
A BLOW UP FORMULA FOR GYSIN PULL-BACK
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Abstract. In this note, we prove a blow up formula for Gysin pull-back of cycles by the zero section

of a cotangent bundle (cf. Lemma 3.3). A special case of this formula is used in the proof of the twist
formula for ε-factors [6].

1. Preliminaries on C-transversal condition

De�nition 1.1. Let X, Y and W be smooth schemes over a �eld k. We denote by T˚XX Ď T˚X the
zero section of the cotangent bundle T˚X of X. Let C be a conical closed subset of T˚X, i.e., a closed
subset which is stable under the action of the multiplicative group Gm.

(1) p[2, 1.2]q Let h : W Ñ X be a morphism over k. We say that h is C-transversal at w P W if the
�ber

`

pC ˆX W q X dh´1pT˚WW q
˘

ˆWw is contained in the zero-section T˚XXˆXW Ď T˚XˆXW ,
where dh : T˚X ˆX W Ñ T˚W is the canonical map. We say that h is C-transversal if h is C-
transversal at any point of W .

If h is C-transversal, we de�ne h˝C to be the image of C ˆX W under the map dh : T˚X ˆX
W Ñ T˚W . By [5, Lemma 3.1], h˝C is a closed conical subset of T˚W .

(2) p[5, De�nition 7.1]q Assume that X and C are purely of dimension d and that W is purely of
dimension m. We say that a C-transversal map h : W Ñ X is properly C-transversal if every
irreducible component of C ˆX W is of dimension m.

(3) p[2, 1.2] and [5, De�nition 5.3]q We say that a morphism f : X Ñ Y over k is C-transversal at
x P X if the inverse image df´1pCqˆX x is contained in the zero-section T˚Y Y ˆY X Ď T˚Y ˆY X,
where df : T˚Y ˆY X Ñ T˚X is the canonical map. We say that f is C-transversal if f is C-
transversal at any point of X.

1.2. Let X be a smooth scheme purely of dimension d over a �eld k. Let W be a smooth scheme purely of
dimension m over k. Assume that C Ď T˚X is a conical closed subset purely of dimension d. Let Z be a
d-cycle supported on C and h : W Ñ X a properly C-transversal morphism. Let prh : T˚XˆXW Ñ T˚X
be the �rst projection map. Since prh is a morphism between smooth schemes, the re�ned Gysin pull-
back pr!

hZ is well-de�ned in the sense of intersection theory [3, 6.6]. We de�ne h˚Z P CHmph
˝Cq [5,

De�nition 7.1.2] to be

(1.2.1) h˚Z :“ dh˚ppr!
hZq:

Notice that the push-forward is well-de�ned since dh : T˚X ˆX W Ñ T˚W is �nite on C ˆX W by [2,
Lemma 1.2 (ii)]. Since h is properly C-transversal, every irreducible component of h˝C is of dimension
m. Thus CHmph

˝Cq “ Zmph
˝Cq. Hence we may regard h˚Z as a m-cycle on T˚W , which is supported

on h˝C.
We prove the following commutative property for successively pull-backs.

Lemma 1.3. Let X be a smooth scheme purely of dimension d over a �eld k. Consider the following
commutative diagram

(1.3.1)

U

g

��

j // W

f

��
Y

i // X

Date: August 6, 2018.
2010 Mathematics Subject Classi�cation. Primary 14F20; Secondary 11G25, 11S40.

1



2 NAOYA UMEZAKI, ENLIN YANG, AND YIGENG ZHAO

between equidimensional smooth schemes over k. Let C Ď T˚X be a conical closed subset purely of
dimension d. Assume that i and f are C-transversal, and g is i˝C-transversal. Let Z be a d-cycle
supported on C. Then we have

(1) j is f˝C-transversal.
(2) g˝i˝C “ j˝f˝C Ď T˚U and an equality for cycle class g˚i˚Z “ j˚f˚Z.

Proof. (1) This follows from [5, Lemma 3.4.3].
(2) We have a commutative diagram

(1.3.2)

T˚X T˚X ˆX W
prfoo df // T˚W

T˚X ˆX Y

di

��

pri

OO

T˚X ˆX U
uoo

l

r

��

v

OO

w // T˚W ˆW U

prj

OO

dj

��
T˚Y

l

T˚Y ˆY Uprg
oo

dg
// T˚U

where the morphisms prf ;prg;pri and prj are the �rst projections, df; dg; di; dj are morphisms induced
from f; g; i; j respectively, and v “ id ˆ j; u “ id ˆ g; r “ di ˆ id. In the diagram (1.3.2), there are two
Cartesian squares which are indicated by the symbols \l". Then we have

g˝i˝C “ dgppr´1
g pdippr´1

i Cqqq “ dgprpu´1ppr´1
i Cqqq(1.3.3)

“ dgprpv´1ppr´1
f Cqqq “ djp!pv´1ppr´1

f Cqqq

“ djppr´1
j pdfppr´1

f Cqqq “ j˝f˝C:

g˚i˚Z “ dg˚ppr!
gpdi˚ppr!

iZqqq “ dg˚pr˚pu
!ppr!

iZqqq(1.3.4)

“ dg˚pr˚pv
!ppr!

fZqqq “ dj˚p!˚pv
!ppr!

fZqqq

“ dj˚ppr!
jpdf˚ppr!

fZqqq “ j˚f˚Z

where in (1.3.4) we used the push-forward formula [3, Theorem 6.2 (a)] and the fact that di (respectively
df) is �nite on pr!

iZ (respectively pr!
fZ). This �nishes the proof.

�

2. Localized Chern classes

2.1. Let X be a scheme of �nite type over a �eld k, Z a closed subscheme of X and U “ XzZ. Let
K “ pKq; dqqq be a bounded complex of locally free OX -modules of �nite ranks such that Kq “ 0 for q ă 0.
Assume that the restriction K|U is acyclic except at degree 0 and the cohomology sheaf H0pKq|U is locally
free of rank n ´ 1. Then for i ě n, we have the so-called localized Chern class ci

X
Z pKq P CHipZ Ñ Xq

(cf. [1, Section 3], [3, Chapter 18] and [4, 2.3]). Consider the following ring (cf. [3, Chapter 17])

(2.1.1) CH˚pZ Ñ Xqpnq “
ź

iăn

CHipX Ñ Xq ˆ
ź

iěn

CHipZ Ñ Xq:

We regard the total localized Chern class cXZ pKq “ ppcipKqqiăn; pciXZ pKqqiěnq as an invertible element of

CH˚pZ Ñ Xqpnq.
Let F be an OX -module such that the restriction F |U is locally free of rank n. If F has a �nite

resolution E‚ Ñ F by locally free OX -modules Eq of �nite ranks, the localized Chern class ci
X
Z pFq for

i ą n is de�ned as ci
X
Z pE‚q. It is independent of the choice of a resolution.

2.2. The following Lemma 2.3 and Lemma 2.4 are slight generalizations of [4, Lemma 2.3.2] and [4,
Lemma 2.3.4] respectively. We use the same arguments.

Lemma 2.3 ([4]). Let X be a scheme of �nite type over a �eld k. Let D be a Cartier divisor of X
and i : D Ñ X be the immersion. Let E be a locally free OD-module of rank n. Assume there exist

a locally free OX-module rE of �nite rank and a surjection rE Ñ i˚E so that the localized Chern class
cXDpi˚EpDqq P CH˚pD Ñ Xqp1q is de�ned. We put CH˚pXq “ ‘iCHipXq, CH˚pDq “ ‘iCHipDq and

put ajpEq “
řn
k“j

`

k
j

˘

cn´kpEq P CH˚pD Ñ Dq.
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(1) p[4, Lemma 2.3.2]q For any invertible OD-module L, we have
n
ÿ

k“0

ckpE b Lq “
n
ÿ

j“0

ajpEqc1pLqj :(2.3.1)

(2) p[4, Lemma 2.3.2 and Corollary 2.3.2]q For any � P CH˚pXq, we have equalities in CH˚pDq:

pcXDpi˚EpDqq ´ 1q X � “ cpEq´1
n
ÿ

j“1

ajpEqDj´1 X i!�;(2.3.2)

pcXDpi˚ODq
´1 ´ 1q X � “ ´i!�:(2.3.3)

where i! : CH˚pXq Ñ CH˚pDq denotes the Gysin map.

Proof. (1) See [4, Lemma 2.3.2].
(2) We use the same argument with [4, Lemma 2.3.2]. By deformation to the normal bundle, we may

assume X “ P1
D is a P1-bundle over D and the immersion i : D Ñ X is a section. Let p : X Ñ D be the

projection. Then E “ i˚EX with EX :“ p˚E . Since the map i˚ : CH˚pDq Ñ CH˚pXq is injective, it is
reduced to the equalities for the usual Chern classes cpi˚EpDqq and cpi˚ODq by [4, Proposition 2.3.1.1].
By the exact sequence

(2.3.4) 0 Ñ OXp´Dq Ñ OX Ñ i˚OD Ñ 0;

we get cpi˚ODq
´1 “ cpOXp´Dqq. Thus pcpi˚ODq

´1 ´ 1q X � “ ´c1pOXpDqq X � “ ´i!�. This proves
the equality (2.3.3). Now we prove (2.3.2). By the locally free resolution

(2.3.5) 0 Ñ EX Ñ EXpDq Ñ i˚EpDq Ñ 0;

we have

cpi˚EpDqq ´ 1 “ cpEXq´1pcpEXpDqq ´ cpEXqq(2.3.6)

(2.3.1)
“ cpEq´1p

n
ÿ

j“0

ajpEqDj ´ a0pEqq “ cpEq´1
n
ÿ

j“1

ajpEqDj :

Thus by the de�nition of Gysin pull-back along a divisor [3, 2.6], we have

pcpi˚EpDqq ´ 1q X � “ cpEq´1

˜

n
ÿ

j“1

ajpEqDj

¸

X � “ cpEq´1

˜

n
ÿ

j“1

ajpEqDj´1

¸

X i!�(2.3.7)

�

Lemma 2.4 ([4, Lemma 2.3.4]). Let X and C be regular schemes of �nite type over a �eld k. Let
i : C Ñ X be a closed immersion of codimension c with conormal sheaf NC{X . Let � : X 1 Ñ X be the
blow up of X along C, �E : E “ C ˆX X 1 Ñ C be the induced map and i1 : E Ñ X 1 be the closed
immersion. We put

(2.4.1) �pX;Cq “
c
ÿ

j“1

ajp�
˚
ENC{XqE

j´1 ´

c
ÿ

j“0

ajp�
˚
ENC{XqE

j :

For any � P CH˚pX
1q, we have an equality in CH˚pCq:

�E˚ppc
X1

E p

1
X1{Xq ´ 1q X �q “ cpNC{Xq

´1 X �E˚p�pX;Cq X i
1!�q;(2.4.2)

If moreover i1!� “ �˚E� for some � P CH˚pCq, then we have

�E˚p�pX;Cq X i
1!�q “ p´1qc ¨ pc´ 1q ¨ �;(2.4.3)

�E˚ppc
X1

E p

1
X1{Xq ´ 1q X �q “ p´1qc ¨ pc´ 1q ¨ cpNC{Xq

´1 X �:(2.4.4)

Proof. Note that the canonical map 
1
X1{X Ñ i1˚
1

E{C is an isomorphism. Since E “ PppNC{Xq_q is a

Pc´1-bundle over C, we have an exact sequence 0 Ñ 
1
E{C Ñ �˚ENC{Xp´1q Ñ OE Ñ 0. Hence, we

have cX
1

E p

1
X1{Xq “ cX

1

E pi
1
˚�
˚
ENC{Xp´1qqcX

1

E pi
1
˚OEq

´1. By the exact sequence 0 Ñ OX1p´Eq Ñ OX1 Ñ

i1˚OE Ñ 0, we get

(2.4.5) 0 Ñ �˚ENC{X Ñ �˚ENC{XpEq Ñ �˚ENC{XpEq Ñ 0:
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By Lemma 2.3, we have

pcX
1

E pi
1
˚�
˚
ENC{Xp´1qqcX

1

E pi
1
˚OEq

´1 ´ 1q X �(2.4.6)

“ pcX
1

E pi
1
˚�
˚
ENC{Xp´1qq ´ 1q X �` cX

1

E pi
1
˚�
˚
ENC{Xp´1qqpcX

1

E pi
1
˚OEq

´1 ´ 1q X �

(2.3.3)
“ pcX

1

E pi
1
˚�
˚
ENC{Xp´1qq ´ 1q X �´ cp�˚ENC{Xp´1qq X i1!�

(2.4.5)
“ pcX

1

E pi
1
˚�
˚
ENC{XpEqq ´ 1q X �´ cEp�

˚
ENC{Xq

´1cEp�
˚
ENC{XpEqq X i

1!�

(2.3.2)
“ cEp�

˚
ENC{Xq

´1

˜

c
ÿ

j“1

ajp�
˚
ENC{XqE

j´1 X i1!�´
c
ÿ

j“0

ajp�
˚
ENC{XqE

j X i1!�

¸

“ cpNC{Xq
´1 X �E˚p�pX;Cq X i

1!�q:

By [3, Remark 3.2.4, p.55], we have Ec “ ´
řc
j“1 cjp�

˚
ENC{XqE

c´j . Assume i1!� “ �˚E� for some

� P CH˚pCq. By [3, Proposition 3.1 (a)], we have �E˚pE
jX�˚E�q “ 0 for j ă c´1 and �E˚pE

c´1X�˚E�q “
p´1qc´1�. Substituting these identities, we have

�E˚p�pX;Cq X i
1!�q(2.4.7)

“p´1qc´1 ¨ pacpNC{Xq ´ ac´1pNC{Xq ` acpNC{Xqc1pNC{Xqq X �

Since acpNC{Xq “ 1, ac´1pNC{Xq “ c ` c1pNC{Xq then �E˚p�pX;Cq X i1!�q “ p´1qc ¨ pc ´ 1q ¨ � and

�E˚ppc
X1

E p

1
X1{Xq ´ 1q X �q “ p´1qc ¨ pc´ 1q ¨ cpNC{Xq

´1 X �. �

3. Blow up formula for Gysin pull-back

3.1. Let X be a smooth scheme purely of dimension d over a �eld k. We denote by 0X : X Ñ T˚X the
zero section of the cotangent bundle T˚X. We denote by 0!

X P CHdpX Ñ T˚Xq the (re�ned) Gysin
map [3, 6.2], where CHdpX Ñ T˚Xq is the bivariant Chow group [3, De�nition 17.1]).

3.2. We recall a method for calculating the Gysin map 0!
X by using Chern classes. Let X be a regular

scheme separated of �nite type over a �eld. Let E be a locally free OX -modules of rank d on X.
Let E “ SpecpSym‚OXE

_q be the associated vector bundle of rank d on X with structure morphism
� : E Ñ X. The projective bundle of E is PpEq “ ProjpSym‚OXE

_q. We have a closed immersion

PpEq ãÑ P pE ‘ 1q :“ P pE ‘ A1
Xq with open complementary E ãÑ PpE ‘ 1q. Let s : X Ñ E be the zero

section. Let k ě 0 be an integer and � P CHkpEq. For any element �� P CHkpPpE‘ 1qq, if the restriction
of �� to CHkpEq equals to �, then we have [3, Proposition 3.3]

(3.2.1) s!p�q “ q˚pcdp�q X ��q;

where � “ q˚pE‘1q
OPpE‘1qp´1q is the universal rank d quotient bundle of q˚pE ‘ 1q. For any element � P

CH˚pXq “ ‘iCHipXq, we denote by t�uj the dimension j part of �, i.e., the image of � by the
projection CH˚pXq Ñ CHjpXq. Let cp�q be the total Chern class of �, then we can write (3.2.1) as
follows

(3.2.2) s!p�q “
 

q˚pcp�q X ��q
(

k´d
:

By the Whitney sum formula for Chern classes [3, Theorem 3.2], we have

cp�q “ cpq˚Eq ¨ cpOPpE‘1qp´1qq´1:(3.2.3)

Thus the formula (3.2.2) can be written in the following way

s!p�q “
 

q˚pcpq
˚Eq X cpOPpE‘1qp´1qq´1 X ��q

(

k´d
(3.2.4)

“
 

cpEq X q˚pcpOPpE‘1qp´1qq´1 X ��q
(

k´d

where the last equality follows from the projection formula [3, Theorem 3.2].

Lemma 3.3. Let X and Y be smooth and connected schemes over a �eld k and let i : Y ãÑ X be a closed

immersion of codimension c. Let � : rX Ñ X be the blow up of X along Y . Let C Ď T˚X be a conical
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closed subset purely of dimension d “ dimX and let Z be a d-cycle supported on C. Suppose � and i are
properly C-transversal. Then we have an equality in CH0pXq:

�˚p0
!
ĂX
p�˚Zqq “ 0!

XpZq ` p´1qc ¨ pc´ 1q ¨ i˚p0
!
Y pi

˚Zqq;(3.3.1)

For the de�nition of the Gysin map 0!
‚, see Subsection 3.1.

Proof. Let rY be the exceptional divisor of � : rX Ñ X with projection map ~� : rY Ñ Y . Let ~i : rY ãÑ rX be
the closed immersion. We have a commutative diagram

(3.3.2)

T˚X

��

T˚X ˆX
ĂX

��

prπoo dπ // T˚ĂX

��

T˚ĂX ˆ
ĂX

rY

��

pr
ĩoo dĩ //

��

T˚ rY

��
PpT˚X ‘ 1q

q

��
l

PpT˚X ˆX
ĂX ‘ 1q

q1

��

prπoo dπ // PpT˚ĂX ‘ 1q

p

��

p

vv

l

PpT˚ĂX ˆ
ĂX

rY ‘ 1q

p1

��

pr
ĩoo dĩ //

��

PpT˚ rY ‘ 1q

r

ww
X ĂX

πoo ĂX

π

��

rY

π̃

��

ĩoo

X Y
ioo

l

where pr� and pr~i are the �rst projections, d� : T˚XˆX rX Ñ T˚ rX (respectively d~i : T˚ rXˆ
ĂX
rY Ñ T˚ rY )

is the map induced by � : rX Ñ X (respectively ~i : rY Ñ Y ), the maps pr�, d�, pr~i and d~i are the maps

induced by pr�, d�, pr~i and d~i respectively, all other maps are either the canonical projection morphisms
or open immersions. In (3.3.2), we use the symbol \l" to mean the square is a Cartesian diagram. For

example, the most left-bottom square in (3.3.2) is Cartesian since q1 is proper and PpT˚X ˆX rX ‘ 1q has

dense image in PpT˚X ‘ 1qˆX rX. Note also that the map d~i is only well-de�ned on the open subscheme

T˚ rX ˆ
ĂX
rY , but this is enough for our purpose (cf. [5, Lemma 6.4]).

For any � P CHdpT
˚Xq, we denote by � P CHdpPpT˚X ‘ 1qq an extension of � (cf. 3.2). We

choose an extension Z P CHdpPpT˚X ‘ 1qq of Z. Then pr!
�pZq is an extension of pr!

�Z. Since � is
C-transversal, the push-forwards d�˚ppr!

�Zq and d�˚ppr!
�pZqq are well-de�ned, and d�˚ppr!

�pZqq is an
extension of d�˚ppr!

�Zq.
Since ~� is smooth, thus ~� is i˝C-transversal by [5, Lemma 3.4.1]. By Lemma 1.3, ~i is �˝C-transversal

and we have

(3.3.3) ~�˚i˚Z “ ~i˚�˚Z:

The following exact sequence (~i˚
1
rY {Y

» 
1
ĂX{X

)

(3.3.4) 0 Ñ �˚
1
X Ñ 
1

ĂX
Ñ ~i˚
1

rY {Y
Ñ 0

gives a resolution of ~i˚
1
rY {Y

by locally free sheaves of �nite rank. Thus the localized Chern class

ck
X
Y p

~i˚
1
rY {Y
q P CH˚pY Ñ Xq is well-de�ned for k ě 1 (cf. Subsection 2.1). In order to simplify

the notation, we put cloc
k p

~i˚
1
rY {Y
q :“ ck

X
Y p

~i˚
1
rY {Y
q and cloc

k pp
˚~i˚
1

rY {Y
q :“ ck

PpT˚ĂX‘1q

PpT˚ĂXˆ
ĂX
rY‘1q

pp˚~i˚
1
rY {Y
q.

Similarly, we denote by cloc the total localized Chern class. Applying the Whitney sum formula for
(localized) Chern classes (cf. [1, Proposition 3.1]) to the exact sequence (3.3.4), we get

(3.3.5) cp
1
ĂX
q “ cp�˚
1

Xq ¨ c
locp~i˚
1

rY {Y
q “ cp�˚
1

Xq ` cp�
˚
1

Xq ¨ pc
locp~i˚
1

rY {Y
q ´ 1q:
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We will simply denote by Op1q for OPpT˚ĂX‘1q
p1q (and also for OPpT˚X‘1qp1q and so on) in the following

calculations. We have

�˚p0
!
ĂX
p�˚Zqq

(3.2.4)
“

!

�˚

´

cp
1
ĂX
q X p˚

`

cpOp´1qq´1 X d�˚pr!
�Z

˘

¯)

0
(3.3.6)

(3.3.5)
“

!

�˚

´

cp�˚
1
Xq ¨ c

locp~i˚
1
rY {Y
q X p˚

`

cpOp´1qq´1 X d�˚pr!
�Z

˘

¯)

0

paq
“

!

cp
1
Xq X �˚

´

clocp~i˚
1
rY {Y
q X p˚

`

cpOp´1qq´1 X d�˚pr!
�
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Consider the following commutative diagram induced from the morphism ~� : rY Ñ Y .

(3.3.10)

T˚Y

��

T˚Y ˆY rY
prπ̃

oo

��

d~�
// T˚ rY

��
PpT˚Y ‘ 1q

s

��

PpT˚Y ˆY rY ‘ 1q
prπ̃oo

s1

��

d~� // PpT˚ rY ‘ 1q

r

vv
Y

l

i

��

rY
~�

oo

~i

��
X

l

rX
�

oo

Since d~�˚pr!
�i
˚Z is an extension of ~�˚i˚Z to PpT˚ rY ‘ 1q, thus (3.3.9) equals to

~i!
`

p˚
`

cpOp´1qq´1 X d�˚pr!
�Z

˘˘

“ r˚
`

cpOp´1qq´1 X d~�˚pr!
~�i
˚Z

˘

(3.3.11)

pcq
“ r˚d~�˚

`

cpOp´1qq´1 X pr!
~�i
˚Z

˘

“ r˚d~�˚
`

pr˚�cpOp´1qq´1 X pr!
~�i
˚Z

˘

pdq
“ r˚d~�˚pr!

~�

`

cpOp´1qq´1 X i˚Z
˘

where we used the projection formula [3, Theorem 3.2] in step (c), and (d) follows from [3, Proposition
17.3.2]. By the commutative diagram (3.3.10) and the push-forward formula [3, Theorem 6.2], we have

r˚d~�˚pr!
~� “ s1˚pr!

~� “ ~�!s˚ “ ~�˚s˚:(3.3.12)

By (3.3.11) and (3.3.12), the second term of (3.3.7) equals to
 

i˚
`

cpi˚
1
Xq X cpNY {Xq

´1 X ~�˚
`

�pX;Y q X~i!
`

p˚
`

cpOp´1qq´1 X d�˚pr!
�Z

˘˘˘˘(

0
(3.3.13)

“
 

i˚
`

cpi˚
1
Xq X cpNY {Xq

´1 X ~�˚
`

�pX;Y q X ~�˚s˚
`

cpOp´1qq´1 X i˚Z
˘˘˘(

0

(2.4.3)
“ p´1qc ¨ pc´ 1q

 

i˚
`

cpi˚
1
Xq X cpNY {Xq

´1 X s˚
`

cpOp´1qq´1 X i˚Z
˘˘(

0

p1q
“p´1qc ¨ pc´ 1q

 

i˚
`

cp
1
Y q X s˚

`

cpOp´1qq´1 X i˚Z
˘˘(

0

(3.2.4)
“ p´1qc ¨ pc´ 1q ¨ i˚0!

Y pi
˚Zq:

where the step (1) follows from cpi˚
1
Xq ¨ cpNY {Xq

´1 “ cp
1
Y q since we have an exact sequence

(3.3.14) 0 Ñ NY {X Ñ i˚
1
X Ñ 
1

Y Ñ 0;

where NY {X is the conormal sheaf associated to the the regular immersion i : Y Ñ X.
Finally, by (3.3.6), (3.3.8) and (3.3.12), we get (3.3.1). This �nishes the proof. �
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