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Overview. My research focuses on geometric rami�cation theory for constructible �etale sheaves
and its motivic counterpart. In the past �ve years (2019-2023), I have published three peer-reviewed
articles [UYZ20, YZ21, JY21] and four preprints [YZ22, JY22, JSY22, XY23] with my collaborators.
The main achievements of these articles are as follows:

(1) In [UYZ20], we prove a twist formula for the "-factor of a constructible sheaf, which is
conjectured1 by Kato and Saito in [KS08, Conjecture 4.3.11].

(2) In [YZ21], we propose a relative version of Kato-Saito’s twist formula. As an evidence of this
conjecture, we generalize the cohomological characteristic class de�ned by Abbes and Saito
to a relative case under certain transversality conditions. This notion is further generalized
to universal local acyclicity (ULA) sheaves by Lu and Zheng in [LZ22].

(3) In [YZ22], we construct a cohomological characteristic class (called non-acyclicity class) sup-
ported on the non-acyclicity locus. Using this class, we con�rm the quasi-projective case of
Saito’s conjecture [Sai17], namely that the cohomological characteristic classes de�ned by
Abbes and Saito can be computed in terms of the characteristic cycles. As other applica-
tions, we prove cohomological analogs of the Milnor formula and the conductor formula for
constructible sheaves on (not necessarily smooth) varieties.

(4) In [XY23], we de�ne the geometric counterpart of the non-acyclicity class and formulate a
Milnor-type formula for non-isolated singularities, which says that the non-acyclicity classes
can be calculated in terms of the characteristic cycles.

(5) In the papers [JY21, JY22, JSY22], we study rami�cation theory for motives. We propose
a quadratic version of the Artin conductor for SH motives and then construct a quadratic
version of the Grothendieck-Ogg-Shafarevich formula.
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1The original conjecture uses Swan class, but in our paper, we replace it with characteristic class.
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This research statement is organized as follows. In Section 1, we give a quick overview of geometric
rami�cation theory. Section 2 introduces our work on Kato-Saito’s conjecture on the twist formula
of "-factors. In Section 3, we summarize the properties of non-acyclicity classes and discuss Saito’s
conjecture on characteristic classes. In Section 4, we recall the construction of non-acyclicity classes.
In Section 5, we present a review of our work on rami�cation theory for motives.

1. Ramification theory

In this section, we provide a brief overview of rami�cation theory, concentrating speci�cally on
the discussion of characteristic classes and characteristic cycles for constructible �etale sheaves due
to personal constraints.

1.1. Let S be a Noetherian scheme and SchS the category of separated schemes of �nite type over
S. Let � be a �nite local ring such that the characteristic of its residue �eld is invertible on S. For
any scheme X P SchS , we denote by DctfpX;�q the derived category of complexes of �-modules of
�nite tor-dimension with constructible cohomology groups on X.

1.2. Consider the following assumptions on S:

(G) S is the spectrum of a perfect �eld k of characteristic p ą 0.
In this geometric case, we have a well-de�ned number dimK “ rankK for K P DctfpS;�q.

(A) S is the spectrum of a discrete valuation ring. Let � be the generic point of S and s its
closed point. We assume that the residue �eld kpsq is a perfect �eld of characteristic p ą 0.

In this arithmetic case, for any K P DctfpS;�q, we have the Swan conductor SwK (mea-
suring the wild rami�cation), the total dimension dimtotK “ dimKη ` SwK and the Artin
conductor aSpKq “ dimKη ´ dimKs ` SwK “ dimtotR�idpKq, where R� is the vanishing
cycles functor.

In rami�cation theory, there exist three distinct versions of higher-dimensional analogues of Artin/Swan
conductors: the cohomological characteristic class introduced by Abbes and Saito in [AS07], the
Swan class presented by Kato and Saito in [KS08, KS12], and the characteristic class/cycle con-
structed by Saito in [Sai17] based on Beilinson’s singular support. These classes are related to the
following Riemann-Roch type questions:

Question 1.3. Let f : X Ñ S be a separated morphism of �nite type and F P DctfpX;�q.

‚ In the geometric case (G), how to compute �cpXk̄;Fq “ dimRf!F?
‚ In the arithmetic case (A), how to compute SwRf!F , dimtotRf!F and aSpRf!Fq?

These problems are previously studied by Abbes [Abb00], Abbes-Saito [AS07], Bloch [Blo87],
Deligne [Del72, Del11], Hu [Hu15], Kato-Saito [KS04, KS08, KS12], Laumon [Lau83], Saito [Sai17,
Sai18, Sai21] and Tsushima [Tsu11].

Based on the observation that the Swan conductor can be de�ned through the logarithmic local-
ized intersection product, Kato and Saito [KS08, KS12] explore rami�cation theory using logarithmic
geometry and K-theoretic localized intersection theory. Their methodology give rise to the so-called
Swan class, which can be regarded as a higher-dimensional generalization of the Swan conductor.
Recently, Abe [Abe21] introduces a homotopical/8-categorical way to study rami�cation theory.

In [YZ22], we use a cohomological way to study Question 1.3 by introducing a cohomological
class (called non-acyclicity class) supported on the non-acyclicity locus Z (Z is the smallest closed
subset of X
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1.4. Grothendieck-Ogg-Shafarevich formula. Consider the geometric case (G). Assume X is
a proper smooth connected curve over S “ Speck. Then the Euler-Poincar�e characteristic �pXk̄;Fq
is computed by the Grothendieck-Ogg-Shafarevich (GOS) formula

�pXk̄;Fq “ dimFξ̄ ¨ �pXk̄;�q ´
ÿ

xPZ

axpFq ¨ degpxq;(1.4.1)

where � is the generic point of X, Z is a �nite set of closed points such that F |XzZ is smooth
and axpFq “ aXpxqpFq is the Artin conductor of F at x. By the Gauss-Bonnet-Chern formula

�pXk̄;�q “ degpc1p

1,_
X{kq X rXsq, the formula (1.4.1) can be rewritten as follows

�pXk̄;Fq “ degpccX{kpFqq;(1.4.2)

where ccX{kpFq is a zero-cycle class on X:

ccX{kpFq “ dimFξ̄ ¨ c1p

1,_
X{kq X rXs ´

ÿ

xPZ

axpFq ¨ rxs in CH0pXq:(1.4.3)

1.5. Characteristic cycle. There is a generalization of the GOS formula to higher dimensional
case by using characteristic cycles.2 In the transcendental setting [KS90], Kashiwara and Schapira
give a microlocal description of the characteristic cycle for a constructible sheaf F on a manifold
without using D-modules. In [Bei07], Beilinson asks if there is a motivic (‘-adic or de Rham)
counterpart for their theory. As observed by Deligne, there is a strong analogy between the wild
rami�cation of �etale constructible sheaves in positive characteristic and the irregular singularity of
partial di�erential equations on a complex manifold. In [Del11], Deligne proposes a general program
to de�ne characteristic cycles of constructible �etale sheaves. Deligne’s program is achieved by Saito
[Sai17, Theorem 4.9 and Theorem 6.13] based on the singular support de�ned by Beilinson [Bei16].

Let X be a connected smooth variety of dimension n over k. For any F P DctfpX;�q, the singular
support SSpFq is the smallest closed conical subset of the cotangent bundle T ˚X such that locally
on X, every function f : X Ñ A1

k with df disjoint from SSpFq is locally acyclic relatively to F . It is
proved in [Bei16] that SSpFq is of dimension n. Later, Saito [Sai17] constructs an n-cycle CCpFq
supported on SSpFq with Z-coe�cients, which satis�es the following properties

(a) (Index formula) Assume that X is projective3 over a perfect �eld k. Then we have

�pXk̄;Fq “ pCCpFq; T ˚XXqqT˚X ;(1.5.1)

where T ˚XX is the zero section of T ˚X.
(b) (Milnor formula) Let f : X Ñ C be a at morphism from a smooth scheme X to a smooth

curve C over k. Assume that x0 is an isolated characteristic point of f with respect to
SSpFq (cf. [Sai17, De�nition 3.7]). Then

´dimtot R�f pFqx0 “ pCCpFq; dfqT˚X,x0 :(1.5.2)

(c) (Conductor formula) Let X be a smooth scheme over k and Y a smooth connected curve
over k with the generic point �. Let F P Db

cpX;�q. Let f : X Ñ Y be a quasi-projective
morphism such that f is proper on the support of F and is properly SSpFq-transversal
over an open dense sub-scheme V Ď Y . For each closed point y P Y , the Artin conductor
aypRf˚Fq “ �pXη;Fq´�pXy;Fq`SwyR�pXη;Fq is computed by the following (geometric)
conductor formula

´aypRf˚Fq “ pCCpFq; dfqT˚X,y:(1.5.3)

2Kato and Saito [KS08, KS12] obtain another higher dimensional GOS formula and its arithmetic version by
introducing Swan classes for constructible étale sheaves. See 2.4 for more details.

3Abe obtains an index formula for proper varieties by using 8-categories in [Abe21].
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When F is the constant �etale sheaf �, then CCp�q “ p´1qn ¨ rT ˚XXs and (1.5.1) is the Gauss-

Bonnet-Chern formula �pXk̄;�q “ degpcnp

1,_
X{kq X rXsq. The formula (1.5.2) is equivalent to the

following classical Milnor formula (cf. [Del73, Conjecture 1.9, P200])

´dimtot R�f p�qx0 “ p´1qn ¨ length
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is the epsilon factor (the constant term in the functional equation (2.1.1)) and �pXk̄;Fq is the
Euler-Poincar�e characteristic of F . In the functional equation (2.1.1), both �pXk̄;Fq and "pX;Fq
are related to the rami�cation theory. Indeed, �pXk̄;Fq “ deg ccXpFq (cf. (1.5.1) and (1.7.1)). For
the epsilon factor, it is more complicated.

2.2. Twist formula. Let �X : CH0pXq Ñ �1pXq
ab be the reciprocity map which is de�ned by

sending the class rss of a closed point s P X to the geometric Frobenius Frobs. Let G be a smooth
sheaf on X and det G : �1pXq

ab Ñ �ˆ be the character associated to the determinant sheaf det G.
In joint work with Umezaki and Zhao [UYZ20], we prove the following twist formula:

(2.2.1) "pX;F b Gq “ det Gp´ccXpFqq ¨ "pX;FqrankG ;

which is conjectured by Kato and Saito in [KS08, Conjecture 4.3.11].4 When F is the constant sheaf
�, this is proved in [Sai84]. If F is a smooth sheaf on an open dense subscheme U of X such that
the complement D “ XzU is a simple normal crossing divisor and the sheaf F is tamely rami�ed
along D, then (2.2.1) is a consequence of [Sai93, Theorem 1]. If dimpXq “ 1, the formula (2.2.1)
follows from the product formula of Deligne and Laumon (cf. [Del72e, 7.11] and [Lau87, 3.2.1.1]).
In [Vid09a, Vid09b], Vidal proves a similar result on a proper smooth surface over a �nite �eld of
characteristic p ą 2 under some technical assumptions.

As a corollary of (2.2.1), we prove the compatibility of the characteristic class with proper push-
forward by using the injectivity of the reciprocity map �X [KS83, Theorem 1]. In general, Saito
proves that the characteristic cycle (resp. characteristic class) is compatible with proper push-
forward under a mild assumption (cf. [Sai17, 7.2], [Sai18, Conjecture 1] and [Sai21, Theorem
2.2.5]). In [YZ21], we also prove a relative version of the twist formula (2.5.1).

Question 2.3. Prove a similar formula of (2.2.1) if G is smooth only on an open dense subscheme
U Ď X such that its wild rami�cation along XzU is much smaller than that of F .

2.4. Swan class. To generalize the classical Grothendieck-Ogg-Shafarevich formula for curves to
higher dimensional varieties, Kato and Saito de�ne the so-called Swan class in [KS08]. Saito for-
mulates a conjecture that this object should be re-de�ned using the characteristic cycle (cf. [Sai17,
Conjecture 5.8]). More precisely, let X be a smooth scheme over a perfect �eld k of characteristic
p ą 0, and X a smooth compacti�cation of X. For a smooth and constructible sheaf F of �-modules
on X, Saito conjectures that the Swan class of F should have integer coe�cients and is equal to the
pull back by the zero section of the di�erence CCpj!Fq ´ rankF ¨ CCpj!�q. In [UYZ20], we verify
a weaker version of this conjecture for smooth surfaces over a �nite �eld. Our method also works
for higher dimensional varieties if we assume resolution of singularities and a special case of proper
push-forward of characteristic class (cf. [UYZ20, Theorem 6.6]).

2.5. Relative twist formula. In [YZ21, 2.1], we formulate a relative version of Kato-Saito’s for-
mula and prove it under certain transversality conditions. Let S be a regular Noetherian scheme
over Zr1{‘s and f : X Ñ S a smooth proper morphism purely of relative dimension n. Let � be a
�nite �eld of characteristic ‘ or � “ Q`. Let F P Db

cpX;�q such that f is universally locally acyclic
relatively to F . We conjecture that there is a (relative) cycle class ccX{SpFq P CHnpXq such that
for any smooth sheaf G of �-modules on X, we have an isomorphism

detRf˚pF bL Gq » pdetRf˚FqbrankG bL detGpccX{SpFqq in K0pS;�q;(2.5.1)

where K0pS;�q is the Grothendieck group of Db
cpS;�q. In (2.5.1), the object detGpccX{SpFqq is a

smooth sheaf of rank 1 determined as follows:

�ab
1 pSq

pccX{SpFq,´q
ÝÝÝÝÝÝÝÝÑ �ab

1 pXq
detG
ÝÝÝÑ �ˆ;(2.5.2)

4The original conjecture is formulated in terms of the Swan class.
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where the pairing is given by CHnpXq ˆ �ab
1 pSq Ñ �ab

1 pXq (cf. [Sai94, Proposition 1]).
When S is a smooth scheme over a perfect �eld k, we construct a candidate for ccX{SpFq in

[YZ21, De�nition 2.11] by using the characteristic cycle of CCpFq. As an evidence, we prove a
special case of the conjectural formula (2.5.1) in [YZ21, Theorem 2.12].

From the above relative twist formula, we realize that there is a relative version of the cohomolog-
ical characteristic class (cf. [YZ21, De�nition 3.6]) under certain transversality conditions. We also
prove a relative Lefschetz-Verdier trace formula in [YZ21, Theorem 3.9]. These results are further
generalized to ULA sheaves by Lu and Zheng [LZ22] by using categorical traces.

2.6. Microlocal description. Let R be a commutative ring. Let F be a perfect constructible
complex of sheaves of R-modules on a compact real analytic manifold X. In [Bei07], Beilinson
develops the theory of topological epsilon factors using K-theory spectrum. More precisely, he gives
a Dubson-Kashiwara-style description of detR�pX;Fq, and he asks that whether the construction
admits a motivic (‘-adic or de Rham) counterpart. For de Rham cohomology, such a construction
is given by his PhD student Patel in [Pat12]. Based on these, Abe and Patel prove a similar twist
formula in [AP18] for global de Rham epsilon factors in the classical setting of DX -modules on
smooth projective varieties over a �eld of characteristic zero. As pointed out by Abe and Patel,
proving the formula at the level of K-theory spectra should also give formulas in higher K-theory.
At the level of K0 (resp. K1), one gets formulas for the Euler characteristic (resp. determinants).
It would be interesting to see the consequences at the level of K2 (or higher K-groups).

For ‘-adic cohomology, Beilinson’s question is still open. For a constructible �etale sheaf F on a
smooth curve X over a �nite �eld k, the precise statement for the "-factorization of

detp´Frobk;R�pX;Fqq

was conjectured by Deligne [Del72e] and proved by Laumon [Lau87] using local Fourier transform
and ‘-adic version of principle of stationary phase. A higher dimensional analogue is obtained by
Guignard [Gui22] (see also [Tak19]).

2.7. Citation. Our work [UYZ20] on Kato-Saito’s conjecture is cited by [AP18, Sai21, Gui22,
YZ21, YZ22] and also by the following papers:

(1) W. Sawin, A. Forey, J. Fres�an and E. Kowalski, Quantitative sheaf theory, Journal of the
American Mathematical Society, 36(3), (2023): 653-726.

(2) D. Patel and K. V. Shuddhodan, Brylinski-Radon transformation in characteristic p ą 0,
preprint arXiv:2307.04156, 2023.

(3) D. Takeuchi, Characteristic epsilon cycles of ‘-adic sheaves on varieties, arXiv:1911.02269,
2019.

(4) F. Orgogozo and J. Riou, Cycle caract�eristique sur une puissance sym�etrique d’une courbe
et d�eterminant de la cohomologie �etale, arXiv:2312.07776, 2023.

(5) A. Rai, Comparison of the two notions of characteristic cycles, arXiv:2312.09945, 2023.

3. Non-acyclicity class and Saito’s conjecture

3.1. Let h : X Ñ Speck be a separated morphism of �nite type over a perfect �eld k. Let
KX{k “ Rh!�. For any object F P DctfpX;�q, the cohomological characteristic class CX{kpFq P
H0pX;KX{kq is introduced by Abbes and Saito in [AS07] by using Verdier pairing. If X is proper
over k, the Lefschetz-Verdier trace formula gives

�pXk̄;Fq “ TrCX{kpFq;(3.1.1)

where Tr : H0pX;KX{kq Ñ � is the trace map.

https://arxiv.org/abs/2307.04156
https://arxiv.org/abs/1911.02269
https://arxiv.org/abs/2312.07776
https://arxiv.org/abs/2312.09945


CHARACTERISTIC CLASSES AND ε-FACTORS 7

Using rami�cation theory, Abbes and Saito calculate the cohomological characteristic classes for
rank 1 sheaves under certain rami�cation conditions in [AS07]. However, the calculation for general
constructible �etale sheaves remains an outstanding question in rami�cation theory. In general, Saito
proposes the following conjecture.

Conjecture 3.2 (Saito, [Sai17, Conjecture 6.8.1]). Let X be a closed sub-scheme of a smooth
scheme over a perfect �eld k. Let F be a constructible complex of �-modules of �nite tor-dimension
on X. Consider the characteristic class ccX{kpFq de�ned by (1.7.1). Then we have

CX{kpFq “ clpccX{kpFqq in H0pX;KX{kq;(3.2.1)

where cl : CH0pXq Ñ H0pX;KX{kq is the cycle class map.

Note that when X is projective and smooth over a �nite �eld k of characteristic p, the cohomology
group H0pX;KX{kq is highly non-trivial. For example, if � “ Z{‘m with ‘ ‰ p, then we have

H0pX;KX{kq » H1pX;Z{‘mq_ » �ab
1 pXq{‘

m.
Saito’s conjecture says that the cohomological characteristic class can be computed in terms of

the characteristic cycle. Note that the two involved rami�cation invariants in Conjecture 3.2 are
de�ned in quite di�erent ways. The characteristic cycle is characterized by the Milnor formula
(1.5.2), while the cohomological characteristic class in some sense is de�ned via the categorical
trace. In the characteristic zero case, the equality (3.2.1) on a complex manifold is the microlocal
index formula proved by Kashiwara and Schapira [KS90, 9.5.1]. However, we don’t know such a
microlocal description for characteristic cycles in positive characteristic (but see [AS09, Abe21]). In
[YZ22], we prove the quasi-projective case of Saito’s conjecture.

Theorem 3.3 ([YZ22, Theorem 1.3]). Conjecture 3.2 holds for any smooth and quasi-projective
scheme X over a perfect �eld k of characteristic p ą 0.

3.4. Our approach to Saito’s conjecture is the �bration method, which leans on the construction
of the relative version of cohomological characteristic classes over a general base scheme. To achieve
this, it is necessary to impose additional transversality conditions on the structure morphism. Let
S be a Noetherian scheme. Let h : X Ñ S be a separated morphism of �nite type, KX{S “ Rh!�
and F P DctfpX;�q. In fact, under certain smooth and transversality conditions on h, we introduce
the relative (cohomological) characteristic class CX{SpFq P H0pX;KX{Sq in [YZ21, De�nition 3.6].
It is further generalized to any separated morphism h : X Ñ S
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prove Saito’s conjecture by induction on the dimension of X, and the curve case follows from the
Grothendieck-Ogg-Shafarevich formula (1.4.3) and its cohomological version (curve case of (3.5.1)).

3.6. In order to prove Theorem 3.5, we have to give a purely cohomological/categorical way to
de�ne the right hand side of (3.5.1), i.e., we have to de�ne a cohomological class supported on the
non-acyclicity locus. Let S be a Noetherian scheme. Consider a commutative diagram in SchS :

Z �
� τ // X

f //

h ��

Y;

g��
S

(3.6.1)

where � : Z Ñ X is a closed immersion and g is a smooth morphism. We de�ne an object KX{Y {S

on X sitting in a distinguished triangle (see also [YZ22, (4.2.5)])

KX{Y Ñ KX{S Ñ KX{Y {S
`1
ÝÝÑ :(3.6.2)

Let F P DctfpX;�q such that XzZ Ñ Y is universally locally acyclic relatively to F |XzZ and that
h : X Ñ S is universally locally acyclic relatively to F . In [YZ22, De�nition 4.6], we introduce the

non-acyclicity class rCZX{Y {SpFq P H
0
ZpX;KX{Y {Sq supported on Z. If the following condition holds:

H0pZ;KZ{Y q “ 0 and H1pZ;KZ{Y q “ 0(3.6.3)

then the map H0
ZpX;KX{Sq

(3.6.2)
ÝÝÝÝÑ H0

ZpX;KX{Y {Sq is an isomorphism. In this case, the class
rCZX{Y {SpFq P H

0
ZpX;KX{Y {Sq de�nes an element of H0

ZpX;KX{Sq, which is denoted by CZX{Y {SpFq.
In the case that X “ Y Ñ S “ Speck is smooth over a �eld k. Since id : XzZ Ñ XzZ is

universally locally acyclic relatively to F |XzZ , the cohomology sheaves of F |XzZ are locally constant

on XzZ. In this case, the class CZX{Y {SpFq is Abbes-Saito’s localized characteristic class [AS07,

De�nition 5.2.1].
Now we summarize the functorial properties for the non-acyclicity classes.

Theorem 3.7 ([YZ22, Theorem 1.9, Proposition 1.11, Theorem 1.12, Theorem 1.14]). Let us denote
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(4) pCohomological Milnor formulaq Assume S “ Speck for a perfect �eld k of characteristic
p ą 0 and � is a �nite local ring such that the characteristic of the residue �eld is invertible
in k. If Z “ txu, then we have

C∆pFq “ ´dimtotR�f pFqx̄ in � “ H0
xpX;KX{kq:(3.7.4)

(5) pCohomological conductor formulaq Assume S “ Speck for a perfect �eld k of characteristic
p ą 0 and � is a �nite local ring such that the characteristic of the residue �eld is invertible
in k. If Y is a smooth connected curve over k and Z “ f´1pyq for a closed point y P |Y |,
then we have

f˚C∆pFq “ ´aypRf˚Fq in � “ H0
y pY;KY {kq:(3.7.5)

The formation of non-acyclicity classes is also compatible with specialization maps (cf. [YZ22,
Proposition 4.17]).

Now Theorem (3.5) follows from (3.7.1) and (3.7.4). By verifying certain diagrams commute, one
could prove (3.7.1)-(3.7.3). The proof of (3.7.4) is based on (3.7.2) together with a homotopy argu-
ment in [Abe22]. The formula (3.7.5) follows from (3.7.3) and (3.7.4). To prove (3.7.1), we enhance
the constructions of CX{S and CZX{Y {S to the 8-categorical level and construct an intermediate map

LZX{Y {SpFq together with a coherent commutative diagram

�
CZ
X{Y {S

pFq

uu
LZ
X{Y {S

pFq
��

�

CX{SpFq´δ!CX{Y pFq
��

�˚�
!KX{Y {S �˚KZ{S

oo // KX{S :

(3.7.6)

Since H0
ZpX;KX{Y {Sq » H0pZ;KZ{Sq, the diagram (3.7.6) implies the �bration formula (3.7.1).

Remark 3.8. If we apply the non-acyclicity class to the following diagram constructed by Saito in
[Sai17, p.652, (5.13)]

Zp rCq �
� // pX ˆGqO //

$$

D;

��
G

(3.8.1)

we could be able to recover the characteristic cycle CCpFq in a weaker sense.

3.9. Cohomological expression for Artin conductors. Let X be a smooth connected curve
over k. Let F P DctfpX;�q and Z Ď X be a �nite set of closed points such that the cohomology
sheaves of F |XzZ are locally constant. By the cohomological Milnor formula (3.7.4), we have the
following (motivic) expression for the Artin conductor of F at x P Z

axpFq “ dimtotR�x̄pF ; idq “ ´CtxuU{U{kpF |U q;(3.9.1)

where U is any open subscheme of X such that U X Z “ txu. By (3.7.1), we get the following
cohomological Grothendieck-Ogg-Shafarevich formula (cf. [YZ22, Corollary 6.6]):

CX{kpFq “ rankF ¨ c1p

1,_
X{kq ´

ÿ

xPZ

axpFq ¨ rxs in H0pX;KX{kq:(3.9.2)

Based on the observation (3.9.1), we could be able to study the rami�cation theory for motives and
get a quadratic version of the GOS formula (cf. [JY22]).
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3.10. Milnor-type formula for non-isolated singularities. In [XY23], we construct the geo-
metric counterpart of the non-acyclicity class and propose a Milnor-type formula for non-isolated
singularities. The conjecture says that the non-acyclicity classes can be calculated in terms of the
characteristic cycles.

4. Transversality condition

In this section, we recall the de�nition of the non-acyclicity class. To simplify our notation, we
omit to write R or L to denote the derived functors unless otherwise stated explicitly or for RHom.

4.1. Transversality condition. We recall the (cohomological) transversality condition introduced
in [YZ22, 2.1], which is a relative version of the transversality condition studied by Saito [Sai17,
De�nition 8.5]. Let S be a Noetherian scheme and � a Noetherian ring such that m� “ 0 for some
integer m invertible on S. Consider the following cartesian diagram in SchS :

X

lp

��

i // Y

f
��

W
δ // T:

(4.1.1)

Let F P DctfpY;�q and G P DctfpT;�q. Let cδ,f,F ,G be the composition

cδ,f,F ,G : i˚F bL p˚�!G idbb.c
ÝÝÝÝÑ i˚F bL i!f˚G adj

ÝÝÑ i!i!pi
˚F bL i!f˚Gq

proj.formula
ÝÝÝÝÝÝÝÑ

»
i!pF bL i!i!f˚Gq

adj
ÝÝÑ i!pF bL f˚Gq:

(4.1.2)

We put cδ,f,F :“ cδ,f,F ,Λ : i˚F bL p˚�!� Ñ i!F . If cδ,f,F is an isomorphism, then we say that the
morphism � is F-transversal. If ci,id,F is an isomorphism, then we say i is F-transversal.

By [YZ22, 2.11], there is a functor �∆ : DctfpY;�q Ñ DctfpX;�q such that for any F P DctfpY;�q,
we have a distinguished triangle

i˚F bL p˚�!�
cδ,f,F
ÝÝÝÑ i!F Ñ �∆F `1

ÝÝÑ :(4.1.3)

Then � is F-transversal if and only if �∆pFq=0 (cf. [YZ22, Lemma 2.12]). If � is a closed immersion
and j : T zW Ñ T is the open immersion, then we have

�∆F :“ i!pF bL f˚j˚�q:(4.1.4)

The following lemma gives an equivalence characterization between transversality condition and
(universal) local acyclicity condition (cf. [XY23, Lemma 2.2]).

Lemma 4.2. Let f : X Ñ S be a morphism of �nite type between Noetherian schemes and F P

DctfpX;�q. The following conditions are equivalent:

(1) The morphism f is (universally) locally acyclic relatively to F .
(2) For any G P DctfpX;�q, the canonical map

DX{SpGqbL F ÝÑ RHomXˆSXppr˚1G; pr!
2Fq(4.2.1)

is an isomorphism in DctfpX ˆS X;�q, where pr1 : X ˆS X Ñ X and pr2 : X ˆS X Ñ X
are the projections, DX{SpFq “ RHompG;KX{Sq and KX{S “ Rf !�.
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(3) For any cartesian diagram between Noetherian schemes

Y ˆS X

pr1

��

pr2 // X

f

��
Y

δ
// S

l(4.2.2)

and any G P DctfpS;�q, the morphism cδ,f,F ,G is an isomorphism (in particular, � is F-
transversal).

4.3. Non-acyclicity class. Consider the commutative diagram (3.6.1). Let i : XˆY X Ñ XˆSX
be the base change of the diagonal morphism � : Y Ñ Y ˆS Y :

X

f

��

_�

δ1
��

l

X_�

δ0
��

X ˆY X
i //

p

��

// X ˆS X

fˆf

��
Y

δ // Y ˆS Y;

l

(4.3.1)

where �0 and �1 are the diagonal morphisms. Put KX{Y {S :“ �∆KX{S » �˚1 �
∆�0˚KX{S . By (4.1.3),

we have the following distinguished triangle (cf. [YZ22, (4.2.5)])

KX{Y Ñ KX{S Ñ KX{Y {S
`1
ÝÝÑ :(4.3.2)

Let F P DctfpX;�q such that XzZ Ñ Y is universally locally acyclic relatively to F |XzZ and that
h : X Ñ S is universally locally acyclic relatively to F . We put

HS “ RHomXˆSXppr˚2F ; pr!
1Fq; TS “ F bL

S DX{SpFq:(4.3.3)

The relative cohomological characteristic class CX{SpFq is the composition (cf. [YZ22, 3.1])

�
id
ÝÑ RHompF ;Fq » �!

0HS
(4.2.1)
ÐÝÝÝÝ
»

�!
0TS ÝÑ �˚0 TS

ev
ÝÑ KX{S :(4.3.4)

By the assumption on F , �˚1 �
∆TS is supported on Z by [YZ22, 4.4]. The non-acyclicity class

rCZX{Y {SpFq is the composition (cf. [YZ22, De�nition 4.6])

� Ñ �!
0HS

»
ÐÝ �!

0TS » �!
1i

!TS ÝÑ �˚1 i
!TS Ñ �˚1 �

∆TS
»
ÐÝ �˚�

!�˚1 �
∆TS Ñ �˚�

!KX{Y {S :(4.3.5)

If the following condition holds:

H0pZ;KZ{Y q “ 0 and H1pZ;KZ{Y q “ 0;(4.3.6)

then the map H0
ZpX;KX{Sq

(3.6.2)
ÝÝÝÝÑ H0

ZpX;KX{Y {Sq is an isomorphism. In this case, the class
rCZX{Y {SpFq P H

0
ZpX;KX{Y {Sq de�nes an element of H0

ZpX;KX{Sq, which is denoted by CZX{Y {SpFq.

5. Ramification theory for motives

5.1. Quadratic Artin conductor. When I was doing postdoc at Regensburg University, Professor
Denis-Charles Cisinski proposed a project on constructing the characteristic cycles for motives. To
carry out this project, we have to consider the following things:

(1) De�ne the singular support for a constructible motivic spectrum F P SHcpXq on a smooth
variety X over a perfect �eld k.
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(2) Construct a quadratic re�nement of the Artin conductor in the case that X is a smooth

curve. More precisely, for each closed point x P |X|, we need a quadratic form aQx pFq in the
Grothendieck-Witt ring GWpkpxqq of (virtual) non-degenerate symmetric bi-linear forms

over kpxq such that the rank of aQx pFq equals the classical Artin conductor at x of the �etale
realization of F .

(3) Formulate a quadratic re�nement for the Milnor formula (1.5.2) and the conductor formula
(1.5.3).

(4) Construct a quadratic version of the characteristic cycle for a nice SH motive.

In an ongoing note with Cisinski, we could be able to de�ne the singular support for constructible
motives following Beilinson’s argument by using F-transversality conditions instead of the universal
local acyclicity conditions (cf. Lemma 4.2). However at that time, it is di�cult to de�ne the
Artin conductor for a motive. Later in [YZ22], we observe that the Artin conductor for an �etale
constructible sheaf can be expressed in terms of the non-acyclicity class (cf. (3.9.1)). In the joint
work [JY22] with Fangzhou Jin, we have successfully de�ned the Artin conductor of a constructible
motive and formulate a quadratic version of the Grothendick-Ogg-Shafarevich formula (1.4.1).

Theorem 5.2 ([JY22, Theorem 1.3]). Let p : X Ñ Specpkq be a smooth and proper morphism with
X connected, and let Z be a nowhere dense closed subscheme of X with open complementary U .
Let F P SH

https://arxiv.org/abs/2206.02401


CHARACTERISTIC CLASSES AND ε-FACTORS 13

[Bei07] A. Beilinson, Topological E-factors, Pure Appl. Math. Q., 3(1, part 3) (2007):357-39. Ò3, Ò6
[Bei16] A. Beilinson, Constructible sheaves are holonomic, Sel. Math. New Ser. 22, (2016): 1797–1819. Ò3
[Blo87] S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves, Algebraic geometry, Bowdoin,

1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, (1987):
421–450. Ò2, Ò4

[Del73] P. Deligne, La formule de dualit�e globale, Exposé XVIII, pp.481-587 in SGA4 Tome 3: Th�eorie des topos et
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