LECTURE ON NON-ACYCLICITY CLASSES

ENLIN YANG

ABSTRACT. In this lecture, we introduce two classes supported on the non-acyclicity locus of a separated morphism relatively to a constructible sheaf. One is de ned in a cohomological way by using localized categorical trace, another is constructed via geometric method by using Saito's characteristic cycle. As applications of these two classes,

- (1) We prove cohomological analogs of the Milnor formula and the conductor formula for constructible sheaves on (not necessarily smooth) varieties.
- (2) We propose a (relative version of) Milnor type formula for non-isolated singularities. This talk is based on joint work with Jiangnan Xiong and Yigeng Zhao.

Contents

1.	Introduction	1
2.	Cohomological non-acyclicity class	2
3.	Transversality condition	4
4.	Non-acyclicity classes	5
5.	Geometric non-acyclicity class	6
References		10

1. Introduction

$$(1.1.1) \qquad (-1)^n (X/Y; X_0) = -\operatorname{dimtot} R\Phi_{\overline{x}_0}(f; \Lambda);$$

where $n = \dim X$ and dimtot = dim+Sw denotes the total dimension. Later in [5], Deligne proposed a Milnor formula for any constructible sheaf F of Λ -modules on X, which is realized and proved by Saito in [7]. If $x_0 \in |X|$ is at most an isolated characteristic point of F with respect to the singular support of F, then Saito's theorem [7, Theorem 5.9] says

$$(CC(F); df)_{T*X,x_0} = -\operatorname{dimtot} R\Phi_{\overline{x}_0}(f; F);$$

where CC(F) is the characteristic cycle of F. Now we propose the following question:

Question 1.2. Is there a Milnor type formula for non-isolated singular/characteristic points?

1.3. If f is a projective flat morphism and if f is smooth outside $f^{-1}(y)$ for a closed point y of the curve Y, then the conductor formula of Bloch (cf. [8, Theorem 2.2.3 and Corollary 2.2.4])

$$(1.3.1) -a_y(Rf_*\Lambda) = (-1)^n(X;X)_{T^*X,X_Y} = (-1)^n \operatorname{deg} c_{n,X_Y}^X(\Omega_{X/Y}^1) \cap [X]$$

gives a partial answer to the Question 1.1.2. We view (1.1.1), (1.1.2) and (1.3.1) in the form

(1.3.2) deg(Geometric class on singular locus) = deg(Cohomology class on singular locus):

In a joint work with Yigeng Zhao [12], we introduce a (cohomological) non-acyclicity class which is supported on non-acyclicity locus. Let $X \to S$ be a separated morphism between schemes of finite type over k. Let $Z \subseteq X$ be a closed subscheme and $F \in D_{\mathrm{ctf}}(X;\Lambda)$ such that $X \setminus Z \to S$ is universally locally acyclic relatively to $F|_{X \setminus Z}$. Then the cohomological non-acyclicity class $\widetilde{C}_{X/Y/k}^Z(F)$ is a class supported on Z (in $H_Z^0(X;K_{X/Y/k})$). In a joint work with Jiangnan Xiong [10], we construct its geometric counterpart. More precisely, when F is a morphism between smooth schemes over K such that $X \to S$ is SS(F)-transversal outside Z, then we construct a class $CC_{X/Y/k}^Z(F) \in \mathrm{CH}_0(Z)$ (cf. (5.5.8)), called the geometric non-acyclicity class of F. If moreover dim $Z < \dim Y$, then we have the following fibration formula (5.5.8)

$$cc_{X/k}(F) = c_{\mathsf{dimY}}(f^*\Omega_{Y/k}^{1,\vee}) \cap cc_{X/k}(F) + cc_{X/Y/k}^Z(F):$$

We prove that the formation of the geometric non-acyclicity class is compatible with pullback (5.9.2) and proper push-forward (5.11.1). It also satisfies Saito's Milnor formula (5.7.1) and a conductor formula (5.12.1). It is natural to expect the following conjecture holds:

Conjecture 1.4 (Conjecture 5.8). We have

$$\widetilde{C}_{X/Y/k}^{Z}(F) = \widetilde{\operatorname{cl}}(\operatorname{cc}_{X/Y/k}^{Z}(F)) \quad \text{in} \quad \operatorname{CH}_{0}(Z);$$

where $\widetilde{\operatorname{cl}}:\operatorname{CH}_0(Z)\to H^0_Z(X;\mathcal{K}_{X/Y/k})$ is the cycle class map.

We hope (1.4.1) gives a answer to Question 1.2 in some sense.

Notation and Conventions.

- (1) Let S be a Noetherian scheme and Sch_S the category of separated schemes of finite type over S. Let Λ be a Noetherian ring such that $m\Lambda = 0$ for some integer m invertible on S unless otherwise stated explicitly.
- (2) For any scheme $X \in \operatorname{Sch}_S$, we denote by $D_{\operatorname{ctf}}(X;\Lambda)$ the derived category of complexes of Λ -modules of finite tor-dimension with constructible cohomology groups on X.
- (3) For any separated morphism $f: X \to Y$ in Sch_S , we use the following notation

$$K_{X/Y} = Rf^!\Lambda$$
; $D_{X/Y}(-) = RHom(-; K_{X/Y})$:

(4) To simplify our notation, we omit to write R or L to denote the derived functors unless otherwise stated explicitly or for R Hom.

2. Cohomological non-acyclicity class

2.1. Consider a commutative diagram in Sch_S :

$$Z \xrightarrow{\tau} X \xrightarrow{f} Y;$$

$$(2.1.1)$$

where $: Z \to X$ is a closed immersion and g is a smooth morphism. Let us denote the diagram (2.1.1) simply by $\Delta = \Delta^Z_{X/Y/S}$ Let $F \in D_{\rm ctf}(X;\Lambda)$ such that $X \setminus Z \to Y$ is universally locally acyclic relatively to $F|_{X \setminus Z}$ and that $h: X \to S$ is universally locally acyclic relatively to F.

2.2. In [12], we introduce an object $K = K_{X/Y/S}$ sitting in a distinguished triangle (cf. [12, (4.2.5)])

$$(2.2.1) K_{X/Y} \to K_{X/S} \to K \xrightarrow{+1} :$$

and a cohomological class $C^Z(F) = \widetilde{C}^Z_{X/Y/S}(F)$ in $H^0_Z(X;K)$. We call $C^Z(F)$ the non-acyclicity class of F. If the following condition holds:

(2.2.2)
$$H^0(Z; K_{Z/Y}) = 0 \text{ and } H^1(Z; K_{Z/Y}) = 0$$

then the map $H_Z^0(X; \mathcal{K}_{X/S}) \xrightarrow{(2.2.1)} H_Z^0(X; \mathcal{K}_{X/Y/S})$ is an isomorphism. In this case, the class $\widetilde{C}_{X/Y/S}^Z(F) \in H_Z^0(X; \mathcal{K}_{X/Y/S})$ defines an element of $H_Z^0(X; \mathcal{K}_{X/S})$. Now we summarize the functorial properties for the non-acyclicity classes (cf. [12, Theorem 1.9, Proposition 1.11, Theorem 1.12, Theorem 1.14]).

Proposition 2.3. Let us denote the diagram (4.2.1) simply by $\Delta = \Delta^Z_{X/Y/S}$ and $\widetilde{C}^Z_{X/Y/S}(F)$ by C (F). Let $F \in D_{\mathrm{ctf}}(X;\Lambda)$. Assume that $Y \to S$ is smooth, $X \setminus Z \to Y$ is universally locally acyclic relatively to $F|_{X \setminus Z}$ and that $X \to S$ is universally locally acyclic relatively to F.

(1) (Fibration formula) If $H^0(Z; K_{Z/Y}) = H^1(Z; K_{Z/Y}) = 0$, then we have

(2.3.1)
$$C_{X/S}(F) = c_r(f^*\Omega_{Y/S}^{1,\vee}) \cap C_{X/Y}(F) + C \quad (F) \quad \text{in} \quad H^0(X; K_{X/S}):$$

(2) (Pull-back) Let $b: S' \to S$ be a morphism of Noetherian schemes. Let $\Delta' = \Delta_{X'/Y'/S'}^{Z'}$ be the base change of $\Delta = \Delta_{X/Y/S}^{Z}$ by $b: S' \to S$. Let $b_X: X' = X \times_S S' \to X$ be the base change of b by $X \to S$. Then we have

(2.3.2)
$$b_X^* C (F) = C (b_X^* F) \text{ in } H_{Z'}^0(X'; K_{X'/Y'/S'});$$

where $b_X^*: H_Z^0(X; K_{X/Y/S}) \to H_{Z'}^0(X'; K_{X'/Y'/S'})$ is the induced pull-back morphism.

(3) (Proper push-forward) Consider a diagram $\Delta' = \Delta_{X'/Y/S}^{Z'}$. Let $s: X \to X'$ be a proper morphism over Y such that $Z \subseteq s^{-1}(Z')$. Then we have

(2.3.3)
$$S_*(C_{(F)}) = C_{(R}S_*F) \text{ in } H^0_{Z'}(X'; K_{X'/Y/S});$$

where $s_*: H^0_Z(X; K_{X/Y/S}) \to H^0_{Z'}(X'; K_{X'/Y/S})$ is the induced push-forward morphism.

(4) (Cohomological Milnor formula) Assume $S = \operatorname{Spec} k$ for a perfect eld k of characteristic p > 0 and Λ is a nite local ring such that the characteristic of the residue eld is invertible in k. If Y is a smooth connected curve over k and $Z = \{x\}$, then we have

(2.3.4)
$$C(F) = -\operatorname{dimtot} R\Phi_x(F; f) \quad \text{in} \quad \Lambda = H_x^0(X; K_{X/k});$$

where $R\Phi(F; f)$ is the complex of vanishing cycles and $\operatorname{dimtot} = \operatorname{dim} + \operatorname{Sw}$ is the total dimension.

(5) (Cohomological conductor formula) Assume $S = \operatorname{Spec} k$ for a perfect eld k of characteristic p > 0 and Λ is a nite local ring such that the characteristic of the residue eld is invertible in k. If Y is a smooth connected curve over k and $Z = f^{-1}(y)$ for a closed point $y \in |Y|$, then we have

$$f_*C(F) = -a_y(Rf_*F) \quad \text{in} \quad \Lambda = H_y^0(Y; K_{Y/k});$$

where $a_y(G) = \operatorname{rank} G|_{\eta} - \operatorname{rank} G_y + \operatorname{Sw}_y G$ is the Artin conductor of the object $G \in D_{\operatorname{ctf}}(Y;\Lambda)$ at y and y is the generic point of Y.

The formation of non-acyclicity classes is also compatible with specialization maps (cf. [12, Proposition 4.17]). We call (2.3.1) the fibration formula for characteristic class, which is motivated from [9].

2.4. Let X be a smooth connected curve over k. Let $F \in D_{\mathsf{ctf}}(X;\Lambda)$ and $Z \subseteq X$ be a finite set of closed points such that the cohomology sheaves of $F|_{X\setminus Z}$ are locally constant. By the cohomological Milnor formula (2.3.4), we have the following (motivic) expression for the Artin conductor of F at $x \in Z$

(2.4.1)
$$a_x(\digamma) = \operatorname{dimtot} R\Phi_x(\digamma/\operatorname{id}) = -C_{U/U/k}^{\{x\}}(\digamma|_U)_{\mathcal{F}}$$

where U is any open subscheme of X such that $U \cap Z = \{x\}$. By (2.3.1), we get the following cohomological Grothendieck-Ogg-Shafarevich formula (cf. [12, Corollary 6.6]):

$$(2.4.2) C_{X/k}(F) = \operatorname{rank} F \cdot c_1(\Omega_{X/k}^{1,\vee}) - \sum_{x \in Z} a_x(F) \cdot [x] \quad \text{in} \quad H^0(X; K_{X/k}):$$

3. Transversality condition

3.1. We recall the transversality condition introduced in [12, 2.1], which is a relative version of the transversality condition studied by Saito [7, Definition 8.5]. Consider the following cartesian diagram in Sch_S :

$$(3.1.1) \qquad \begin{array}{c} X \stackrel{i}{\longrightarrow} Y \\ p \middle\downarrow \qquad \qquad \downarrow f \\ W \stackrel{\delta}{\longrightarrow} T : \end{array}$$

Let $F \in D_{\mathsf{ctf}}(Y;\Lambda)$ and $G \in D_{\mathsf{ctf}}(T;\Lambda)$. Let $c_{\delta,f,F,G}$ be the composition

We put $c_{\delta,f,\digamma} := c_{\delta,f,\digamma}$, $: f^* \digamma \otimes^L p^* \ ^! \Lambda \to f^! \digamma$. If $c_{\delta,f,\digamma}$ is an isomorphism, then we say that the morphism is \digamma -transversal.

By [12, 2.11], there is a functor $: D_{\mathsf{ctf}}(Y;\Lambda) \to D_{\mathsf{ctf}}(X;\Lambda)$ such that for any $F \in D_{\mathsf{ctf}}(Y;\Lambda)$, we have a distinguished triangle

$$(3.1.3) f^* F \otimes^L p^* \stackrel{!}{!} \Lambda \xrightarrow{c : f : \mathcal{F}} f^! F \to F \xrightarrow{+1} :$$

is \digamma -transversal if and only if $(\digamma)=0$ (cf. [12, Lemma 2.12]).

The following lemma gives an equivalence between transversality condition and (universally) locally acyclicity condition.

Lemma 3.2. Let $f: X \to S$ be a morphism of nite type between Noetherian schemes and $F \in D_{\text{ctf}}(X; \Lambda)$. The following conditions are equivalent:

- (1) The morphism f is locally acyclic relatively to F.
- (2) The morphism f is universally locally acyclic relatively to F.

(3) For any $G \in D_{\text{ctf}}(X;\Lambda)$, the canonical map

$$(3.2.1) D_{X/S}(G) \mathbf{b}^{L} F \to R Hom(\operatorname{pr}_{1}^{*}G; \operatorname{pr}_{2}^{!}F)$$

is an isomorphism.

(4) The canonical map

$$(3.2.2) D_{X/S}(F) \mathbf{b}^{L} F \to R \mathcal{H}om(\operatorname{pr}_{1}^{*}F; \operatorname{pr}_{2}^{!}F)$$

is an isomorphism.

(5) For any cartesian diagram between Noetherian schemes

$$(3.2.3) Y \times_{S} X \xrightarrow{\operatorname{pr}_{2}} X \\ \operatorname{pr}_{1} \downarrow \qquad \qquad \qquad \downarrow f \\ Y \xrightarrow{S} S$$

the morphism is F-transversal.

- (6) For any cartesian diagram (3.2.3) and any $G \in D_{\text{ctf}}(S;\Lambda)$, the morphism $c_{\delta,f,F,G}$ is an isomorphism.
- (7) For any cartesian diagram between Noetherian schemes

the morphism is $F|_{X'}$ -transversal.

(8) For any cartesian diagram (3.2.4) and any $G \in D_{\mathsf{ctf}}(S;\Lambda)$, the morphism $c_{\delta,f,F,G}$ is an isomorphism.

When S is a scheme of finite type over a field k, then the equivalence between (2) and (7) follows from [12, Proposition 2.4.(2) and Proposition 2.5]. In this case, we may require Y and S' smooth over k in (7).

4. Non-acyclicity classes

4.1. Let S be a Noetherian scheme and Sch_S the category of separated schemes of finite type over S. Let Λ be a Noetherian ring such that $m\Lambda = 0$ for some integer m invertible on S. Consider the following cartesian diagram in Sch_S

$$(4.1.1) \qquad \begin{array}{c} X \times_S Y \xrightarrow{\operatorname{pr}_1} X \\ \operatorname{pr}_2 \Big| & \square & \downarrow h \\ Y \xrightarrow{g} S_i \end{array}$$

where pr_1 and pr_2 are the projections. For any $F \in D_{\operatorname{ctf}}(X;\Lambda)$ and $G \in D_{\operatorname{ctf}}(Y;\Lambda)$, we have canonical morphisms

$$(4.1.3) F \mathbf{b}_S^L D_{Y/S}(G) \to R \mathcal{H}om(\operatorname{pr}_2^* G; \operatorname{pr}_1^! F);$$

where (4.1.3) is adjoint to

$$(4.1.4) F \mathbf{b}_S^L (D_{Y/S}(G) \otimes^L G) \xrightarrow{id \boxtimes e \vee} F \mathbf{b}_S^L K_{Y/S} \xrightarrow{(4.1.2)} \operatorname{pr}_1^! F:$$

Note that (4.1.2) is a special case of (4.1.3) by taking $G = \Lambda$. If moreover $X \to S$ is universally locally acyclic relatively to F, then (4.1.3) is an isomorphism by [6, Proposition 2.5] (see also [11, Corollary 3.1.5]). For a morphism $C = (C_1 : C_2) : C \to X \times_S Y$, we have a canonical isomorphism by [3, Corollaire 3.1.12.2]

$$(4.1.5) R Hom(c_2^*G; c_1^!F) \xrightarrow{\simeq} c^!R Hom(\operatorname{pr}_2^*G; \operatorname{pr}_1^!F):$$

4.2. Consider a commutative diagram in Sch_S :

$$Z \xrightarrow{\tau} X \xrightarrow{f} Y;$$

$$(4.2.1)$$

where $: Z \to X$ is a closed immersion and g is a smooth morphism. Let $i: X \times_Y X \to X \times_S X$ be the base change of the diagonal morphism $: Y \to Y \times_S Y$:

where $_0$ and $_1$ are the diagonal morphisms. Put $\mathcal{K}_{X/Y/S} := \mathcal{K}_{X/S} \simeq _1^* _{0*}\mathcal{K}_{X/S}$. We have the following distinguished triangle (cf. [12, (4.2.5)])

$$(4.2.3) K_{X/Y} \to K_{X/S} \to K_{X/Y/S} \xrightarrow{+1} :$$

Let $F \in D_{\mathsf{ctf}}(X;\Lambda)$ such that $X \setminus Z \to Y$ is universally locally acyclic relatively to $F|_{X \setminus Z}$ and that $h: X \to S$ is universally locally acyclic relatively to F. We put

$$(4.2.4) H_S = R Hom_{X \times_S X}(\operatorname{pr}_2^* \digamma; \operatorname{pr}_1^! \digamma); T_S = \digamma \mathbf{b}_S^L D_{X/S}(\digamma):$$

Lemma 4.3. * T_S is supported on Z.

The relative cohomological characteristic class $C_{X/S}(F)$ is the composition (cf. [12, 3.1])

$$(4.3.1) \qquad \Lambda \xrightarrow{\mathsf{id}} R \mathcal{H} \mathit{om}(F; F) \xrightarrow{(4.1.5)} {}_{\simeq} {}_{0}^{!} \mathcal{H}_{S} \xleftarrow{(4.1.3)} {}_{\simeq} {}_{0}^{!} \mathcal{T}_{S} \to {}_{0}^{*} \mathcal{T}_{S} \xrightarrow{\mathsf{ev}} \mathcal{K}_{X/S}:$$

The non-acyclicity class $\widetilde{C}_{X/Y/S}^{Z}(F)$ is the composition (cf. [12, Definition 4.6])

$$(4.3.2) \qquad \Lambda \to {}^{!}_{0}\mathcal{H}_{S} \stackrel{\simeq}{\leftarrow} {}^{!}_{0}\mathcal{T}_{S} \simeq {}^{!}_{1}\mathcal{I}^{!}_{1}\mathcal{T}_{S} \to {}^{*}_{1}\mathcal{I}^{!}_{1}\mathcal{T}_{S} \to {}^{*}_{1}\mathcal{T}_{S} \stackrel{\simeq}{\leftarrow} {}^{*}_{1}\mathcal{T}_{S} \stackrel{\simeq}{\leftarrow} {}^{*}_{1}\mathcal{T}_{S} \to {}^{*}_{1}\mathcal{T}$$

5. Geometric non-acyclicity class

Now we construct a geometric counterpart of the cohomological non-acyclicity class. Let k be a perfect field of characteristic p and Λ be a finite local ring whose residue field is of characteristic $\neq p$. We first recall geometric transversal condition.

5.1. Let X be a smooth scheme of dimension d over k and $F \in D_{\text{ctf}}(X;\Lambda)$. We need Beilinson's singular support SS(F), which a d-dimensional conical closed subset of the cotangent bundle T^*X). We also need Saito's characteristic cycle CC(F), which is a d-cycle supported on SS(F) with integral coefficients. The characteristic cycle CC(F) is characterized by a Milnor formula for isolated characteristic points.

We say a morphism $f: X \to S$ to a smooth scheme S is SS(F)-transversal if $dF^{-1}(SS(F))$ is contained in the zero section of $T^*S \times_S X$, where $dF: T^*S \times_S X \to T^*X$ is induced morphism on vector bundles. We have the following fact:

Lemma 5.2. If $f: X \to S$ is SS(F)-transversal, then f is universally locally acyclic relatively to F

5.3. Let S be a smooth connected scheme of dimension S over K. Let $f: X \to S$ be a morphism in Sm_k . Let $F \in \mathcal{D}_{ctf}(X;\Lambda)$ such that f is SS(F)-transversal. Consider the following morphisms

$$(5.3.1) X \xrightarrow{0} T^*S \times_S X \xrightarrow{df} T^*X;$$

where 0 stands for the zero section. By assumption $df^{-1}(SS(F))$ is contained in O(X). We define the relative characteristic class of F to be the following S-cycle class on X:

$$(5.3.2) cc_{X/S}(F) := (-1)^s \cdot (df)!(CC(F)) in CH_s(X);$$

where $(d\mathbf{f})^!$ is the refined Gysin pullback. We don't know how to define $cc_{X/S}(F)$ if one only assume \mathbf{f} is universally locally acyclic relatively to F.

If f is a smooth morphism of relative dimension r and if F is locally constant, then we have

$$(5.3.3) \mathcal{C}_{X/S}(F) = (-1)^s \cdot 0_{X/S}^!((-1)^{\dim X} \cdot \operatorname{rank} F \cdot [X]) = \operatorname{rank} F \cdot \mathcal{C}_r(\Omega_{X/S}^{1,\vee}) \cap [X]:$$

We propose the following conjecture:

Conjecture 5.4. Let S be a smooth connected scheme of dimension s over k. Let $f: X \to S$ be a morphism in Sm_k . Let $F \in D_{\operatorname{ctf}}(X;\Lambda)$ such that f is SS(F)-transversal. Then we have

(5.4.1)
$$\operatorname{cl}(\operatorname{cc}_{X/S}(F)) = \operatorname{C}_{X/S}(F) \quad \text{in} \quad \operatorname{H}^0(X; K_{X/S});$$

where $\mathrm{cl}:\mathrm{CH}_s(X)\to H^0(X;\mathcal{K}_{X/S})$ is the cycle class map.

When $S = \operatorname{Spec} k$, then it is Saito's conjecture [7, Conjecture 6.8.1], which is proved under quasiprojective assumption in [12, Theorem 1.3]. When $f: X \to S$ is a smooth morphism, then (5.4.1) is true for a locally constant constructible (flat) sheaf F of Λ -modules. Indeed, this follows from (5.3.3), [12, Lemma 3.3] and (2.3.1).

5.5. Consider a commutative diagram in Sm_k :

$$Z \xrightarrow{\tau} X \xrightarrow{f} Y ;$$

$$(5.5.1)$$

where $: Z \to X$ is a closed immersion and g is a smooth morphism of relative dimension r. Let $F \in D_{\mathsf{ctf}}(X;\Lambda)$ such that $X \setminus Z \to Y$ is $SS(F|_{X \setminus Z})$ -transversal and that $X \to S$ is SS(F)-transversal.

We have a commutative diagram on vector bundles

where dg_X is the base change of dg. By assumption, $df^{-1}(SS(F))$ is supported on $0(X) \cup T^*Y \times_Y Z$ and $dh^{-1}(SS(F)) = dg_X^{-1} df^{-1}(SS(F))$ is contained in the zero section $0(X) \subseteq T^*S \times_S X$. We define the geometric non-acyclicity class $cc_{X/Y/S}^Z(F)$ of F to be

Assume moreover that $\dim Z < r + s$. Then the restriction map $\operatorname{CH}_{r+s}(X) \xrightarrow{\simeq} \operatorname{CH}_{r+s}(X \setminus Z)$ is an isomorphism. In this case, we define the relative characteristic class $\operatorname{\mathcal{CC}}_{X/Y}(F)$ to be

$$(5.5.4) cc_{X/Y}(F) := cc_{U/Y}(F|_{U}) in CH_{r+s}(X);$$

where $U = X \setminus Z$. Then we have

$$(5.5.5) \quad (-1)^s \cdot d\mathbf{f}^!(CC(F)) = cc_{X/Y}(F) + (-1)^s \cdot d\mathbf{f}^!(CC(F))|_{T^*Y \times_Y Z}$$

$$(5.5.6) \quad \textit{CC}_{X/S}(\textit{F}) = (-1)^s \cdot \textit{dg}_X^{\textrm{I}} \, \textit{df}^{\textrm{!}}(\textit{CC}(\textit{F})) = \textit{dg}_X^{\textrm{!}} \, \textit{CC}_{X/Y}(\textit{F}) + (-1)^s \cdot \textit{dg}_X^{\textrm{!}} \, (\textit{df}^{\textrm{!}}(\textit{CC}(\textit{F}))|_{T^*Y \times_Y Z});$$

By the excess intersection formula, we have

$$dg_X^{\mathsf{L}} \operatorname{cc}_{X/Y}(F) = c_r(f^*\Omega_{Y/S}^{\mathsf{1},\vee}) \cap \operatorname{cc}_{X/Y}(F):$$

Thus if $\dim Z < r + s$, then we have

(5.5.8)
$$cc_{X/S}(F) = c_r(f^*\Omega_{Y/S}^{1,\vee}) \cap cc_{X/Y}(F) + cc_{X/Y/S}^Z(F):$$

In particular, if Z is empty, then we have

$$(5.5.9) cc_{X/S}(F) = c_r(f^*\Omega_{Y/S}^{1,\vee}) \cap cc_{X/Y}(F):$$

Remark 5.6. Assume that $X \to S$ is smooth of relative dimension r and that $X \setminus Z \to Y$ is smooth of relative dimension n (n < r). Then $\Omega_{X/Y}^{1,\vee}$ is locally free of rank n on $X \setminus Z$ and we have the localized Chern classes $c_{i,Z}^X(\Omega_{X/Y}^{1,\vee})$ for i > n (cf. [2, Section 1]). By [8, Lemma 2.1.4], we have

(5.6.1)
$$\mathcal{C}_{X/Y/S}^{Z}(\Lambda) = (-1)^{r} \mathcal{C}_{r,Z}^{X}(\Omega_{X/Y}^{1}) \cap [X] \quad \text{in } \operatorname{CH}_{s}(Z):$$

Theorem 5.7 (Saito's Milnor formula). Assume $S = \operatorname{Spec} k$, $Y = \mathbb{A}^1_k$ and $Z = \{x\}$. Then we have

$$cc_{X/Y/S}^{\mathbb{Z}}(F) = -\operatorname{dimtot} R\Phi_{x}(F; f) \quad \text{in} \quad \mathbb{Z} = \operatorname{CH}_{0}(\{x\}):$$

We expect the following Milnor type formula for non-isolated singular/characteristic points holds.

Conjecture 5.8. Let S be a smooth connected k-scheme of dimension s. Consider the commutative diagram (5.5.1). Let $F \in D_{\text{ctf}}(X;\Lambda)$ such that $X \setminus Z \to Y$ is $SS(F|_{X \setminus Z})$ -transversal and that $X \to S$ is SS(F)-transversal. Then we have an equality

(5.8.1)
$$\widetilde{C}_{X/Y/S}^{Z}(F) = \widetilde{\operatorname{cl}}(cc_{X/Y/S}^{Z}(F)) \quad \text{in} \quad H_{Z}^{0}(X; K_{X/Y/S});$$

where $\widetilde{\operatorname{cl}}$ is the composition $CH_s(Z) \xrightarrow{\operatorname{cl}} H_Z^0(X; \mathcal{K}_{X/S}) \xrightarrow{\text{(4.2.3)}} H_Z^0(X; \mathcal{K}_{X/Y/S})$.

When S = Speck, $Y = \mathbb{A}^1_k$ and $Z = \{x\}$, then Conjecture 5.8 follows from Saito's Milnor formula (5.7.1) and the cohomological Milnor formula (2.3.4).

Proposition 5.9. Consider a commutative diagram in Sm_k

$$(5.9.1) X' \xrightarrow{i_X} X$$

$$h' \qquad Y' \xrightarrow{i_Y} Y$$

$$S' \xrightarrow{\delta} S'$$

where squares are cartesian diagrams. Let $Z \subseteq X$ be a closed subscheme and $Z' = Z \times_X X'$. Let $F \in D_{\text{ctf}}(X;\Lambda)$ such that $X \to S$ is SS(F)-transversal and $X \setminus Z \to Y$ is $SS(F|_{X \setminus Z})$ -transversal. Assume that f and g are smooth morphisms and that i_X is properly SS(F)-transversal. Assume S (resp. S') is connected of dimension S (resp. S'). Then we have

(5.9.2)
$$i_X^! cc_{X/Y/S}^Z(F) = cc_{X'/Y'/S'}^{Z'}(i_X^* F) \text{ in } CH_{s'}(Z');$$

where $i_X^!: CH_s(Z) \to CH_{s'}(Z')$ is the re ned Gysin pull-back.

5.10. Let $g: Y \to S$ be a smooth morphism in Sm_k . Consider a commutative diagram in Sm_k :

$$(5.10.1) X \xrightarrow{p} X' :$$

Let $Z \subseteq X$ be a closed subscheme. Let $F \in D_{\text{ctf}}(X;\Lambda)$ such that $X \to S$ is SS(F)-transversal and that $X \setminus Z \to Y$ is $SS(F|_Z)$ -transversal. Assume p is a proper morphism and put Z' = p(Z). By [7, Lemma 3.8 and Lemma 4.2.6], the morphism $X' \to S$ is $SS(Rp_*F)$ -transversal and that $X' \setminus Z' \to Y$ is $SS(Rp_*F|_Z)$ -transversal. Then we have well defined classes $CC_{X/Y/S}^Z(F) \in CH_s(Z)$ and $CC_{X'/Y/S}^Z(Rp_*F) \in CH_s(Z')$.

Proposition 5.11. Consider the assumptions in 5.10. Assume moreover $\dim p_{\circ}SS(F) \leq \dim X'$, Y is projective and p is quasi-projective. Then we have

(5.11.1)
$$p_* cc_{X/Y/S}^Z(F) = cc_{X'/Y/S}^{Z'}(Rp_*F);$$

where $p_*: \mathrm{CH}_s(Z) \to \mathrm{CH}_s(Z')$ is the proper push-forward.

Corollary 5.12 (Saito, [8, Theorem 2.2.3]). Let $f: X \to Y$ be a projective morphism of smooth schemes over a perfect eld k, and let $y \in Y$ be a closed point. Let $F \in D_{\mathrm{ctf}}(X;\Lambda)$. Assume Y is a smooth and connected curve and that f is properly SS(F)-transversal outside X_y . Then we have

$$(5.12.1) -a_y(Rf_*F) = f_*cc_{X/Y/k}^{X_y}(F):$$

References

- [1] A. Beilinson, Constructible sheaves are holonomic, Sel. Math. New Ser. 22, (2016): 1797{1819.
- [2] S. Bloch, *Cycles on arithmetic schemes and Euler characteristics of curves*, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, (1987): 421{450.