A BLOW UP FORMULA FOR GYSIN PULL-BACK

NAOYA UMEZAKI, ENLIN YANG, AND YIGENG ZHAO

Abstract. In this note, we prove a blow up formula for Gysin pull-back of cycles by the zero section of a cotangent bundle (cf. Lemma 3.3). A special case of this formula is used in the proof of the twist formula for ε -factors [6].

1. Preliminaries on C-transversal condition

De nition 1.1. Let X, Y and W be smooth schemes over a eld k. We denote by $T_X^*X \subseteq T^*X$ the zero section of the cotangent bundle T^*X of X. Let C be a conical closed subset of T^*X , i.e., a closed subset which is stable under the action of the multiplicative group \mathbb{G}_m .

(1) ([2, 1.2]) Let h: $W \to X$ be a morphism over k. We say that h is C-transversal at $w \in W$ if the ber $((C \times_X W) \cap dh^{-1}(T^*_W W)) \times_W w$ is contained in the zero-section $T^*_X X \times_X W \subseteq T^* X \times_X W$, where dh: $T^*X \times_X W \to T^*W$ is the canonical map. We say that h is C-transversal if h is C-transversal if h is C-transversal at any point of W.

If h is C-transversal, we de ne h°C to be the image of $C \times_X W$ under the map dh: $T^*X \times_X W \rightarrow T^*W$. By [5, Lemma 3.1], h°C is a closed conical subset of T^*W .

- (2) ([5, De nition 7.1]) Assume that X and C are purely of dimension d and that W is purely of dimension m. We say that a C-transversal map h: $W \rightarrow X$ is properly C-transversal if every irreducible component of $C \times_X W$ is of dimension m.
- (3) ([2, 1.2] and [5, De nition 5.3]) We say that a morphism $f: X \to Y$ over k is C-transversal at $x \in X$ if the inverse image $df^{-1}(C) \times_X x$ is contained in the zero-section $T_Y^*Y \times_Y X \subseteq T^*Y \times_Y X$, where $df: T^*Y \times_Y X \to T^*X$ is the canonical map. We say that f is C-transversal if f is C-transversal if f is C-transversal at any point of X.

1.2. Let X be a smooth scheme purely of dimension d over a eld k. Let W be a smooth scheme purely of dimension m over k. Assume that $C \subseteq T^*X$ is a conical closed subset purely of dimension d. Let Z be a d-cycle supported on C and h: $W \to X$ a properly C-transversal morphism. Let $pr_h: T^*X \times_X W \to T^*X$ be the rst projection map. Since pr_h is a morphism between smooth schemes, the re ned Gysin pullback $pr_h^!Z$ is well-de ned in the sense of intersection theory [3, 6.6]. We de ne $h^*Z \in CH_m(h^\circ C)$ [5, De nition 7.1.2] to be

(1.2.1)
$$h^*Z := dh_*(pr_h^!Z)$$
:

Notice that the push-forward is well-de ned since $dh: T^*X \times_X W \to T^*W$ is nite on $C \times_X W$ by [2, Lemma 1.2 (ii)]. Since *h* is properly *C*-transversal, every irreducible component of $h^\circ C$ is of dimension *m*. Thus $CH_m(h^\circ C) = Z_m(h^\circ C)$. Hence we may regard h^*Z as a *m*-cycle on T^*W , which is supported on $h^\circ C$.

We prove the following commutative property for successively pull-backs.

Lemma 1.3. Let X be a smooth scheme purely of dimension d over a eld k. Consider the following commutative diagram

Date: August 6, 2018.

²⁰¹⁰ Mathematics Subject Classi cation. Primary 14F20; Secondary 11G25, 11S40.

between equidimensional smooth schemes over k. Let $C \subseteq T^*X$ be a conical closed subset purely of dimension d. Assume that i and f are C-transversal, and g is i^oC-transversal. Let Z be a d-cycle supported on C. Then we have

- (1) j is $f^{\circ}C$ -transversal.
- (2) $g^{\circ}i^{\circ}C = j^{\circ}f^{\circ}C \subseteq T^{*}U$ and an equality for cycle class $g^{*}i^{*}Z = j^{*}f^{*}Z$.

Proof. (1) This follows from [5, Lemma 3.4.3].

(2) We have a commutative diagram

where the morphisms $pr_{f'}pr_{g'}pr_{j}$ and pr_{j} are the rst projections, df'; dg; di; dj are morphisms induced from f; g; i; j respectively, and $v = id \times j; u = id \times g; r = di \times id$. In the diagram (1.3.2), there are two Cartesian squares which are indicated by the symbols \square ". Then we have

(1.3.3)

$$g^{\circ} i^{\circ} C = dg(pr_{g}^{-1}(di(pr_{i}^{-1}C))) = dg(r(u^{-1}(pr_{i}^{-1}C)))$$

$$= dg(r(v^{-1}(pr_{f}^{-1}C))) = dj(!(v^{-1}(pr_{f}^{-1}C)))$$

$$= dj(pr_{j}^{-1}(df(pr_{f}^{-1}C))) = j^{\circ} f^{\circ} C:$$
(1.3.4)

$$g^{*} i^{*} Z = dg_{*}(pr_{g}^{!}(di_{*}(pr_{i}^{!}Z))) = dg_{*}(r_{*}(u^{!}(pr_{i}^{!}Z)))$$

$$= dg_{*}(r_{*}(v^{!}(pr_{f}^{!}Z))) = dj_{*}(!_{*}(v^{!}(pr_{f}^{!}Z)))$$

$$= dj_{*}(pr_{j}^{!}(df_{*}(pr_{f}^{!}Z))) = j^{*} f^{*} Z$$

where in (1.3.4) we used the push-forward formula [3, Theorem 6.2 (a)] and the fact that *di* (respectively df) is nite on $pr_i^! Z$ (respectively $pr_f^! Z$). This nishes the proof.

2. Local ized Chern classes

2.1. Let X be a scheme of nite type over a eld k, Z a closed subscheme of X and $U = X \setminus Z$. Let $\mathcal{K} = (\mathcal{K}_q; d_q)_q$ be a bounded complex of locally free \mathcal{O}_X -modules of nite ranks such that $\mathcal{K}_q = 0$ for q < 0. Assume that the restriction $\mathcal{K}|_U$ is acyclic except at degree 0 and the cohomology sheaf $\mathcal{H}_0(\mathcal{K})|_U$ is locally free of rank n-1. Then for $i \ge n$, we have the so-called localized Chern class $c_{iZ}(\mathcal{K}) \in CH^i(Z \to X)$ (cf. [1, Section 3], [3, Chapter 18] and [4, 2.3]). Consider the following ring (cf. [3, Chapter 17])

(2.1.1)
$$CH^*(Z \to X)^{(n)} = \prod_{i < n} CH^i(X \to X) \times \prod_{i \ge n} CH^i(Z \to X)$$

We regard the total localized Chern class $c_Z^X(\mathcal{K}) = ((c_i(\mathcal{K}))_{i < n}; (c_i_Z^X(\mathcal{K}))_{i \ge n})$ as an invertible element of $CH^*(Z \to X)^{(n)}$.

Let \mathcal{F} be an \mathcal{O}_X -module such that the restriction $\mathcal{F}|_U$ is locally free of rank n. If \mathcal{F} has a nite resolution $\mathcal{E}_{\bullet} \to \mathcal{F}$ by locally free \mathcal{O}_X -modules \mathcal{E}_q of nite ranks, the localized Chern class $c_i_Z^X(\mathcal{F})$ for i > n is dened as $c_i_Z^X(\mathcal{E}_{\bullet})$. It is independent of the choice of a resolution.

2.2. The following Lemma 2.3 and Lemma 2.4 are slight generalizations of [4, Lemma 2.3.2] and [4, Lemma 2.3.4] respectively. We use the same arguments.

Lemma 2.3 ([4]). Let X be a scheme of nite type over a eld k. Let D be a Cartier divisor of X and i: $D \to X$ be the immersion. Let \mathcal{E} be a locally free \mathcal{O}_D -module of rank n. Assume there exist a locally free \mathcal{O}_X -module $\tilde{\mathcal{E}}$ of nite rank and a surjection $\tilde{\mathcal{E}} \to i_*\mathcal{E}$ so that the localized Chern class $c_D^X(i_*\mathcal{E}(D)) \in CH^*(D \to X)^{(1)}$ is de ned. We put $CH_*(X) = \bigoplus_i CH_i(X)$, $CH_*(D) = \bigoplus_i CH_i(D)$ and put $a_j(\mathcal{E}) = \sum_{k=j}^n {k \choose k} c_{n-k}(\mathcal{E}) \in CH^*(D \to D)$. (1) ([4, Lemma 2.3.2]) For any invertible \mathcal{O}_D -module \mathcal{L} , we have

(2.3.1)
$$\sum_{k=0}^{n} c_k(\mathcal{E} \otimes \mathcal{L}) = \sum_{j=0}^{n} a_j(\mathcal{E}) c_1(\mathcal{L})^j$$

(2) ([4, Lemma 2.3.2 and Corollary 2.3.2]) For any $\in CH_*(X)$, we have equalities in $CH_*(D)$:

(2.3.2)
$$(\mathcal{C}_{D}^{X}(i_{*}\mathcal{E}(D)) - 1) \cap = \mathcal{C}(\mathcal{E})^{-1} \sum_{j=1}^{n} a_{j}(\mathcal{E}) D^{j-1} \cap i^{!}$$

(2.3.3)
$$(c_D^X(i_*\mathcal{O}_D)^{-1}-1) \cap = -i^!$$
:

where $i^!: CH_*(X) \to CH_*(D)$ denotes the Gysin map.

Proof. (1) See [4, Lemma 2.3.2].

(2) We use the same argument with [4, Lemma 2.3.2]. By deformation to the normal bundle, we may assume $X = \mathbb{P}_D^1$ is a \mathbb{P}^1 -bundle over D and the immersion $i: D \to X$ is a section. Let $p: X \to D$ be the projection. Then $\mathcal{E} = i^* \mathcal{E}_X$ with $\mathcal{E}_X := p^* \mathcal{E}$. Since the map $i_* : CH_*(D) \to CH_*(X)$ is injective, it is reduced to the equalities for the usual Chern classes $c(i_* \mathcal{E}(D))$ and $c(i_* \mathcal{O}_D)$ by [4, Proposition 2.3.1.1]. By the exact sequence

$$(2.3.4) 0 \to \mathcal{O}_X(-D) \to \mathcal{O}_X \to i_*\mathcal{O}_D \to 0$$

we get $c(i_*\mathcal{O}_D)^{-1} = c(\mathcal{O}_X(-D))$. Thus $(c(i_*\mathcal{O}_D)^{-1} - 1) \cap = -c_1(\mathcal{O}_X(D)) \cap = -i^!$. This proves the equality (2.3.3). Now we prove (2.3.2). By the locally free resolution

$$(2.3.5) 0 \to \mathcal{E}_X \to \mathcal{E}_X(D) \to i_*\mathcal{E}(D) \to 0;$$

we have

(2.3.6)
$$c(i_*\mathcal{E}(D)) - 1 = c(\mathcal{E}_X)^{-1}(c(\mathcal{E}_X(D)) - c(\mathcal{E}_X))$$
$$\stackrel{(2.3.1)}{=} c(\mathcal{E})^{-1}(\sum_{j=0}^n a_j(\mathcal{E})D^j - a_0(\mathcal{E})) = c(\mathcal{E})^{-1}\sum_{j=1}^n a_j(\mathcal{E})D^j:$$

Thus by the de nition of Gysin pull-back along a divisor [3, 2.6], we have

$$(2.3.7) \qquad (c(i_*\mathcal{E}(D))-1) \cap = c(\mathcal{E})^{-1} \left(\sum_{j=1}^n a_j(\mathcal{E})D^j\right) \cap = c(\mathcal{E})^{-1} \left(\sum_{j=1}^n a_j(\mathcal{E})D^{j-1}\right) \cap i^!$$

Lemma 2.4 ([4, Lemma 2.3.4]). Let X and C be regular schemes of nite type over a eld k. Let $i: C \to X$ be a closed immersion of codimension c with conormal sheaf $N_{C/X}$. Let $: X' \to X$ be the blow up of X along C, $_E: E = C \times_X X' \to C$ be the induced map and $i': E \to X'$ be the closed immersion. We put

(2.4.1)
$$(X;C) = \sum_{j=1}^{c} a_j (* N_{C/X}) E^{j-1} - \sum_{j=0}^{c} a_j (* N_{C/X}) E^{j}$$

For any $\in CH_*(X')$, we have an equality in $CH_*(C)$:

(2.4.2)
$$E_*((\mathcal{C}_E^{X'}({}^{1}_{X'/X})-1) \cap) = \mathcal{C}(N_{C/X})^{-1} \cap E_*((X;C) \cap I'^!);$$

If moreover $i'^! = {*}_E$ for some $\in CH_*(C)$, then we have

(2.4.3)
$$E_*((X;C) \cap I') = (-1)^c \cdot (c-1) \cdot ;$$

(2.4.4)
$$E_*((C_E^{X'}(1_{X'/X})-1) \cap) = (-1)^c \cdot (c-1) \cdot c(N_{C/X})^{-1} \cap :$$

Proof. Note that the canonical map ${}^{1}_{X'/X} \to i'_{*} {}^{1}_{E/C}$ is an isomorphism. Since $E = \mathbb{P}((N_{C/X})^{\vee})$ is a \mathbb{P}^{c-1} -bundle over C, we have an exact sequence $0 \to {}^{1}_{E/C} \to {}^{*}_{E}N_{C/X}(-1) \to \mathcal{O}_{E} \to 0$. Hence, we have $c_{E}^{X'}({}^{1}_{X'/X}) = c_{E}^{X'}(i'_{*} {}^{*}_{E}N_{C/X}(-1))c_{E}^{X'}(i'_{*}\mathcal{O}_{E})^{-1}$. By the exact sequence $0 \to \mathcal{O}_{X'}(-E) \to \mathcal{O}_{X'} \to i'_{*}\mathcal{O}_{E} \to 0$, we get

$$(2.4.5) \qquad \qquad 0 \to {}^*_E N_{C/X} \to {}^*_E N_{C/X}(E) \to {}^*_E N_{C/X}(E) \to 0:$$

By Lemma 2.3, we have

$$(2.4.6) \qquad (c_{E}^{X'}(i_{*}' * E^{N}N_{C/X}(-1))c_{E}^{X'}(i_{*}'\mathcal{O}_{E})^{-1} - 1) \cap \\ = (c_{E}^{X'}(i_{*}' * E^{N}N_{C/X}(-1)) - 1) \cap + c_{E}^{X'}(i_{*}' * E^{N}N_{C/X}(-1))(c_{E}^{X'}(i_{*}'\mathcal{O}_{E})^{-1} - 1) \cap \\ \stackrel{(2.3.3)}{=} (c_{E}^{X'}(i_{*}' * E^{N}N_{C/X}(-1)) - 1) \cap - c(*E^{N}N_{C/X}(-1)) \cap i'^{!} \\ \stackrel{(2.4.5)}{=} (c_{E}^{X'}(i_{*}' * E^{N}N_{C/X}(E)) - 1) \cap - c_{E}(*E^{N}N_{C/X})^{-1}c_{E}(*E^{N}N_{C/X}(E)) \cap i'^{!} \\ \stackrel{(2.3.2)}{=} c_{E}(*E^{N}N_{C/X})^{-1} \left(\sum_{j=1}^{c} a_{j}(*E^{N}N_{C/X})E^{j-1} \cap i'^{!} - \sum_{j=0}^{c} a_{j}(*E^{N}N_{C/X})E^{j} \cap i'^{!} \right) \\ = c(N_{C/X})^{-1} \cap E_{*}((X;C) \cap i'^{!}):$$

By [3, Remark 3.2.4, p.55], we have $E^c = -\sum_{j=1}^c c_j (\stackrel{*}{E} N_{C/X}) E^{c-j}$. Assume $i'^! = \stackrel{*}{E}$ for some $\in CH_*(C)$. By [3, Proposition 3.1 (a)], we have $E_*(E^j \cap \stackrel{*}{E}) = 0$ for j < c-1 and $E_*(E^{c-1} \cap \stackrel{*}{E}) = (-1)^{c-1}$. Substituting these identities, we have

(2.4.7)
$$E_*((X;C) \cap I')$$
$$= (-1)^{c-1} \cdot (a_c(N_{C/X}) - a_{c-1}(N_{C/X}) + a_c(N_{C/X})c_1(N_{C/X})) \cap$$

Since $a_c(N_{C/X}) = 1$, $a_{c-1}(N_{C/X}) = c + c_1(N_{C/X})$ then $_{E*}((X;C) \cap i') = (-1)^c \cdot (c-1) \cdot and _{E*}((C_E^{X'}(1_{X'/X}) - 1) \cap) = (-1)^c \cdot (c-1) \cdot c(N_{C/X})^{-1} \cap .$

3. Blow up formula for Gysin pull-back

3.1. Let X be a smooth scheme purely of dimension d over a eld k. We denote by $0_X : X \to T^*X$ the zero section of the cotangent bundle T^*X . We denote by $0_X^! \in CH^d(X \to T^*X)$ the (re ned) Gysin map [3, 6.2], where $CH^d(X \to T^*X)$ is the bivariant Chow group [3, De nition 17.1]).

3.2. We recall a method for calculating the Gysin map $0^!_X$ by using Chern classes. Let X be a regular scheme separated of nite type over a eld. Let \mathcal{E} be a locally free \mathcal{O}_X -modules of rank d on X. Let $E = \operatorname{Spec}(\operatorname{Sym}^{\bullet}_{\mathcal{O}_X} \mathcal{E}^{\vee})$ be the associated vector bundle of rank d on X with structure morphism $: E \to X$. The projective bundle of E is $\mathbb{P}(E) = \operatorname{Proj}(\operatorname{Sym}^{\bullet}_{\mathcal{O}_X} \mathcal{E}^{\vee})$. We have a closed immersion $\mathbb{P}(E) \hookrightarrow \mathcal{P}(E \oplus 1) := \mathcal{P}(E \oplus \mathbb{A}^1_X)$ with open complementary $E \hookrightarrow \mathbb{P}(E \oplus 1)$. Let $s: X \to E$ be the zero section. Let $k \ge 0$ be an integer and $\in CH_k(E)$. For any element $\in CH_k(\mathbb{P}(E \oplus 1))$, if the restriction of to $CH_k(E)$ equals to , then we have [3, Proposition 3.3]

(3.2.1)
$$S^{!}() = q_{*}(c_{d}() \cap);$$

where $=\frac{q^*(\mathcal{E}\oplus 1)}{\mathcal{O}_{P(\mathcal{E}\oplus 1)}(-1)}$ is the universal rank d quotient bundle of $q^*(\mathcal{E}\oplus 1)$. For any element $\in CH_*(X) = \bigoplus_i CH_i(X)$, we denote by $\{\}_j$ the dimension j part of , i.e., the image of by the projection $CH_*(X) \to CH_j(X)$. Let c() be the total Chern class of , then we can write (3.2.1) as follows

(3.2.2)
$$S^{l}() = \{q_{*}(c() \cap)\}_{k=d}$$
:

By the Whitney sum formula for Chern classes [3, Theorem 3.2], we have

(3.2.3)
$$C() = C(q^*\mathcal{E}) \cdot C(\mathcal{O}_{\mathbb{P}(E\oplus 1)}(-1))^{-1}$$

Thus the formula (3.2.2) can be written in the following way

(3.2.4)
$$S^{l}(\) = \left\{ q_{*}(c(q^{*}\mathcal{E}) \cap c(\mathcal{O}_{\mathbb{P}(E \oplus 1)}(-1))^{-1} \cap \) \right\}_{k-d} = \left\{ c(\mathcal{E}) \cap q_{*}(c(\mathcal{O}_{\mathbb{P}(E \oplus 1)}(-1))^{-1} \cap \) \right\}_{k-d}$$

where the last equality follows from the projection formula [3, Theorem 3.2].

Lemma 3.3. Let X and Y be smooth and connected schemes over a eld k and let i: $Y \hookrightarrow X$ be a closed immersion of codimension c. Let $: \tilde{X} \to X$ be the blow up of X along Y. Let $C \subseteq T^*X$ be a conical

closed subset purely of dimension $d = \dim X$ and let Z be a d-cycle supported on C. Suppose and i are properly C-transversal. Then we have an equality in $CH_0(X)$:

(3.3.1)
$$*(0^!_{\widetilde{X}}({}^*Z)) = 0^!_X(Z) + (-1)^c \cdot (c-1) \cdot i_*(0^!_Y(i^*Z)),$$

For the de nition of the Gysin map $0^{!}_{\bullet}$, see Subsection 3.1.

Proof. Let \tilde{Y} be the exceptional divisor of $: \tilde{X} \to X$ with projection map $\sim : \tilde{Y} \to Y$. Let $i: \tilde{Y} \to \tilde{X}$ be the closed immersion. We have a commutative diagram

where pr and pr_i are the rst projections, $d : T^*X \times_X \tilde{X} \to T^*\tilde{X}$ (respectively $di: T^*\tilde{X} \times_{\widetilde{X}} \tilde{Y} \to T^*\tilde{Y}$) is the map induced by $: \tilde{X} \to X$ (respectively $i: \tilde{Y} \to Y$), the maps pr , \overline{d} , pr_i and \overline{di} are the maps induced by pr , d , pr_i and di respectively, all other maps are either the canonical projection morphisms or open immersions. In (3.3.2), we use the symbol \square to mean the square is a Cartesian diagram. For example, the most left-bottom square in (3.3.2) is Cartesian since q' is proper and $\mathbb{P}(T^*X \times_X \tilde{X} \oplus 1)$ has dense image in $\mathbb{P}(T^*X \oplus 1) \times_X \tilde{X}$. Note also that the map \overline{di} is only well-de ned on the open subscheme $T^*\tilde{X} \times_{\widetilde{X}} \tilde{Y}$, but this is enough for our purpose (cf. [5, Lemma 6.4]). For any $\in CH_d(T^*X)$, we denote by $\overline{} \in CH_d(\mathbb{P}(T^*X \oplus 1))$ an extension of (cf. 3.2). We

For any $\in CH_d(T^*X)$, we denote by $\overline{c} \in CH_d(\mathbb{P}(T^*X \oplus 1))$ an extension of (cf. 3.2). We choose an extension $\overline{Z} \in CH_d(\mathbb{P}(T^*X \oplus 1))$ of Z. Then $\overline{pr}^!(\overline{Z})$ is an extension of $pr^!Z$. Since is C-transversal, the push-forwards $d_*(pr^!Z)$ and $\overline{d}_*(\overline{pr}^!(\overline{Z}))$ are well-de ned, and $\overline{d}_*(\overline{pr}^!(\overline{Z}))$ is an extension of $d_*(\overline{pr}^!Z)$.

Since ~ is smooth, thus ~ is $i^{\circ}C$ -transversal by [5, Lemma 3.4.1]. By Lemma 1.3, i is C-transversal and we have

$$(3.3.3) \qquad ~^*i^*Z = i^* *Z:$$

The following exact sequence $(i_* \quad \frac{1}{\widetilde{Y}/Y} \simeq \quad \frac{1}{\widetilde{X}/X})$

$$(3.3.4) 0 \to \ \ ^* \ \ ^1_X \to \ \ ^1_{\widetilde{X}} \to i_* \ \ ^1_{\widetilde{Y}/Y} \to 0$$

gives a resolution of $i_* \stackrel{1}{\widetilde{Y}/Y}$ by locally free sheaves of nite rank. Thus the localized Chern class $c_{kY}^X(i_* \stackrel{1}{\widetilde{Y}/Y}) \in CH^*(Y \to X)$ is well-de ned for $k \ge 1$ (cf. Subsection 2.1). In order to simplify the notation, we put $c_k^{\text{loc}}(i_* \stackrel{1}{\widetilde{Y}/Y}) := c_{kY}^X(i_* \stackrel{1}{\widetilde{Y}/Y})$ and $c_k^{\text{loc}}(p^*i_* \stackrel{1}{\widetilde{Y}/Y}) := c_k^{\mathbb{P}(T^*\widetilde{X}\oplus 1)}(p^*i_* \stackrel{1}{\widetilde{Y}/Y})$. Similarly, we denote by c^{loc} the total localized Chern class. Applying the Whitney sum formula for (localized) Chern classes (cf. [1, Proposition 3.1]) to the exact sequence (3.3.4), we get

$$(3.3.5) C(\frac{1}{\widetilde{X}}) = C(* \frac{1}{X}) \cdot C^{\text{loc}}(i_* \frac{1}{\widetilde{Y}/Y}) = C(* \frac{1}{X}) + C(* \frac{1}{X}) \cdot (C^{\text{loc}}(i_* \frac{1}{\widetilde{Y}/Y}) - 1).$$

We will simply denote by $\mathcal{O}(1)$ for $\mathcal{O}_{\mathbb{P}(\mathcal{T}^*\widetilde{X}\oplus 1)}(1)$ (and also for $\mathcal{O}_{\mathbb{P}(\mathcal{T}^*X\oplus 1)}(1)$ and so on) in the following calculations. We have

d *

pr !

6

Consider the following commutative diagram induced from the morphism $\sim: \widetilde{Y} \to Y$.

$$(3.3.10) \begin{array}{c} T^*Y \xleftarrow{} P^{\Gamma_{\hat{\pi}}} & T^*Y \times_Y Y \xrightarrow{} J^*Y \\ \downarrow & \downarrow & \downarrow \\ \mathbb{P}(T^*Y \oplus 1) \xleftarrow{} \mathbb{P}(T^*Y \times_Y \tilde{Y} \oplus 1) \xrightarrow{} J^{-} \mathbb{P}(T^*\tilde{Y} \oplus 1) \\ s \downarrow & \Box & s' \downarrow \\ Y \xleftarrow{} \tilde{Y} \xleftarrow{} \tilde{Y} \swarrow \\ \downarrow i & \Box & \downarrow i \\ \chi \xleftarrow{} \tilde{Y} \xleftarrow{} \tilde{Y} \swarrow \\ \tilde{X} \xleftarrow{} \tilde{X} \end{array}$$

Since $\overline{d}_* \overline{pr}^! \overline{i^*Z}$ is an extension of ${}^*i^*Z$ to $\mathbb{P}(T^*\widetilde{Y} \oplus 1)$, thus (3.3.9) equals to (3.3.11) $I^! \left(p_* \left(c(\mathcal{O}(-1))^{-1} \cap \overline{d}_* \overline{pr}^! \overline{Z} \right) \right) = r_* \left(c(\mathcal{O}(-1))^{-1} \cap \overline{d}_* \overline{pr}^! \overline{Z} \right)$ $\stackrel{(c)}{=} r_* \overline{d}_* \left(c(\mathcal{O}(-1))^{-1} \cap \overline{pr}^! \overline{i^*Z} \right) = r_* \overline{d}_* \left(\overline{pr}^* c(\mathcal{O}(-1))^{-1} \cap \overline{pr}^! \overline{i^*Z} \right)$ $\stackrel{(d)}{=} r_* \overline{d}_* \overline{pr}^! \left(c(\mathcal{O}(-1))^{-1} \cap \overline{i^*Z} \right)$

where we used the projection formula [3, Theorem 3.2] in step (c), and (d) follows from [3, Proposition 17.3.2]. By the commutative diagram (3.3.10) and the push-forward formula [3, Theorem 6.2], we have

(3.3.12)
$$\Gamma_*\overline{d}_*\overline{pr}_{-}^! = S'_*\overline{pr}_{-}^! = -{}^!S_* = -{}^*S_*!$$

By (3.3.11) and (3.3.12), the second term of (3.3.7) equals to

$$\begin{array}{ll} (3.3.13) & \left\{ i_* \left(c(i^* \ \frac{1}{X}) \cap c(N_{Y/X})^{-1} \cap \gamma_* \left(\ (X;Y) \cap \vec{t}^! \left(p_* \left(c(\mathcal{O}(-1))^{-1} \cap \overline{d}_* \overline{pr}^! \, \overline{Z} \right) \right) \right) \right\}_0 \\ & = \left\{ i_* \left(c(i^* \ \frac{1}{X}) \cap c(N_{Y/X})^{-1} \cap \gamma_* \left(\ (X;Y) \cap \gamma^* s_* \left(c(\mathcal{O}(-1))^{-1} \cap \overline{i^*Z} \right) \right) \right) \right\}_0 \\ & \left\{ \begin{array}{l} (2.4.3) \\ = \left(-1 \right)^c \cdot (c-1) \left\{ i_* \left(c(i^* \ \frac{1}{X}) \cap c(N_{Y/X})^{-1} \cap s_* \left(c(\mathcal{O}(-1))^{-1} \cap \overline{i^*Z} \right) \right) \right\}_0 \\ & \left(\begin{array}{l} (1) \\ = \left(-1 \right)^c \cdot (c-1) \left\{ i_* \left(c(\ \frac{1}{Y}) \cap s_* \left(c(\mathcal{O}(-1))^{-1} \cap \overline{i^*Z} \right) \right) \right\}_0 \\ & \left(\begin{array}{l} (3.2.4) \\ = \left(-1 \right)^c \cdot (c-1) \cdot i_* 0_Y^! (i^*Z) : \end{array} \right) \end{array} \right\}$$

where the step (1) follows from $c(i^* \ _X^1) \cdot c(N_{Y/X})^{-1} = c(\ _Y^1)$ since we have an exact sequence

$$(3.3.14) 0 \to N_{Y/X} \to i^* \quad {}^1_X \to \quad {}^1_Y \to 0;$$

where $N_{Y/X}$ is the conormal sheaf associated to the the regular immersion $i: Y \to X$. Finally, by (3.3.6), (3.3.8) and (3.3.12), we get (3.3.1). This nishes the proof.

References

- [1] A. Abbes, Cycles on arithmetic surfaces, Compos. Math., 122 (2000): 23-111.
- [2] A. Beilinson, Constructible sheaves are holonomic, Selecta Mathematica, 22, Issue 4 (2016):1797-1819.
- [3] W. Fulton, Intersection theory, 2nd edition, Springer New York (1998).
- [4] K. Kato and T. Saito, On the conductor formula of Bloch, Publications Mathematiques de l'IHES 100 (2004): 5-151.
- [5] T. Saito, The characteristic cycle and the singular support of a constructible sheaf, Inventiones mathematicae, 207 (2017): 597-695.
- [6] N. Umezaki, E. Yang and Y. Zhao, Characteristic class and the ε -factor of an etale sheaf, preprint.

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan

E-mail address: umezaki@ms.u-tokyo.ac.jp, umezakinaoya@gmail.com

Fakultat fur Mathematik, Universitat Regensburg, 93040 Regensburg, Germany *E-mail address*: enlin.yang@mathematik.uni-regensburg.de, yangenlin0727@126.com

Fakultat fur Mathematik, Universitat Regensburg, 93040 Regensburg, Germany *E-mail address*: yi geng. zhao@mathematik. uni -regensburg. de