A BLOW UP FORMULA FOR GYSIN PULL-BACK

NAOYA UMEZAKI, ENLIN YANG, AND YIGENG ZHAO

Abstract. In this note, we prove a blow up formula for Gysin pull-back of cycles by the zero section
of a cotangent bundle (cf. Lemma 3.3). A special case of this formula is used in the proof of the twist
formula for e-factors [6].

1. Preliminaries on C-transversal condition

De nition 1.1. Let X, Y and W be smooth schemes over a eld k. We denote by T X < T*X the
zero section of the cotangent bundle T*X of X. Let C be a conical closed subset of T*X, i.e., a closed
subset which is stable under the action of the multiplicative group Gp,.

(1) ([2, 1.2]) Let h: W — X be a morphism over k. We say that h is C-transversal at w € W if the
ber ((C xx W) ndh=(TyW)) xwWw is contained in the zero-section T#X xx W < T*X xx W,
where dh: T*X xx W — T*W is the canonical map. We say that h is C-transversal if h is C-
transversal at any point of W.
If h is C-transversal, we de ne h°C to be the image of C xx W under the map dh: T*X xx
W — T*W. By [5, Lemma 3.1], h°C is a closed conical subset of T*W.

(2) ([5, De nition 7.1]) Assume that X and C are purely of dimension d and that W is purely of
dimension m. We say that a C-transversal map h: W — X is properly C-transversal if every
irreducible component of C xx W is of dimension m.

) ([2, 1.2] and [5, De nition 5.3]) We say that a morphism f: X — Y over k is C-transversal at
x € X if the inverse image df ~1(C) xx x is contained in the zero-section TFY xy X € T*Y xvy X,
where df : T*Y xy X — T*X is the canonical map. We say that f is C-transversal if f is C-
transversal at any point of X.

1.2. Let X be a smooth scheme purely of dimension d over a eld k. Let W be a smooth scheme purely of
dimension m over k. Assume that C = T *X is a conical closed subset purely of dimension d. Let Z be a
d-cycle supported on C and h: W — X a properly C-transversal morphism. Letpr,,: T*X xxW — T*X
be the rst projection map. Since pry, is a morphism between smooth schemes, the re ned Gysin pull-
back pri,Z is well-de ned in the sense of intersection theory [3, 6.6]. We de ne h*Z € CHm(h°C) [5,
De nition 7.1.2] to be

(1.2.1) h*Z := dh,(pry2):

Notice that the push-forward is well-de ned since dh: T*X xx W — T*W is nite on C xx W by [2,
Lemma 1.2 (ii)]. Since h is properly C-transversal, every irreducible component of h°C is of dimension
m. Thus CHmy(h°C) = Z,(h°C). Hence we may regard h*Z as a m-cycle on T*W, which is supported
on h°C.

We prove the following commutative property for successively pull-backs.

Lemma 1.3. Let X be a smooth scheme purely of dimension d over a eld k. Consider the following
commutative diagram

]
TS W

(1.3.1) f

<<2

o x
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between equidimensional smooth schemes over k. Let C < T*X be a conical closed subset purely of
dimension d. Assume that i and f are C-transversal, and g is i°C-transversal. Let Z be a d-cycle
supported on C. Then we have

(1) j is feC-transversal.

(2) g°i°C = j°f°C < T*U and an equality for cycle class g*i*Z = j*f*Z.

Proof. (1) This follows from [5, Lemma 3.4.3].
(2) We have a commutative diagram

T*X T*X xx W T*W

s
foT Tv O pro

(1.3.2) T*X xx Y =——T*X xx U —">T*W xyw U

o o Ja

T*Y TT*Y xy U T)T*U

where the morphisms prg; pry; pr; and pr; are the rst projections, df;dg;di;dj are morphisms induced
from f;g;i;j respectively, and v = id x j;u = id x g;r = di x id. In the diagram (1.3.2), there are two
Cartesian squares which are indicated by the symbols \[J". Then we have

(1.3.3) g°i°C = dg(prg™* (di(pr; *C))) = dg(r(u~*(pr; *C)))

=dg(r(v*(pry7C))) = di(* (v (prg'C)))
= dj (pr; (df (prs 'C))) = jof°C:
)

(1.3.4) 9*i*Z = dg. (pry(di(priZ) ) dg. (r«(u'(priz)))
= dga (r«(v'(pre2))) = dix (14 (v'(pre2)))
= dj*(pl‘ (df*(prf ))) _J*f Z

where in (1.3.4) we used the push-forward formula [3, Theorem 6.2 (a)] and the fact that di (respectively
df) is nite on priZ (respectively pryZ). This nishes the proof.

2. Localized Chern classes

2.1. Let X be a scheme of nite type over a eld k, Z a closed subscheme of X and U = X\Z. Let
IC = (Kq;dq)q be a bounded complex of locally free Ox -modules of nite ranks such that Kq = 0 for g < 0.
Assume that the restriction K|y is acyclic except at degree 0 and the cohomology sheaf Ho(K)|u is locally
free of rank n — 1. Then for i > n, we have the so-called localized Chern class ¢;¥ (K) e CH'(Z — X)
(cf. [1, Section 3], [3, Chapter 18] and [4, 2.3]). Consider the following ring (cf. [3, Chapter 17])

(2.1.2) CH*(Z - X)W = [[CH'(X - X) x [ [CH(Z — X):
i<n i=n
We regard the total localized Chern class ¢X (K) = ((¢i(K))i<n; (Cix (K))i=n) as an invertible element of
CH*(Z — X)(M,
Let F be an Ox-module such that the restriction F|y is locally free of rank n. If 7 has a nite
resolution & — F by locally free Ox-modules & of nite ranks, the localized Chern class ¢i% (F) for
i > nisde ned as ci¥(&,). It is independent of the choice of a resolution.

2.2. The following Lemma 2.3 and Lemma 2.4 are slight generalizations of [4, Lemma 2.3.2] and [4,
Lemma 2.3.4] respectively. We use the same arguments.

Lemma 2.3 ([4]). Let X be a scheme of nite type over a eld k. Let D be a Cartier divisor of X
and i: D — X be the immersion. Let £ be a locally free Op-module of rank n. Assume there exist
a locally free Ox-module g of nite rank and a surjection £ — i4& so that the localized Chern class
cS(ix€(D)) € CH*(D — X)®) is de ned. We put CH,(X) = @®iCH;(X), CH,(D) = ®CH;(D) and

put a;(£) = Y_; ( )en—k(€) € CH*(D — D).
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(1) ([4, Lemma 2.3.2]) For any invertible Op-module £, we have

(2.3.1) i wk(ERL) = Z aj (€

k=0
(2) ([4, Lemma 2.3.2 and Corollary 2.3.2]) For any e CH,(X), we have equalities in CH,.(D):

a(E)DI T nit
1

(2.3.2) (cS(iE£D)—1) n =¢(&)7? ;
j=

(2.3.3) (S(i:0p) ™t =1 n =-i':
where i': CH,(X) — CH, (D) denotes the Gysin map.

Proof. (1) See [4, Lemma 2.3.2].

(2) We use the same argument with [4, Lemma 2.3.2]. By deformation to the normal bundle, we may
assume X = PL is a P*-bundle over D and the immersion i: D — X is a section. Let p: X — D be the
projection. Then £ = i*Ex with Ex := p*&. Since the map i, : CH, (D) — CH,(X) is injective, it is
reduced to the equalities for the usual Chern classes c(i.£(D)) and c(i+Op) by [4, Proposition 2.3.1.1].
By the exact sequence

(2.3.4) 0 - Ox(—D) - Ox — i,0p — 0;
we get ¢(i,Op) ™t = ¢(Ox(—D)). Thus (c(isOp) 1 —1)n = —c;(Ox(D))n = —i' . This proves
the equality (2.3.3). Now we prove (2.3.2). By the locally free resolution
(2.3.5) 0 > Ex — Ex(D) > i,E(D) — O;
we have
(2.3.6) c(i+€(D)) — 1 = ¢(&x)*(c(éx (D)) — ¢(x))

2D 8) 1Y, ay(E)DF - a(€)) — c(€) Y. &y (£)D)

Jj=0 j=1

Thus by the de nition of Gysin pull-back along a divisor [3, 2.6], we have

(2.3.7) (c(i+£E(D) —1)n =c(&)7t i aj (S)Dj> n =c)? (i aj (8)Dj1> A
j=1

]

Lemma 2.4 ([4, Lemma 2.3.4]). Let X and C be regular schemes of nite type over a eld k. Let
i: C — X be a closed immersion of codimension ¢ with conormal sheaf N¢/x. Let @ X’ — X be the
blow up of X along C, g: E = C xx X’ — C be the induced map and i’: E — X’ be the closed
immersion. We put

(2.4.1) ch ( ENc/x)EI Tt — _ZC;Jaj( ENc/x )E:

For any € CH,(X’), we have an equallty in CH,(C): J

(2.4.2) £« (G2 ( %) =1 ) =c(Negx) ™ n el (X;C)ni" );
If moreover i = £ for some e CH,(C), then we have

(2.4.3) ex( (X:C)ni" )= (-1 (c—1)-

(24.4) Ex((C2 ( Sox) =D )= (=1)°(c—1)-c(Ngx) ' n

Proof. Note that the canonical map %(//x — i, 1E/C is an isomorphism. Since E = P((N¢/x)") is a
P°~1-bundle over C, we have an exact sequence 0 — lE/C —  EN¢/x(-1) — O — 0. Hence, we
have ¢X'( %, /x) = ¢& (i, ENc/x(—1))c¥ (i,.0g)~t. By the exact sequence 0 — Ox:(—E) — Ox: —

i,,Oe — 0, we get
(2.4.5) 0— ENg/x = gENg/x(E) = ENg/x(E)—0:
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By Lemma 2.3, we have

(2.4.6) (e&(if, ENg)x(—1)eg (i,0e)™ = 1) N
= (X'(i, ENex(-1) 1+ (i ENex(~1)(©X (i,0e) ™ ~1) n
C29 (X1, ENex(-1) —1)n —c( ENex(~1) "
CE9 (X (i, ENex(E))—1) n —ce( ENe/x) tee( ENe/x(E)) n i

C

(2.3.2) . L

=" ce( gNg/x)~ Z a; ( ENC/X) it - Z aj( gN¢/x)E! n i )
j=o0

=c(Ngyx) 7t n Ex( (XC)ni" )

By [3, Remark 3.2.4, p.55], we have E® = — 377, ¢j( £Nc/x)E®J. Assume i = £ for some
€ CH,(C). By[3, Proposition 3.1 (a)], we have g.(E¥n £ )=0forj <c—land g.(ES'n % )=
(—1)¢=1 . Substituting these identities, we have

(2.4.7) e«( X,C)ni" )
:(—1)671 “(ac(N¢/x) —ac—1(N¢/x) + ac(Ng/x )c1(Ne/x)) n

Since ac(Ng/x) = 1, ac—1(Ng/x) = ¢ + ca(Ng/x) then g.( (X;C)ni* ) = (-1)°-(c—1)- and
Ex((CE'( X)) =1 )= (-1)°(c—1)-c(Ngx) ™t n

3. Blow up formula for Gysin pull-back

3.1. Let X be a smooth scheme purely of dimension d over a eld k. We denote by 0x : X — T*X the
zero section of the cotangent bundle T*X. We denote by 04 € CHY(X — T*X) the (re ned) Gysin
map [3, 6.2], where CHY(X — T*X) is the bivariant Chow group [3, De nition 17.1]).

3.2. We recall a method for calculating the Gysin map 0% by using Chern classes. Let X be a regular
scheme separated of nite type over a eld. Let £ be a locally free Ox-modules of rank d on X.
Let E = Spec(Symg,, £") be the associated vector bundle of rank d on X with structure morphism

. E — X. The projective bundle of E is P(E) = Proj(Symg, £¥). We have a closed immersion
P(E) - P(E®1) := P(E ®AL) with open complementary E — P(E @ 1). Let s: X — E be the zero
section. Let k > 0 be an integer and € CHg(E). For any element e CHy(P(E @1)), if the restriction
of to CH(E) equals to , then we have [3, Proposition 3.3]

(3.2.1) s'( ) =qe(cal ) )

where = % is the universal rank d quotient bundle of q*(£ @ 1). For any element «€

CH.(X) = @iCH;i(X), we denote by { }; the dimension j part of , i.e., the image of by the
projection CH,.(X) — CH;j(X). Let c¢( ) be the total Chern class of , then we can write (3.2.1) as
follows

3.2.2) $'() ={ax(c( ) n e a

By the Whitney sum formula for Chern classes [3, Theorem 3.2], we have

(3.2.3) ¢( ) =c(a*€) - c(Opep) (1)

Thus the formula (3.2.2) can be written in the following way

(3.2.4) s'( ) = {g.(c(a*E) N C(Oma@l ) e_d
= {c(€) N G« (c(Op(eq) (— }k d

where the last equality follows from the projection formula [3, Theorem 3.2].

Lemma 3.3. Let X and Y be smooth and connected schemes over a eld k and leti: Y — X be a closed
immersion of codimension c. Let : X — X be the blow up of X along Y. Let C < T*X be a conical
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closed subset purely of dimension d = dim X and let Z be a d-cycle supported on C. Suppose and i are
properly C-transversal. Then we have an equality in CHp(X):

(33.1) (0% *2Z)) = 0% (Z) + (~1)° - (¢ — 1) - i (0 (i*2));

For the de nition of the Gysin map 0}, see Subsection 3.1.

Proof. Let Y be the exceptional divisor of : X — X with projection map ~: Y > Y. Let: Y — X be
the closed immersion. We have a commutative diagram

pr ~
THX <~ " T¥X x4 X

| | .

BT ~ a ~ PT; ~ N di -
PT*X @1) <—— P(T*X xx X®1) — > P(T*X91) <—— P(T*X x ¢ V®1) — = = P(T*Y @ 1)

(3.3.2) ql O q/l / » o o /

I
12

where pr and pr; are the rst projections, d : T*X xx X — T*X (respectively di: T*X x ¥ — T*Y)
is the map induced by : X > X (respectively T: Y > Y), the maps pr , d , pr; and df are the maps
induced by pr , d , pr; and df respectively, all other maps are either the canonical projection morphisms
or open immersions. In (3.3.2), we use the symbol \[ " to mean the square is a Cartesian diagram. For
example, the most left-bottom square in (3.3.2) is Cartesian since q’ is proper and P(T*X xx X ®1) has
dense image in P(T*X @®1) xx X. Note also that the map df is only well-de ned on the open subscheme
T*X X Y, but this is enough for our purpose (cf. [5, Lemma 6.4]).

For any € CHg(T*X), we denote by — € CHy(P(T*X @ 1)) an extension of (cf. 3.2). We
choose an extension Z € CHg(P(T*X @ 1)) of Z. Then pr' (Z) is an extension of pr' Z. Since is
C-transversal, the push-forwards d .(pr' Z) and d ,(pr' (Z)) are well-de ned, and d ,(pr' (Z)) is an
extension of d . (pr' Z).

Since ~ is smooth, thus ~ is i°C-transversal by [5, Lemma 3.4.1]. By Lemma 1.3, Tis °C-transversal
and we have

(3.3.3) ~*i¥Z = ¢ *Z:

The following exact sequence (T é/Y ~ i?/x)

(3.3.4) 0—- * L - L -0

L1
X T*\?/Y

gives a resolution of T, \1?/\( by locally free sheaves of nite rank. Thus the localized Chern class
i (T \17/\() e CH*(Y — X) is well-de ned for k > 1 (cf. Subsection 2.1). In order to simplify
and CLOC(p*-i- L y= CkP(T*SZ@l) )(p*-i- L.

H loc 1 - X 1
the notation, we put ¢,2°(T, V/Y) = oy (T V/Y) 5 vy PIT#Xx 27 1 5 vy

Similarly, we denote by c'°¢ the total localized Chern class. Applying the Whitney sum formula for
(localized) Chern classes (cf. [1, Proposition 3.1]) to the exact sequence (3.3.4), we get

(335) ol R)=o( * k) b )=c(* k)re( * k) (@0 L)1)
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We will simply denote by O(1) for O]P’(T*)?@:L)(l) (and also for Op(r+x@1)(1) and so on) in the following
calculations. We have

336) w0 *2) 27 { L (o ) 0 pe (GOC-1) AT Lpr' 7))
(339 { . (C( * 1y clocqy \17/Y) N Ps (C((’)(—l))—l Ad .pr Z))}O

Dol n w (e ) npa (C(O(-1) AT LpT
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Consider the following commutative diagram induced from the morphism ~: Y Y.

THY < T*Y xy Y ———— > T*Y

prz d~
l
PTHY @ 1) < P(T*Y xy ¥ ®1) — = P(T*Y @ 1)
(3.3.10) s O s /
Y . Y
i 0 T
X X

Since d~,pr' i*Z is an extension of ~*i*Z to IP’(T*Y @ 1), thus (3.3.9) equals to
(33.11) T (ps (c(O(~1))* A T 4T Z)) = 1y (¢(O(~1)) " A d=,pri#Z)
9 1= (c(O(=1) ™" APILTFZ) = rud=. (pr*c(O(-1)) " n pr'#2)
D d=pr (c(O(-1))"t A T*Z)

where we used the projection formula [3, Theorem 3.2] in step (c), and (d) follows from [3, Proposition
17.3.2]. By the commutative diagram (3.3.10) and the push-forward formula [3, Theorem 6.2], we have

(3.3.12) red~,pr. = s,pr. = ~'s, = ~*s,:
By (3.3.11) and (3.3. 12) the second term of (3.3.7) equals to
(3.3.13) {is (c(i* %) nc(Ny )™ n= ( (XY) nT (pi (c(O(-1) "t nd 4pT 2))))},
= {ix (c(i mc(Ny/x) Yo~ (X m~*s (c(O(-1))~ i*Z)))}O
(2'4='3)(—1)° (e — 1) {ix (c(i* L) c(Ny/x) A Si (c(O(-1)) A TFZ))},
De1)e (e —1) {is (c( L) sy (c(O LATZ))},
(3-i-4)

(=1)°- (c—1) -0} (i*2):
where the step (1) follows from c(i* $)-c(Ny ,x)™' =c( ) since we have an exact sequence
(3.3.14) 0—Nyx > i* x> § -0

where Ny /x is the conormal sheaf associated to the the regular immersioni: Y — X.
Finally, by (3.3.6), (3.3.8) and (3.3.12), we get (3.3.1). This nishes the proof.
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