈ �2.

Then the general weighted averages of two-dimensional smoothing are defined by, for 1��� l,

��n = ��n(t, s) = 1

nE[N(N − 1)]h|�|+2

n∑
i=1

∑
1� j �=k �Ni

��(Tij , Tik, Yij , Yik)

×K2

(
s − Tij

h
,
t − Tik

h

)
.

Let

m� = m�(s, t) =
∑

�1+�2=|�|

d |�|

ds�1 dt�2

∫
�2

��(s, t, y1, y2)g2(s, t, y1, y2) dy1 dy2, 1��� l,
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and

�	� = �	�(s, t) =
∫

�2
�	(s, t, y1, y2)��(s, t, y1, y2)g2(s, t, y1, y2)dy1dy2‖K2‖2,

1�	, �� l,

and H : �l → � is a function with continuous first order derivatives as previously defined.

Theorem 2. If assumptions (A1.1), (A1.2) and (C1.1)–(C4.2) hold, then√
nN̄(N̄ − 1)h2|�|+2[H(�1n, . . . ,�ln) − H(m1, . . . , ml)]

D−→ N (�, [DH(m1, . . . , ml)]T �[DH(m1, . . . , ml)]), (9)

where

� = (−1)|k|e
|k|!

l∑
�=1

⎧⎨⎩ ∑
k1+k2=|k|

∫
�2

uk1vk2K2(u, v) du dv
d |k|

dsk1 dtk2

×
∫

�2
��(s, t, y1, y2)g2(s, t, y1, y2) dy1 dy2

⎫⎬⎭
×
{

�H

�m�
(m1, . . . , ml)

T

}
,

� = (�	�)1�	� l .

The proof of Theorem 2 essentially follows that of Theorem 1 with appropriate modifications
which are required for two-dimensional smoothing.

3. Applications to nonparametric regression estimators for functional or longitudinal
data

Although various versions of kernel-based estimators have been introduced in literature,
Nadaraya–Waston and local polynomial, especially local linear estimators, are the most com-
monly used non-parametric smoothing techniques in longitudinal or functional data analysis.
Due to within-subject correlation, the asymptotic behavior in terms of bias and variance of these
estimators for noisily observed longitudinal or functional data has yet been as well understood
as for i.i.d. data. Especially, asymptotic results for covariance estimators do not exist. Therefore
in this section, we apply the asymptotic results developed for general functionals to Nadaraya–
Waston and local linear estimators of regression function and covariance surface to obtain their
asymptotic distributions.

3.1. Asymptotic distributions of mean estimators

We apply Theorem 1 to the local asymptotic distributions of the commonly used Nadaraya–
Waston kernel estimator �̂N(t) and local linear estimator �̂L(t) for functional/longitudinal
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data:

�̂N(t) =
⎡⎣ n∑

i=1

Ni∑
j=1

K1

(
t − Tij

b

)
Yij

⎤⎦/⎡⎣ n∑
i=1

Ni∑
j=1

K1

(
t − Tij

b

)⎤⎦ , (10)

�̂L(t) = ̂0(t) =argmin
(0, 1)

⎧⎨⎩
n∑

i=1

Ni∑
j=1

K1

(
t − Tij

b

)
[Yij − (0 + 1(Tij − t))]2

⎫⎬⎭ . (11)

Corollary 1. If assumptions (A1.1), (A1.2), and (B1.1)–(B3) hold with � = 0 and k = 2, then√
nN̄b[�̂N(t)−�(t)] D−→ N

(
d

2

�(2)(t)f (t)+2�(1)(t)f (1)(t)

f (t)
�2K1

,
var(Y |T =t)‖K1‖2

f (t)

)
,

(12)

where d is as in (B3), �2K1
= ∫

u2K1(u) du TJ
/F2 1 6/F5295Tj
/ -0.9121 TD/F1 1 Tf
5.9776 0 0 5.9776]TJ.1 T3F5 5
4
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(1)Tj
/F6 1 Tf
9.9626 0 026
0.962Tf
0.8187 -0.8055 TD
.9776]TJ.1 T3F5 5
4
/F5 1  4719701 5.8099 433.6736 Tm
(1)Tj
/F6 1 Tf
9.9626 0 0 9.9626 151.6061 429.9842 Tm
(=)T37 0 TD
(TJ
/F2 1 6/F5295Tj
/ -0.9472.87 
/F10 1815 472.256-Tj
/8 4F1 1.333 5716 0 0 7.5716 2J.1 T3F5 5
4
/F5 1 98u),)T87.9524 428.4899 Tm
(1)Tj
/F5 1 Tf
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0.2,)Tj l
S 0 9-3Tj
9 Tm4965
(, 0 0 9.9626 219637(e)-25916 Tm01 TD
(var)Tj
/F5 1 Tf
1.333 0 TD
((Y)T2.428))-166.71.07 0 TD
(|)T2.478))-166.
0.286 0 TD
(T)Tj
11)Tj
/F6 66 1 Tf
20Tj l
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16 3182J
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674
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S 0 9-3Tj
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D
(�)Tj
/F1 171 T66.7k(T)Tj
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(+)Tj
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Herewij = K1((t −Tij )/b)/(nb), whereK1 is a kernel function of order (0, 2), satisfying (B2.1)
and (B2.2), and ̂1(t) is an estimator for the first derivative �′(t) of � at t.

Observing that Corollary 1 implies �̂N(t)
p→ �(t), let f̂ (t) = ∑

i

∑
j wij /Ni , it is easy to

show f̂ (t)
p→ f (t) in analogy to Corollary 1. We proceed to show â1(t)

p→ �′(t). Denote
�2K1

= ∫
u2K1(u) du, the kernel function K̃1(t) = −tK1(t)/�2K1

, and define ��n, 1���3 by

�1(u, y) = y, �2(u, y) ≡ 1, �3(u, y) = u − t . Observe that K̃1 is of order (1, 3), f̂ (t)
p→ f (t),

and define

H̃ (x1, x2, x3) = x1 − x2�̂N(t)

x3 − bx2
2/f̂ (t) · �2K1

and H(x1, x2, x3) = x1 − x2�(t)

x3
.

Then

̂1(t) = H̃ (�1n, �2n, �3n)

=
[
H(�1n, �2n, �3n) + �2n(�(t) − �̂N(t))

�3n

]
�3n

�3n + b2�2
2n/f̂ (t) · �2K1

.

Note that�1 = (�′f +mf ′)(t),�2 = f ′(t), and�3 = f (t), implying��n−�� = Op(1/
√

nN̄b3),
for � = 1, 2, 3, by Theorem 1. Using Slutsky’s Theorem, |H̃ (�1n, �2n, �3n) − �′(t)| =
Op(1/

√
nN̄b3) follows.

For the asymptotic distribution of �̂L, note that

�̂L(t) =
∑

i
1

EN
∑

j wijYij −∑
i

1
EN

∑
j wij (Tij − t)â1(t)∑

i
1

EN
∑

j wij

.

Considering
√

nN̄b
∑

i
1

EN
∑

j wij (Tij − t) =
√

nN̄b�2K1
b2�2n. Since K̃1 is of order (1, 3),

Theorem 1 implies�2n = f ′(t)+Op(1/
√

nN̄b3), which yields
√

nN̄b�2K1
b2�2n =

√
nN̄b5�2K1

f ′(t) + �2K1
Op(b) = op(1) by observing nN̄b5 → d2 for 0�d < ∞. Since f̂ (t)

p→ f (t) and

|̂1(t) − �′(t)| = Op(1/
√

nN̄b3) = op(1), we find

lim
n→∞

√
nN̄b[�̂L(t) − �(t)] D= lim

n→∞
√

nN̄b

×
{∑

i
1

EN
∑

j wijYij − �′(t)
∑

i
1

EN
∑

j wijTij + t�′(t)
∑

i
1

EN
∑

j wij∑
i

1
EN

∑
j wij

− �(t)

}
.

Using the kernel K1 of order (0, 2), we re-define ��n, 1���3, through �1(u, y) = y,
�2(u, y) = u and �3(u, y) ≡ 1, setting � = 0, k = 2, l = 3 and H(x1, x2, x3) = [x1 −
�′(t)x2 + t�′(t)x3]/x3. Then (13) follows by applying Theorem 1. �

3.2. Asymptotic distributions of covariance estimators

Note that in model (1), cov(Yij , Yik|Tij , Tik) = cov(X(Tij ), X(Tik)) + �2�jk , where �j l is 1 if
j = k and 0 otherwise. Let Cijk = (Yij − �̂(Tij ))(Yik − �̂(Tik)) be the “raw” covariances, where
�̂(t) is the estimated mean function obtained from the previous step, for instance, �̂(t) = �̂N(t) or
�̂(t) = �̂L(t). It is easy to see that E[Cijk|Tij , Tik] ≈ cov(X(Tij ), X(Tik)) + �2�jk . Therefore,
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the diagonal of the raw covariances should be removed, i.e., only Cijk , j �= k, should be included
as input data for the covariance surface smoothing step, as previously observed in Staniswalis and
Lee [12] andYao et al. [15].
Commonly used nonparametric regression estimators of the covariance surface, C(s, t) =

E{[X(T1)−�(T1)][X(T2)−�(T2)|T1 = s, T2 = t]}, are the two-dimensional Nadaraya–Waston
estimator and local linear estimator defined as follows:

ĈN(s, t) =
⎡⎣ n∑

i=1

∑
j �=k

K2

(
s − Tij

h
,
t − Tik

h

)
Cijk

⎤⎦/
⎡⎣ n∑

i=1

∑
j �=k

K2

(
s − Tij

h
,
t − Tik

h

)⎤⎦ , (16)

ĈL(s, t) = 
̂0(s, t) =argmin
�

⎧⎨⎩
n∑

i=1

∑
j �=k

K2

(
s − Tij

h
,
t − Tik

h

)

× [Cijk − f (�, (s, t), (Tij , Tik))]
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�1(t1, t2, y1, y2) = (y1−�(t1))(y2−�(t2)),�2(t1, t2, y1, y2) = y1−�(t1), and�3(t1, t2, y1, y2)

≡1, then supt,s∈T |�pn| = Op(1), for p = 1, 2, 3, by Lemma 1 of Yao et al. [16]. This im-
plies that supt,s∈T |�2n|Op(1/(

√
nb)) = Op(1/(

√
nb)) and supt,s∈T |�3n|Op(1/(

√
nb)) =

Op(1/(
√

nb)). Since supt∈T |�̂(t) − �(t)|2 = Op(1/(nb)) are negligible compared to �1n, the
Nadaraya–Waston estimator ĈN(s, t), of C(s, t) obtained from Cijk is asymptotically equivalent
to that obtained from C̃ijk , denoted by C̃N(t, s).
Therefore, it is sufficient to show that the asymptotic distribution of C̃N(s, t) follows (18).

Choose � = (0, 0), |k| = 2, �1(s, t, y1, y2) = (y1 − �(s))(y2 − �(t)), �2(s, t, y1, y2) ≡ 1
and H(x1, x2) = x1/x2 in Theorem 2, then C̃N(s, t) = H(�1n, �2n). To compute �N(s, t), use
DH(m1, m2) = (1/m2, −m1/m2

2), and notem1(s, t) = ∫
�2(y1−�(s))(y2−�(t))g2(s, t, y1, y2)

dy1dy2 = f2(s, t)C(s, t) and m2(s, t) = f2(s, t). One has (d2/dt2)m1(s, t) = [(d2f2/dt2)C +
2(df2/dt)(dC/dt)+f2(d

2C/dt2)](s, t), (d2/d2t)m2(s, t) = d2f2(s, t)/dt2 and similar deriva-
tives with respect to the argument s leading to the bias term in (12). For the asymptotic vari-
ance, note that �11 = ‖K2‖2

∫
�2(y1 − �(s))2(y2 − �(t))2g2(s, t, y1, y2)dy1dy2 = E[(Y1 −

�(T1))
2(Y2 − �(T2))

2|T1 = s, T2 = t)f2(s, t)‖K2‖2, �12 = �21 = ‖K2‖2f2(s, t)C(s, t),
�22 = ‖K2‖2f2(s, t), and DH(m1, m2) = (1/m2, −m1/m2

2), yielding the variance term
in (12). �

Corollary 4. If the assumptions (A1.1), (A1.2), and (C1.1)–(C3) hold with |�| = 0 and |k| = 2,
then √

nN̄(N̄ − 1)h2[ĈL(s, t) − C(s, t)]
D−→ N

(
e

4
�2K2

[d2C(s, t)/ds2 + d2C(s, t)/dt2], v(s, t)‖K2‖2
f2(s, t)

)
, (19)

where e is as in (C3), v(s, t) = var{(Y1 − �(T1))(Y2 − �(T2))|T1 = s, T2 = t), �2K2
= ∫

�2(u
2 +

v2)K2(u, v) du dv, ‖K2‖2 = ∫
R2 K2

2 (u, v) du dv.

Proof. In analogy to the proof of Corollary 3, the local linear estimator ĈL(s, t) obtained from
Cijk is asymptotically equivalent to that obtained from C̃ijk , denoted by C̃L(t, s). Also denote
the solution to (17), after substituting C̃ijk for Cijk , by �̃(s, t) = (
̃0(s, t), 
̃1(s, t), 
̃2(s, t)), and
in fact 
̃0(s, t) = C̃L(s, t). For simplicity, let Wijk = K2((s − Tij )/h, (t − Tik)/h)/(nh2) and
“
∑

i,j �=k" is abbreviation of “
∑n

i=1
∑

j �=k". Algebra calculations yield that

C̃L=
∑

i,j �=k C̃ijkWijk−
̃1
∑

i,j �=k WijkTij +
̃1
∑

i,j �=k Wijks−
̃2
∑

i,j �=k WijkTik+
̃2
∑

i,j �=k Wijkt∑
i,j �=k Wijk

,


̃1 = R00(S10S02 − S01S11) + R10(S00S02 − S01S20) − R01(S00S11 − S10S02)

S00S20S02 − S00S
2
11 − S2

10S02 + S10S01S11 + S20S10S11 − S01S
2
20

,


̃2 = R00(S10S11 − S01S02) − R10(S00S11 − S01S20) + R01(S00S20 − S2
10)

S00S20S02 − S00S
2
11 − S2

10S02 + S10S01S11 + S20S10S11 − S01S
2
20

,

where

Rpq =
∑
i,j �=k

Wijk(Tij − s)p(Tik − t)qC̃ijk, Spq =
∑
i,j �=k

Wijk(Tij − s)p(Tik − t)q .
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Note that 
̃1 and 
̃2 are local linear estimators of the partial derivatives ofC(s, t), dC(s, t)/ds and
dC(s, t)/dt , respectively. In analogy to the proof of Corollary 2, it can be shown that |
̃1(s, t) −
dC(s, t)/ds| = Op(1/

√
nEN(N − 1)h4) and |
̃2(s, t)−dC(s, t)/dt | = Op(1/

√
nN̄(N̄ − 1)h4)

by applying Theorem 2. Then one can substitute dc(s, t)/ds, dC(s, t)/dt for 
̃1(s, t), 
̃2(s, t) in
C̃L(s, t), and denote the resulting estimator by C∗

L(s, t). It is easy to see that

lim
n→∞

√
nN̄(N̄ − 1)h2[CL(s, t) − C(s, t)] D= lim

n→∞

√
nN̄(N̄ − 1)h2[C∗

L(s, t) − C(s, t)].
We define ��n, 1���4, through �1(s, t, y1, y2) = (y1 − �(s))(y2 − �(t)), �2(s, t, y1, y2



54 F. Yao / Journal of Multivariate Analysis 98 (2007) 40–56

those in Corollaries 3 and 4, with f (t) replaced by 1/|T | and f (s, t) replaced by 1/|T |2, where
|T | is the length of the interval.

5. Simulation study

A numerical study is conducted to evaluate the derived asymptotic properties. The key finding
in this paper is that the asymptotic results for functional or longitudinal are comparable to those
obtained from independent data, i.e., the influence of within-subject covariance does not play
significant role in determining the asymptotic bias and variance. For simplicity, we focus on the
local polynomial mean estimators which are often superior to the Nadaraya–Waston estimators.
We first generated M = 200 samples consisting of n = 50 i.i.d. random trajectories each.

Following model (1), the simulated process has a mean function �(t) = (t − 1/2)2, 0� t �1
which has a constant second derivative �(2)(t) = 2, and a constant within-subject covariance

function derived from a random intercept �1
i.i.d.∼ N(0, �1), where �1 = 0.01 and�1(t) = 1,

0� t �1. The measurement error in (1) was set �ij
i.i.d.∼ N(0, �2), where �2 = 0.01. A random

design was used, where the numbers of observations for each subject Ni were chosen from
{2, 3, 4, 5} with equal likelihood and the locations of the observations were uniformly distributed

on [0, 1], i.e., Tij
i.i.d.∼ U [0, 1]. For comparison, we generated M = 200 samples of n = 50

i.i.d. random trajectories which have the same structure as in model (1) but no within-subject

correlation. Letting �i1 = 0 and �ij
i.i.d.∼ N(0,

√
�1 + �2) leads to independent data with the same

mean and variance functions. Therefore, the two sets of data have the same asymptotic distribution
for the local polynomialmean estimators.We also generatedM = 200 correlated and independent
samples, respectively, consisting of n = 200 trajectories each for demonstrating the asymptotic
behavior with the increasing sample size n.
Here we use the Epanechnikov kernel function, i.e., K1(u) = 3/4(1 − u2)1[−1,1](u), where

1A(u) = 1 if u ∈ A and 0 otherwise for any set A. Note that n(EN)b2k+1 → d2 in (B3),
�(2)(t) = 2, var(Y |T = t) = �1 + �2 = 0.02, and the design density f (t) = 1, where
k = 2 for local polynomial estimators and b is the bandwidth used for the mean estimation.
From the above construction, one can calculate the asymptotic variance and bias of the local
polynomial mean estimators �L(t) using Corollary 2which is in fact applicable for both correlated
and independent data. Since the bias and variance terms are both constant in our simulation
framework, for convenience we compare the asymptotic integrated squared bias and variance
with the empirical integrated squared bias and variance obtained using Monte Carlo average from
M = 200 simulated samples based on

∫ 1
0 E[{�̂L(t) − �(t)}2] dt = ∫ 1

0 {�̂L(t) − E[�̂L(t)]}2 dt +∫ 1
0 {E[�̂L(t)] − �(t)}2 dt . The asymptotic integrated squared bias and variance are given by

AIBIAS = 1

2
�2K1

b4, AIVAR = 0.02 × ‖K1‖2
nN̄b

, (20)

and the asymptotic integrated mean squared error AIMSE = AIBIAS +AIVAR, where �2K1
=∫

u2K1(u) du, ‖K1‖2 = ∫
K2

1 (u) du and N̄ = (1/n)
∑n

i=1 Ni , while the empirical integrated
squared bias, variance and mean squared error are denoted by EIBIAS, EIVAR and EIMSE,
The asymptotic and empirical quantities, such as the integrated squared bias, variance andmean

squared error, are shown in Fig. 1 for the correlated/independent datawith sample size n = 50/n =
200, respectively. From Fig. 1, it is obvious that the asymptotic approximation is improved by
increasing the sample size. The asymptotic quantitiesAIBIAS,AIVAR andAIMSE agree with the
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Fig. 1. Shown are the empirical quantities (solid, including EIBIAS, EIVAR, EIMSE) and asymptotic quantities (dashed,
including AIBIAS, AIVAR, AIMSE) versus log(b) for correlated (left panels) and independent (right panels) data with
different sample sizes n = 50 (top panels) and n = 200 (bottom panels), where b is the bandwidth used in the smoothing.
In each panel, the integrated squared bias is the one with increasing pattern, the integrated variance is the one with
decreasing pattern, and they cross each other, while the integrated mean squared error, which is larger than both integrated
squared bias and variance for any bandwidth b, usually decreases first and then increases after reaching a minimum.

empirical quantities EIBIAS, EIVAR and EIMSE for both correlated and independent data. For
the simulated data with the same sample size n, such asymptotic approximations for correlated and
independent data are well comparable in pattern and magnitude. This provides the evidence that
the within-subject correlation indeed does not have obvious influence on the asymptotic behavior
of the local polynomial estimators compared to the standard rate obtained from independent data,
which is consistent with our theoretical derivations.

6. Discussion

In this paper, the asymptotic distributions of kernel-based nonparametric regression estimators
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design described in (A1.1) and (A1.2), fixed equally spaced design described in (A1∗), and some
case lying between them. The proposed results could also be extended to more complicated cases,
such as “panel data” where observations for different subjects are obtained at a series of common
time points during a longitudinal follow-up. If considering random design, the density of the jth
observation time Tj could be assumed to be fj (t), then the results are readily applied to this case
with appropriate modifications with respect to the different marginal densities.
The general asymptotic distribution results in univariate and bivariate smoothing settings are

applied to the kernel-based estimators of the mean and covariance functions, which yields asymp-
totic normal distributions of these estimators.To the best of our knowledge, there are no asymptotic
distribution results available in literature for nonparametric estimators of covariance function ob-
tained from observed noisy longitudinal or functional data. This provides theoretical basis and
practical guidance for the nonparametric analysis of functional or longitudinal data with impor-
tant potential applications that are based on the asymptotic distributions. For example, asymptotic
confidence bands or regions for the regression curve or the covariance surface can be constructed
based on their asymptotic distributions. Since, due to their heavy computational load, commonly
used procedures (such as cross-validation) for bandwidth selection in two-dimensional settings
are not feasible, one important research problem is to seek efficient approaches for choosing such
smoothing parameters.Also functional principal component analysis, an increasingly popular tool
for functional data analysis, is based on eigen-decomposition of the estimated covariance func-
tion. Thus, the influence of the asymptotic properties of covariance estimators on the estimated
eigenfunctions is another potential research of interest.
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