A BLOW UP FORMULA FOR GYSIN PULL-BACK

NAOYA UMEZAKI, ENLIN YANG, AND YIGENG ZHAO

Abstract. In this note, we prove a blow up formula for Gysin pull-back of cycles by the zero section of a cotangent bundle (cf. Lemma [3.3\)](#page-3-0). A special case of this formula is used in the proof of the twist formula for ε -factors $[6]$.

1. Preliminaries on C-transversal condition

De nition 1.1. Let X, Y and W be smooth schemes over a eld k. We denote by $T_X^*X \subseteq T^*X$ the zero section of the cotangent bundle T*X of X. Let C be a conical closed subset of T*X, i.e., a closed subset which is stable under the action of the multiplicative group \mathbb{G}_m .

(1) ([\[2,](#page-6-1) 1.2]) Let h: $W \rightarrow X$ be a morphism over k. We say that h is C-transversal at $w \in W$ if the ([2, 1.2]) Let h: W \to X be a morphism over k. We say that h is C-transversal at w \in W if the ber $((C \times_X W) \cap dh^{-1}(T_W^*W)) \times_W w$ is contained in the zero-section $T_X^*X \times_X W \subseteq T^*X \times_X W$, where dh: $T^*X \times_X W \to T^*W$ is the canonical map. We say that h is C-transversal if h is Ctransversal at any point of W.

If h is C-transversal, we de ne h°C to be the image of $C \times_X W$ under the map dh: T*X \times_X $W \to T^*W$. By [\[5,](#page-6-2) Lemma 3.1], $h^{\circ}C$ is a closed conical subset of T^*W .

- (2) ([\[5,](#page-6-2) De nition 7.1]) Assume that X and C are purely of dimension d and that W is purely of dimension m. We say that a C-transversal map h: $W \rightarrow X$ is properly C-transversal if every irreducible component of $C \times_X W$ is of dimension m.
- (3) ([\[2,](#page-6-1) 1.2] and [\[5,](#page-6-2) De nition 5.3]) We say that a morphism $f: X \rightarrow Y$ over k is C-transversal at $x \in X$ if the inverse image df⁻¹(C) $\times_X x$ is contained in the zero-section $T_Y^* Y \times_Y X \subseteq T^* Y \times_Y X$, where df: $T^*Y \times_Y X \to T^*X$ is the canonical map. We say that f is C-transversal if f is Ctransversal at any point of X.

1.2. Let X be a smooth scheme purely of dimension dover a eld k . Let W be a smooth scheme purely of dimension m over k . Assume that $C \subseteq T^*\mathcal{X}$ is a conical closed subset purely of dimension d . Let Z be a d-cycle supported on C and h: $W \to X$ a properly C-transversal morphism. Let ${\sf pr}_h\colon T^*X \times_X W \to T^*X$ be the $\,$ rst projection map. Since pr $_{h}$ is a morphism between smooth schemes, the re ned Gysin pullback pr l_hZ is well-de ned in the sense of intersection theory [\[3,](#page-6-3) 6.6]. We de ne $\hbar^*Z\in CH_m(\hbar^{\circ}C)$ [\[5,](#page-6-2) De nition 7.1.2] to be

(1.2.1)
$$
h^* Z := dh_* (\text{pr}_h^! Z) :
$$

Notice that the push-forward is well-de ned since dh: $T^*X \times_X W \to T^*W$ is mite on $C \times_X W$ by [\[2,](#page-6-1) Lemma 1.2 (ii)]. Since h is properly C-transversal, every irreducible component of $h^{\circ}C$ is of dimension m. Thus $CH_m(h^{\circ}C) = Z_m(h^{\circ}C)$. Hence we may regard h^*Z as a m-cycle on T^*W , which is supported on $h^{\circ}C$.

We prove the following commutative property for successively pull-backs.

Lemma 1.3. Let X be a smooth scheme purely of dimension d over a eld k . Consider the following commutative diagram

j

(1.3.1) U g ľ W f ľ. Y $\xrightarrow{i} \times$

Date: August 6, 2018.

²⁰¹⁰ Mathematics Subject Classi cation. Primary 14F20; Secondary 11G25, 11S40.

between equidimensional smooth schemes over k. Let $C \subseteq T^*X$ be a conical closed subset purely of dimension d. Assume that i and f are C-transversal, and g is i^oC-transversal. Let Z be a d-cycle supported on C. Then we have

- (1) j is f° C-transversal.
- (2) $g^{\circ}i^{\circ}C = j^{\circ}f^{\circ}C \subseteq T^*U$ and an equality for cycle class $g^*i^*Z = j^*f^*Z$.

Proof. (1) This follows from [\[5,](#page-6-2) Lemma 3.4.3].

(2) We have a commutative diagram

$$
T^*X \xleftarrow{\text{pr}_f} T^*X \times_X W \xrightarrow{\text{df}} T^*W
$$
\n
$$
\begin{array}{c}\n\text{pr}_i \\
\uparrow \vee \\
\uparrow^*X \times_X Y \xleftarrow{\text{u}} T^*X \times_X U \xrightarrow{\text{w}} T^*W \times_W U \\
\downarrow \downarrow \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \
$$

where the morphisms pr $_f$; pr $_g$; pr $_j$ and pr $_j$ are the lirst projections, *df; dg; di; dj* are morphisms induced from f ; g; i; j respectively, and $v = id \times j$; $u = id \times g$; $r = di \times id$. In the diagram [\(1.3.2\)](#page-1-0), there are two Cartesian squares which are indicated by the symbols $\lceil \cdot \rceil$. Then we have

(1.3.3)
\n
$$
g^{\circ} \rhd C = dg(\text{pr}_{g}^{-1}(di(\text{pr}_{f}^{-1}C))) = dg(r(u^{-1}(\text{pr}_{f}^{-1}C)))
$$
\n
$$
= dg(r(v^{-1}(\text{pr}_{f}^{-1}C))) = dj(l(v^{-1}(\text{pr}_{f}^{-1}C)))
$$
\n
$$
= dj(\text{pr}_{f}^{-1}(d^{F}(\text{pr}_{f}^{-1}C))) = j^{\circ}f^{\circ}C:
$$
\n(1.3.4)
\n
$$
g^{*}i^{*}Z = dg_{*}(\text{pr}_{g}^{1}(di_{*}(\text{pr}_{i}^{1}Z))) = dg_{*}(r_{*}(u^{1}(\text{pr}_{i}^{1}Z)))
$$
\n
$$
= dg_{*}(r_{*}(v^{1}(\text{pr}_{f}^{1}Z))) = dj_{*}(l_{*}(v^{1}(\text{pr}_{f}^{1}Z)))
$$
\n
$$
= dj_{*}(\text{pr}_{j}^{1}(d^{F}_{*}(\text{pr}_{f}^{1}Z))) = j^{*}f^{*}Z
$$

where in $(1.3.4)$ we used the push-forward formula [\[3,](#page-6-3) Theorem 6.2 (a)] and the fact that *di* (respectively *d*f) is nite on $pr_i^!Z$ (respectively $pr_f^!Z$). This nishes the proof.

2. Localized Chern classes

2.1. Let X be a scheme of nite type over a eld k, Z a closed subscheme of X and $U = X\backslash Z$. Let $K = (K_q; d_q)_q$ be a bounded complex of locally free \mathcal{O}_X -modules of nite ranks such that $K_q = 0$ for $q < 0$. Assume that the restriction $K|_U$ is acyclic except at degree 0 and the cohomology sheaf $\mathcal{H}_0(K)|_U$ is locally free of rank $n-1$. Then for $i \geqslant n$, we have the so-called localized Chern class $c_i\frac{X}{Z}(\mathcal{K}) \in CH^i(Z \to X)$

(cf. [1, Section 3], [3, Chapter 18] and [4, 2.3]). Consider the following ring (cf. [3, Chapter 17])
\n(2.1.1)
$$
CH^*(Z \to X)^{(n)} = \prod_{i \le n} CH^i(X \to X) \times \prod_{i \ge n} CH^i(Z \to X):
$$

We regard the total localized Chern class $c_2^X(\mathcal{K}) = ((c_i(\mathcal{K}))_{i \leq n}; (c_i \chi(\mathcal{K}))_{i \geq n})$ as an invertible element of $CH^*(Z \to X)^{(n)}$.

Let F be an \mathcal{O}_X -module such that the restriction $\mathcal{F}|_U$ is locally free of rank n. If F has a nite resolution $\mathcal{E}_\bullet \to \mathcal{F}$ by locally free \mathcal{O}_X -modules \mathcal{E}_q of mite ranks, the localized Chern class $c_i\frac{\chi}{Z}(\mathcal{F})$ for $i > n$ is de ned as $c_i \chi(\mathcal{E}_\bullet)$. It is independent of the choice of a resolution.

2.2. The following Lemma [2.3](#page-1-2) and Lemma [2.4](#page-2-0) are slight generalizations of [\[4,](#page-6-5) Lemma 2.3.2] and [\[4,](#page-6-5) Lemma 2.3.4] respectively. We use the same arguments.

Lemma 2.3 ([\[4\]](#page-6-5)). Let X be a scheme of nite type over a eld k. Let D be a Cartier divisor of X and i: $D \rightarrow X$ be the immersion. Let $\mathcal E$ be a locally free $\mathcal O_D$ -module of rank n. Assume there exist a locally free \mathcal{O}_X -module $\widetilde{\mathcal{E}}$ of nite rank and a surjection $\widetilde{\mathcal{E}} \to i_*\mathcal{E}$ so that the localized Chern class $c_D^X(i_*\mathcal{E}(D))\in CH^*(D\to X)^{(1)}$ is de ned. We put $CH_*(X)=\oplus_i CH_i(X)$, $CH_*(D)=\oplus_i CH_i(D)$ and $\mathcal{C}_D^{\sim}(I_*\mathcal{E}(D)) \in \mathcal{C}H^{*}(D \to X)^{\backslash \vee}$ is de ned. We
put $a_j(\mathcal{E}) = \sum_{k=j}^{n} {k \choose j} c_{n-k}(\mathcal{E}) \in CH^{*}(D \to D)$.

(1) ([\[4,](#page-6-5) Lemma 2.3.2]) For any invertible \mathcal{O}_D -module L, we have

(2.3.1)
$$
\sum_{k=0}^{n} c_k(\mathcal{E} \otimes \mathcal{L}) = \sum_{j=0}^{n} a_j(\mathcal{E}) c_1(\mathcal{L})^j.
$$

(2) ([\[4,](#page-6-5) Lemma 2.3.2 and Corollary 2.3.2]) For any $\in CH_*(X)$, we have equalities in $CH_*(D)$:

(2.3.2)
$$
(c_D^X(i_*\mathcal{E}(D)) - 1) \cap = c(\mathcal{E})^{-1} \sum_{j=1}^n a_j(\mathcal{E}) D^{j-1} \cap i^j
$$

$$
(c_D^X(i_*\mathcal{O}_D)^{-1} - 1) \cap = -i^!
$$

where $i^!: CH_*(X) \to CH_*(D)$ denotes the Gysin map.

Proof. (1) See [\[4,](#page-6-5) Lemma 2.3.2].

(2) We use the same argument with [\[4,](#page-6-5) Lemma 2.3.2]. By deformation to the normal bundle, we may assume $X=\mathbb{P}^1_D$ is a \mathbb{P}^1 -bundle over D and the immersion $i\colon D\to X$ is a section. Let $p\colon X\to D$ be the projection. Then $\mathcal{E}=i^*\mathcal{E}_X$ with $\mathcal{E}_X:=p^*\mathcal{E}$. Since the map $i_*:CH_*(D)\to CH_*(X)$ is injective, it is reduced to the equalities for the usual Chern classes $c(i_*\mathcal{E}(D))$ and $c(i_*\mathcal{O}_D)$ by [\[4,](#page-6-5) Proposition 2.3.1.1]. By the exact sequence

$$
(2.3.4) \t 0 \to \mathcal{O}_X(-D) \to \mathcal{O}_X \to i_* \mathcal{O}_D \to 0;
$$

we get $c(i_*\mathcal{O}_D)^{-1} = c(\mathcal{O}_X(-D))$. Thus $(c(i_*\mathcal{O}_D)^{-1} - 1) \cap = -c_1(\mathcal{O}_X(D)) \cap = -i^!$. This proves the equality [\(2.3.3\)](#page-2-1). Now we prove [\(2.3.2\)](#page-2-2). By the locally free resolution

$$
(2.3.5) \t 0 \to \mathcal{E}_X \to \mathcal{E}_X(D) \to i_*\mathcal{E}(D) \to 0;
$$

we have

(2.3.6)
$$
c(i_{*}\mathcal{E}(D)) - 1 = c(\mathcal{E}_{X})^{-1}(c(\mathcal{E}_{X}(D)) - c(\mathcal{E}_{X}))
$$

$$
\stackrel{(2.3.1)}{=} c(\mathcal{E})^{-1}(\sum_{j=0}^{n} a_{j}(\mathcal{E})D^{j} - a_{0}(\mathcal{E})) = c(\mathcal{E})^{-1} \sum_{j=1}^{n} a_{j}(\mathcal{E})D^{j}.
$$

Thus by the de nition of Gysin pull-back along a divisor [\[3,](#page-6-3) 2.6], we have
 $\left(\begin{array}{cc} n & \end{array} \right)$

(2.3.7)
$$
(c(i_{*}\mathcal{E}(D)) - 1) \cap = c(\mathcal{E})^{-1} \left(\sum_{j=1}^{n} a_{j}(\mathcal{E}) D^{j} \right) \cap = c(\mathcal{E})^{-1} \left(\sum_{j=1}^{n} a_{j}(\mathcal{E}) D^{j-1} \right) \cap I^{j}
$$

Lemma 2.4 ($[4]$, Lemma 2.3.4]). Let X and C be regular schemes of nite type over a eld k. Let i: $C \to X$ be a closed immersion of codimension c with conormal sheaf $N_{C/X}$. Let $X' \to X$ be the blow up of X along C, $_E$: $E = C \times_X X' \to C$ be the induced map and i': $E \to X'$ be the closed immersion. We put

(2.4.1)
$$
(X; C) = \sum_{j=1}^{c} a_j \left(\frac{*}{E} N_{C/X} \right) E^{j-1} - \sum_{j=0}^{c} a_j \left(\frac{*}{E} N_{C/X} \right) E^{j}.
$$

For any $\in CH_*(X')$, we have an equality in $CH_*(C)$:

$$
(2.4.2) \t E_*((c_E^{X'}(-\frac{1}{X'/X})-1) \cap) = c(N_{C/X})^{-1} \cap E_*((X/C) \cap I'^{!})
$$

If moreover $i'^! = \frac{*}{E}$ for some $\in CH_*(C)$, then we have

$$
(2.4.3) \t E_*((X,C) \cap I^!) = (-1)^c \cdot (c-1) \cdot ;
$$

$$
(2.4.4) \t E_*((c_E^{X'}(-\tfrac{1}{X'/X})-1) \cap) = (-1)^c \cdot (c-1) \cdot c(N_{C/X})^{-1} \cap :
$$

Proof. Note that the canonical map $\frac{1}{X'/X} \to \frac{1}{X}$ is an isomorphism. Since $E = \mathbb{P}((N_{C/X})^{\vee})$ is a From: Note that the canonical map $\frac{X}{X}$ $\frac{X}{X}$ $\frac{Y}{X}$ $\frac{E}{C}$ is an isomorphism. Since $E = \pm \sqrt{(XC/X)}$ is a have $c_E^{X'}(\begin{array}{cc} 1 \ X'/X \end{array}) = c_E^{X'}(I'_*, \nabla E/K(-1)) c_E^{X'}(I'_*, \mathcal{O}_E)^{-1}$. By the exact sequence $0 \to \mathcal{O}_{X'}(-E) \to \mathcal{O}_{X'} \to \mathcal{O}_{X'}(-E)$ $i'_* \mathcal{O}_E \rightarrow 0$, we get

$$
(2.4.5) \t\t 0 \to \t E' N_{C/X} \to \t E' N_{C/X}(E) \to \t E' N_{C/X}(E) \to 0.
$$

By Lemma [2.3,](#page-1-2) we have

$$
(2.4.6) \qquad (c_{E}^{X'}(i'_{*} \n k'_{C/X}(-1))c_{E}^{X'}(i'_{*}\mathcal{O}_{E})^{-1} - 1) \cap = (c_{E}^{X'}(i'_{*} \n k'_{C/X}(-1)) - 1) \cap + c_{E}^{X'}(i'_{*} \n k'_{C/X}(-1))(c_{E}^{X'}(i'_{*}\mathcal{O}_{E})^{-1} - 1) \cap (2.3.3) (c_{E}^{X'}(i'_{*} \n k'_{C/X}(-1)) - 1) \cap -c(\n k'_{C/X}(-1)) \cap i'^{!} (2.4.5) (c_{E}^{X'}(i'_{*} \n k'_{C/X}(-1)) - 1) \cap -c_{E}(\n k'_{C/X}(-1)) \cap i'^{!} (2.3.2) (c_{E}(\n k'_{*} \n k'_{C/X})^{-1} (\sum_{j=1}^{c} a_{j} (\n k'_{C/X})E^{j-1} \cap i'^{!} - \sum_{j=0}^{c} a_{j} (\n k'_{C/X})E^{j} \cap i'^{!} \n}) = c(N_{C/X})^{-1} \cap E_{*}((X; C) \cap i'^{!})
$$

By [\[3,](#page-6-3) Remark 3.2.4, p.55], we have $E^c = -\sum_{j=1}^c c_j(\frac{*}{E}N_{C/X})E^{c-j}$. Assume $i'^! = \frac{*}{E}$ for some $\in CH_*(C)$. By [\[3,](#page-6-3) Proposition 3.1 (a)], we have $E_*(E^j \cap \frac{*}{E}) = 0$ for $j < c-1$ and $E_*(E^{c-1} \cap \frac{*}{E}) = 0$ $(-1)^{c-1}$. Substituting these identities, we have

$$
\begin{aligned} (2.4.7) \qquad & \qquad \qquad \varepsilon_*(\quad (X; C) \cap I^! \quad) \\ & = (-1)^{c-1} \cdot \left(a_c(N_{C/X}) - a_{c-1}(N_{C/X}) + a_c(N_{C/X}) c_1(N_{C/X}) \right) \cap \end{aligned}
$$

Since $a_c(N_{C/X}) = 1$, $a_{c-1}(N_{C/X}) = c + c_1(N_{C/X})$ then $E_*(X; C) \cap I^{\prime!}$ $) = (-1)^c \cdot (c-1)$ and $E_*((c_{E}^{X'}(-\frac{1}{X'/X})-1) \cap) = (-1)^{c} \cdot (c-1) \cdot c(N_{C/X})^{-1} \cap$

3. Blow up formula for Gysin pull-back

3.1. Let X be a smooth scheme purely of dimension d over a eld k. We denote by $0_X: X \to T^*X$ the zero section of the cotangent bundle $\,T^*X$. We denote by $0_X^! \in CH^d(X \to T^*X)$ the (re ned) Gysin map [\[3,](#page-6-3) 6.2], where $CH^d(X \to T^*X)$ is the bivariant Chow group [3, De nition 17.1]).

3.2. We recall a method for calculating the Gysin map $0_X^!$ by using Chern classes. Let X be a regular scheme separated of nite type over a eld. Let $\mathcal E$ be a locally free $\mathcal O_X$ -modules of rank d on X. Let $E = \text{Spec}(\text{Sym}_{\mathcal{O}_X}^{\bullet} \mathcal{E}^{\vee})$ be the associated vector bundle of rank d on X with structure morphism : $E \to X$. The projective bundle of E is $\mathbb{P}(E) = \text{Proj}(\text{Sym}_{\mathcal{O}_X}^{\bullet} \mathcal{E}^{\vee})$. We have a closed immersion $\mathbb{P}(E) \hookrightarrow P(E \oplus 1) := P(E \oplus \mathbb{A}^1_X)$ with open complementary $E \hookrightarrow \mathbb{P}(E \oplus 1)$. Let $s \colon X \to E$ be the zero section. Let $k \geq 0$ be an integer and $\in CH_k(E)$. For any element $\in CH_k(\mathbb{P}(E \oplus 1))$, if the restriction of to $CH_k(E)$ equals to, then we have [\[3,](#page-6-3) Proposition 3.3]

$$
(3.2.1) \t s'(\t) = q_*(c_d(\t) \cap \t);
$$

where $q^*(\mathcal{E}\oplus 1)$ $\frac{q^*(\mathcal{E}\oplus \mathsf{I})}{\mathcal{O}_{P(E\oplus \mathsf{I})}(-1)}$ is the universal rank d quotient bundle of $q^*(\mathcal{E}\oplus \mathsf{1})$. For any element \in $CH_*(X) = \bigoplus_i \widetilde{CH}_i(X)$, we denote by $\{\}$ the dimension j part of , i.e., the image of by the projection $CH_*(X) \to CH_i(X)$. Let c() be the total Chern class of , then we can write [\(3.2.1\)](#page-3-1) as follows

(3.2.2)
$$
S^{l}() = \{q_{*}(c() \cap)\}_{k-d}.
$$

By the Whitney sum formula for Chern classes [\[3,](#page-6-3) Theorem 3.2], we have

(3.2.3)
$$
c() = c(q^* \mathcal{E}) \cdot c(\mathcal{O}_{\mathbb{P}(E \oplus 1)}(-1))^{-1}.
$$

Thus the formula [\(3.2.2\)](#page-3-2) can be written in the following way

(3.2.4)
\n
$$
S^{1}() = \{ q_{*}(c(q^{*}\mathcal{E}) \cap c(\mathcal{O}_{\mathbb{P}(E \oplus 1)}(-1))^{-1} \cap) \}_{k-d}
$$
\n
$$
= \{ c(\mathcal{E}) \cap q_{*}(c(\mathcal{O}_{\mathbb{P}(E \oplus 1)}(-1))^{-1} \cap) \}_{k-d}
$$

where the last equality follows from the projection formula [\[3,](#page-6-3) Theorem 3.2].

Lemma 3.3. Let X and Y be smooth and connected schemes over a eld k and let i: $Y \hookrightarrow X$ be a closed immersion of codimension c. Let : $\widetilde{X} \to X$ be the blow up of X along Y. Let $C \subseteq T^*X$ be a conical

closed subset purely of dimension $d = \dim X$ and let Z be a d-cycle supported on C. Suppose and i are properly C-transversal. Then we have an equality in $CH_0(X)$:

(3.3.1)
$$
(0^!_{\widetilde{X}}(^{}Z)) = 0^!_{X}(Z) + (-1)^c \cdot (c-1) \cdot i_*(0^!_{Y}(i^*Z))
$$

For the de nition of the Gysin map $0^!_{\bullet}$, see Subsection [3.1.](#page-3-3)

Proof. Let \widetilde{Y} be the exceptional divisor of : $\widetilde{X}\to X$ with projection map ~: $\widetilde{Y}\to Y$. Let $\widetilde{Y}\hookrightarrow \widetilde{X}$ be the closed immersion. We have a commutative diagram

where pr $\;$ and pr $_{\hat{7}}$ are the $\;$ rst projections, $d\;: T^*X \times_X \widetilde{X}\to T^*\widetilde{X}$ (respectively $d\!t\colon T^*\widetilde{X} \times_{\widetilde{X}} \widetilde{Y}\to T^*\widetilde{Y})$ is the map induced by $\; : \tilde{X}\to X$ (respectively $\check{\tau}\colon \widetilde{Y}\to Y$), the maps $\overline{\mathsf{pr}}$, $\overline{\mathsf{dr}}$, $\overline{\mathsf{pr}}_j$ and $\overline{\mathsf{dr}}$ are the maps induced by pr , d , pr_i and di respectively, all other maps are either the canonical projection morphisms or open immersions. In [\(3.3.2\)](#page-4-0), we use the symbol \Box " to mean the square is a Cartesian diagram. For example, the most left-bottom square in [\(3.3.2\)](#page-4-0) is Cartesian since q' is proper and $\mathbb{P}(T^*X\times_X\tilde{X}\oplus 1)$ has dense image in $\mathbb{P}(T^*X\oplus 1)\times_X\tilde{X}$. Note also that the map \overline{di} is only well-de ned on the open subscheme $T^*\widetilde{X}\times_{\widetilde{X}}\widetilde{Y}$, but this is enough for our purpose (cf. [\[5,](#page-6-2) Lemma 6.4]).

For any $\in CH_d(T^*X)$, we denote by $\bar{B} = CH_d(\mathbb{P}(T^*X \oplus 1))$ an extension of (cf. [3.2\)](#page-3-4). We choose an extension $\overline{Z}\in \mathit{CH}_d(\mathbb{P}(T^*\overline{X}\oplus 1))$ of Z. Then $\overline{\text{pr}}^!(\overline{Z})$ is an extension of $\text{pr}^!$ Z. Since is C-transversal, the push-forwards $d_*(pr^! Z)$ and $\overline{d}_*(pr^! (\overline{Z}))$ are well-de ned, and $\overline{d}_*(pr^! (\overline{Z}))$ is an extension of $d_*(pr^! Z)$.

Since ~ is smooth, thus ~ is i C-transversal by [\[5,](#page-6-2) Lemma 3.4.1]. By Lemma [1.3,](#page-0-0) it is \degree C-transversal and we have

(3.3.3) ~˚ i ˚Z " ~i ˚ ˚Z:

The following exact sequence $(i_{*} \quad \frac{1}{\tilde{Y}/Y} \simeq \quad \frac{1}{\tilde{X}/X})$

(3.3.4) 0 Ñ ˚ ¹ ^X Ñ ¹ ^X^Ă ^Ñ [~]i˚ 1 ^Y^r {^Y Ñ 0

gives a resolution of $\vec{\tau}_{*-\frac{1}{\tilde{Y}/Y}}$ by locally free sheaves of mite rank. Thus the localized Chern class $c_k \frac{X}{Y}(i_* - \frac{1}{Y/Y}) \in CH^*(Y \to X)$ is well-de ned for $k \geq 1$ (cf. Subsection [2.1\)](#page-1-3). In order to simplify the notation, we put $c_k^{\text{loc}}(\vec{\imath}_{*-\frac{1}{Y/Y}}):=c_k\overset{X}{_\text{Y}}(\vec{\imath}_{*-\frac{1}{Y/Y}})$ and $c_k^{\text{loc}}(p^{\ast}\vec{\imath}_{*-\frac{1}{Y/Y}}):=c_k\overset{\mathbb{P}(T^{\ast}\widetilde{X}\oplus 1)}{\mathbb{P}(T^{\ast}\widetilde{X}\times_{\widetilde{Y}})}$ $\frac{\mathbb{P}(T^{*}X\oplus 1)}{\mathbb{P}(T^{*}\widetilde{X}\times_{\widetilde{X}}\widetilde{Y}\oplus 1)}(p^{*}i_{*}\ \ \frac{1}{\widetilde{Y}/Y}).$ Similarly, we denote by c^{loc} the total localized Chern class. Applying the Whitney sum formula for (localized) Chern classes (cf. [\[1,](#page-6-4) Proposition 3.1]) to the exact sequence [\(3.3.4\)](#page-4-1), we get

$$
(3.3.5) \t c(\frac{1}{\chi}) = c(\frac{*}{\chi}) \cdot c^{loc}(\dot{\mathbf{1}}_{*} \ \frac{1}{\dot{\gamma}/\gamma}) = c(\frac{*}{\chi}) + c(\frac{*}{\chi}) \cdot (c^{loc}(\dot{\mathbf{1}}_{*} \ \frac{1}{\dot{\gamma}/\gamma}) - 1).
$$

We will simply denote by $\mathcal{O}(1)$ for $\mathcal{O}_{\mathbb{P}(T*\widetilde{X}\oplus 1)}(1)$ (and also for $\mathcal{O}_{\mathbb{P}(T*X\oplus 1)}(1)$ and so on) in the following calculations. We have

$$
(3.3.6)
$$

 $d *$

! pr

$$
\begin{array}{c}\n\ast (0^!_{\widetilde{X}}(\begin{array}{c} *Z) \end{array}) \stackrel{(3.2.4)}{=} \left\{ \begin{array}{c}\n\ast \left(c(\begin{array}{c} \frac{1}{X} \end{array}) \cap p_* \left(c(\mathcal{O}(-1))^{-1} \cap \overline{d} \right. \ast \overline{p} \Gamma^! \overline{Z} \right) \right) \right\}_0 \\
\stackrel{(3.3.5)}{=} \left\{ \begin{array}{c}\n\ast \left(c(\begin{array}{cc} * \frac{1}{X} \end{array}) \cdot c^{\text{loc}}(i_{*} \quad \frac{1}{Y/Y}) \cap p_* \left(c(\mathcal{O}(-1))^{-1} \cap \overline{d} \right. \ast \overline{p} \Gamma^! \overline{Z} \right) \right) \right\}_0 \\
\stackrel{(a)}{=} \left\{ c(\begin{array}{cc} 1 \end{array}) \cap \ast \left(c^{\text{loc}}(i_{*} \quad \frac{1}{Y/Y}) \cap p_* \left(c(\mathcal{O}(-1))^{-1} \cap \overline{d} \right. \ast \overline{p} \Gamma^! \right. \n\end{array}\n\right\}\n\end{array}
$$

``

Consider the following commutative diagram induced from the morphism $\sim : \widetilde{Y} \rightarrow Y$.

$$
T^*Y \leftarrow \frac{pr_{\tilde{\pi}}}{pr_{\tilde{\pi}}} T^*Y \times_Y \tilde{Y} \xrightarrow{d_{\tilde{\pi}}} T^* \tilde{Y}
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
\mathbb{P}(T^*Y \oplus 1) \xleftarrow{\text{PT}_{\tilde{\pi}}} \mathbb{P}(T^*Y \times_Y \tilde{Y} \oplus 1) \xrightarrow{\overline{d_{\tilde{\pi}}}} \mathbb{P}(T^* \tilde{Y} \oplus 1)
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
Y \leftarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
Y \leftarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
X \leftarrow \qquad \qquad \tilde{X}
$$

Since
$$
\overline{d_{\gamma}}*\overline{pr}^{\dagger}
$$
 $\overline{f^{\ast}Z}$ is an extension of $\sim^* \overline{f^{\ast}Z}$ to $\mathbb{P}(T^*\widetilde{Y} \oplus 1)$, thus (3.3.9) equals to
\n(3.3.11)
$$
f^{\dagger} (p_* (c(\mathcal{O}(-1))^{-1} \cap \overline{d_{\gamma}}*\overline{pr}^{\dagger} \overline{Z})) = r_* (c(\mathcal{O}(-1))^{-1} \cap \overline{d_{\gamma}}*\overline{pr}^{\dagger} \overline{f^{\ast}Z})
$$
\n
$$
\stackrel{(c)}{=} r_*\overline{d_{\gamma}}*(c(\mathcal{O}(-1))^{-1} \cap \overline{pr}^{\dagger} \overline{f^{\ast}Z}) = r_*\overline{d_{\gamma}}*(\overline{pr}^*c(\mathcal{O}(-1))^{-1} \cap \overline{pr}^{\dagger} \overline{f^{\ast}Z})
$$
\n
$$
\stackrel{(d)}{=} r_*\overline{d_{\gamma}}*\overline{pr}^{\dagger} (c(\mathcal{O}(-1))^{-1} \cap \overline{f^{\ast}Z})
$$

where we used the projection formula [\[3,](#page-6-3) Theorem 3.2] in step (c), and (d) follows from [3, Proposition 17.3.2]. By the commutative diagram [\(3.3.10\)](#page-6-6) and the push-forward formula [\[3,](#page-6-3) Theorem 6.2], we have

(3.3.12)
$$
r_*\overline{d^2}_*\overline{pr}^! = s'_*\overline{pr}^! = \neg^!s_* = \neg^*s_*:
$$

By $(3.3.11)$ and $(3.3.12)$, the second term of $(3.3.7)$ equals to

$$
(3.3.13) \qquad \{i_{*}(c(\vec{r}^{*}-\vec{\chi})\cap c(N_{Y/X})^{-1}\cap \cdot_{*}((X,Y)\cap \vec{T}^{1}(p_{*}(c(O(-1))^{-1}\cap \vec{d}_{*}\vec{p}\vec{r}^{1}\vec{Z}))))\}_{0}
$$
\n
$$
= \{i_{*}(c(\vec{r}^{*}-\vec{\chi})\cap c(N_{Y/X})^{-1}\cap \cdot_{*}((X,Y)\cap \cdot_{*}^{*}s_{*}(c(O(-1))^{-1}\cap \vec{r}\vec{z})))\}_{0}
$$
\n
$$
\xrightarrow{(2.4.3)} (-1)^{c} \cdot (c-1) \{i_{*}(c(\vec{r}^{*}-\vec{\chi})\cap c(N_{Y/X})^{-1}\cap s_{*}(c(O(-1))^{-1}\cap \vec{r}\vec{z}))\}_{0}
$$
\n
$$
\xrightarrow{(1)} (-1)^{c} \cdot (c-1) \{i_{*}(c(\vec{\chi})\cap s_{*}(c(O(-1))^{-1}\cap \vec{r}\vec{z}))\}_{0}
$$
\n
$$
\xrightarrow{(3.2.4)} (-1)^{c} \cdot (c-1) \cdot i_{*}0_{Y}^{1}(\vec{r}^{*}\vec{Z}).
$$

where the step (1) follows from $c(i^*-\frac{1}{X})\cdot c(N_{Y/X})^{-1}=c(-\frac{1}{Y})$ since we have an exact sequence

$$
(3.3.14) \t\t 0 \to N_{Y/X} \to i^* \quad \frac{1}{X} \to \quad \frac{1}{Y} \to 0;
$$

where $N_{Y/X}$ is the conormal sheaf associated to the the regular immersion *i*: $Y \rightarrow X$. Finally, by $(3.3.6)$, $(3.3.8)$ and $(3.3.12)$, we get $(3.3.1)$. This nishes the proof.

References

- [1] A. Abbes, Cycles on arithmetic surfaces, Compos. Math., 122 (2000): 23-111.
- [2] A. Beilinson, Constructible sheaves are holonomic, Selecta Mathematica, 22, Issue 4 (2016):1797-1819.
- [3] W. Fulton, Intersection theory, 2nd edition, Springer New York (1998).
- [4] K. Kato and T. Saito, On the conductor formula of Bloch, Publications Mathematiques de l'IHES 100 (2004): 5-151.
- [5] T. Saito, The characteristic cycle and the singular support of a constructible sheaf, Inventiones mathematicae, 207 (2017): 597-695.
- [6] N. Umezaki, E. Yang and Y. Zhao, Characteristic class and the ε -factor of an etale sheaf, preprint.

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan

E-mail address: umezaki@ms.u-tokyo.ac.jp, umezakinaoya@gmail.com

Fakultat fur Mathematik, Universitat Regensburg, 93040 Regensburg, Germany E-mail address: enlin.yang@mathematik.uni-regensburg.de, yangenlin0727@126.com

Fakultat fur Mathematik, Universitat Regensburg, 93040 Regensburg, Germany E-mail address: yigeng. zhao@mathematik.uni-regensburg.de