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rate of the EM algorithm tends to be asymptotically super-
linear when the overlap of densities in the mixture tends to
zero. Recently, Ma and X[14] have generalized this result
to the mixture of densities from exponential families.

But there has still been an important but unsolved problem
of whether the EM algorithm can converge to the correct
solution, i.e., the consistent solution of the true parameters
of the mixture from which the sample data come. Clearly,
this correct convergence problem is key to the usefulness of
the EM algorithm. According to the classical convergence
theory, the EM algorithm only converges to a local maximum
solution of the likelihood function and cannot be guaranteed
to converge to the correct solution. However, in practical
applications and experiments, we often find that the EM
algorithm always converges correctly when the overlap of
Gaussians in the sample data or original mixture becomes
small enough. This fact reveals that the correct convergence
of the EM algorithm is related to the overlap of the Gaussians
in the mixture of the sample data and thus we can study
the correct convergence of the EM algorithm for Gaussian
mixtures from the change of the overlap of Gaussians in the
original mixture.

In this paper, we study the correct convergence problem
of the EM algorithm for Gaussian mixtures under the theo-
retical framework of13]. It is proved that the EM algorithm
becomes a contraction mapping of the parameters in a neigh-
borhood of the consistent solution of the maximum likeli-
hood when the measure of average overlap among Gaus-
sians in the original mixtures is small enough and the sample
size is large enough. That is, when the initial parameters are
given within the neighborhood, the EM algorithm will al-
ways converge to this consistent solution, i.e., the expected
result. Moreover, the simulation results further demonstrate
that the correct convergence neighborhood of the EM algo-
rithm increases as the measure of average overlap among
Gaussians in the original mixtures decreases to zero.

In the sequel, we introduce the Gaussian mixture model
and give some definitions and a lemma in Section 2. In
Section 3, we present the main results. Moreover, we sub-
stantiate them by the simulation experiments in Section 4.
Finally, we conclude in Section 5.

2. Gaussian mixture, definitions and lemma

We consider the following Gaussian mixture model:

K
P(x|0)=) ajp
j=1
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the correct convergence problem of the EM algorithm from
the point of view of the contraction mapping.

In order to analyze the correct convergence problem of
the EM algorithm, we give some definitions and a lemma
related to the Gaussian mixture model which were firstly
introduced in[13].

We begin to introduce the measure for the overlap of
Gaussians in the mixture. We consider the following poste-
rior densities for the Gaussian mixture Eq. (1) with the true
parameter®™* of the sample data set:

oc?‘P(x|ml’f,Z;f)

hi(x) = fori=1,...,K. (8)
' leajp(x|mj,zj)

We let

yij(x):(éij—hi(x))hj(x) fori,j=1,...,K, 9)

whered; ; is the Kronecker function. Then, we define a group
of quantities on the overlap of Gaussians as follows:

e,-,-(@*)=/Rd 17 ()| P(x]6%) i,

fori,j=1,2,...,K, Whereeij(@*) <1 since|yij(x)| <1.

Fori # j, e,-j(@*) can be considered as a measure
of the average overlap between Gaussiamsdj in the
mixture. WhenP(x|mjf, Zj‘) andP(x|m§, Z;) have a high
overlap at a poink, &; (x)h ; (x) takes a large value; other-
wise, h; (x)h j(x) takes a small value. When they are well
separated ax, /;(x)h;(x) becomes zero. Thus, the prod-
uct k; (x)h j(x) represents the degree of overlap between
P(x|m}, X7) andP(x|m;f, Zj) atx in the mixture, and the
abovee;; (©*) is an average overlap measure between the
Gaussians andj in the mixture.

As a whole, we consider the worst case and define

e(0%) = r,“f,x ¢jj(0") (10)

as an average overlap of Gaussians in the original mixture.

Obviously, 0<e(O*) < 1.
We further introduce three kinds of special polynomial
functions which we often meet in the following analysis.

Definition 1. g(x, ©*) is called a regular function if it
satisfies:

() If ©*is fixed,g(x, ©®*) is a polynomial function of the
component variablesy, ..., x; of x.
(i) If xis fixed,g(x, @*) is a polynomial function of the el-

* * * * k—1 x—1
ementsoﬁnl,...,mK,Zl,...,ZK,Z1 B
as well as.z* = [off, ..., o ]T,o/* 1 = [oq—l, o
*—14T
U 1"

Definition 2. g(x, ©*) is called a balanced function if it
satisfies (i) and the following:

(iii) If x is fixed, g(x, ©®*) is a polynomial function of
the elements ofe/*, «/*~1, m¥, ... om%, X5, ... 2%,
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wonH L ezt where

A(OF) =max g,
ik
where/; is thekth eigenvalue of the covariance matﬁ)}.

Definition 3. g(x, ©@*) is called a convertible function if it
is regular and there is a nonnegative numfesuch that
29(O*)g(x, ©F) is converted into a balanced function.

Furthermore, we give certain assumptiong®hthat reg-
ularize the manner of(®*) tending to zero.

e We assume tha®* satisfies the first condition that
D o zo, fori=1,...,K,

whereo is a positive number.
e Our second assumption is that the eigenvalues of all the
covariance matrices satisfy

(2) PUO™) <2 S MO,
k=1,....d,

fori=1,...,K,

wheref is a positive number.
e The third assumption is that the mean vectors of the
Gaussians in the mixture satisfy

(3) vDmax(0*) < Dinin(@*) < [l — m|
<Dmax(©%), fori # j,
where Dmax(©*) = maxj [m} — m}’fll, Dmin(0%) =

min; ¢ [|m} — mjfll, andv is a positive number.

With the above preparations, we now introduce the fol-
lowing lemma.

Lemma 1. Suppose that®* satisfies Conditions(1-3)
and thate(®*) — 0 is considered as an infinitesimal. If
g(x, ©*) is a regular and convertible functionve have

/ g(x. 0%)y;; () P(x|0%) dr =0(®>75(0%),  (11)

wheree > 0 is an arbitrarily small numberando(x) means
that it is a higher-order infinitesimal ag — O.

The proof is given if13].

3. Main results

We now consider the parameter mapping of the EM iter-
ation @*+D = a1, (©®), which is explicitly expressed by
Egs. (3), (4) and (7). For mathematical analysis, we need to
represent? by a set of independent variables. In order to
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do so, we introduce the following subspace:

K

R1=10: Z ocjzo,ag,jq)za((/; forall j, p,qy¢ .,
j=1

which is obtained from
K . .

Ro=130: Zaj =1,a§,1q) =a£]]p) for allj, p, q
j=1

by the constant shif®q. For the Gaussian mixture, the con-
straint that all¥ ; are positive definite should also be added
to Z2 and thusZ;. It can be easily verified that with this
constraintZ1 becomes an open convex set within the origi-
nal subspace. Since we will only consider the local differen-
tial properties of the parameter mapping at an interior point
of the open convex set, we can set a new coordinate system
for the parameter vecta® via a set of the unit basis vec-
torsE =[e1, ..., em], wheremis the dimension of21. In

this way, the independent parameters of the Gaussian mix-

ture becomed = ET6 and thus®@* ™Y = ET@®k+D —
ET My (@®). Certainly, this compact representation of the
parameters is equivalent to the natural representation of the
parameters for Gaussian mixture. However, it is convenient
for mathematical analysis. We will use the two paramet-
ric representations equivalently in this paper. Hereafter, the
parametel® denotes the compact parameter representation
with E.

Based on the relation between the two parametric repre-
sentations, we have

00" BETMy(©®) tamy©®) 20®
6(@(k))T 6(@(k))T (OWNHT a((:)(k))'r

A (k
_ oMy ©e®) 0£d"  Ltamy©®)

a(@(k))T a(@(k))'r - a(@(k))T
(12)
Using @ instead of©@®) in the parameter mapping or the
EM iteration, we introduce the following two notations:
OMy(O)
DMy (O) = W, (13)
2 (k+1)
a 0e
DMpy(O) = T)T
o) 0% _o—£To
=E"DMy(O)E. (14)
Therefore, we have
~ (k)
IDMN (@) = |ETDM (@) E|
<IEI2 DMy (©D)]), (15)

where|| - || denotes the Euclidean norm for a matrix.
Since the nornij E|| is a positive constant, we only need
to prove that| DM y (©®))|| can be small enough so that the
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iteration mapping becomes a contraction mapping via the
mean value theorem. Suppose tBH is a consistent solu-
tion of the maximum likelihood on the sample data.get
{x,}f\’zl and thus the EM algorithm can converge to it, that is,
OV is a fixed point of the parameter mappinfy (©). We

can analyzél DM  (©®))|| around®” asymptotically, that

is, we study it viaD M (0*) =lim y_, oo DM y (O ) .Before
doing so, we give the partial derivatives BV y (©) at O*

in the block forms (refer t¢16] for derivation).

k1
0 1 X0 y
oy ® =N ) e (16)
N AT =1 %
okt D 1N
o =5 2 10Xt -md), (@17)
Om; oh_g* =1
@a(.](+l) 1 N
o ® = =5 2 Ui OV, (18)
i 0k —_e* =1
k1
om i YLy (0Ox®
FNcE = TN o
al( ) M _@g* O‘?Zx:lhj(t)
XN 0xO%Y 5,0 o
B hj )2
om &+
J
®
om;" | g _gr
_ Yy 0x® @ (= ® — w7
Silahj(0)
_ Z;V:]_ h/ (t)x(t) ® Zivzl A"!'./ ([)[Z‘;"_l(x(t) _m;_k)]T
(T yhj@)? !
(20)
amqﬁ_l)
J
—l
0" | gt _g
XN h0x 0 @ TNy (0Ui1)
20 qhj(1)?
B Z;V=1 Vij 0xD @ Ui (1) o
2N ki)
k+1
625' ) Zi\,:17ij(t)Rj(l)
Toa® =N
ao‘l( ) oM _@* a;th:l hj ®)
CXah i OR; Oy 745 ®)
7 (g ghj (1)
(22)
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625“1) According to the definition of the Euclidean norm, if each
W element of DM (©*) is a higher-order infinitesimal quan-
i e _g* tity of e0-5-¢(@*), ||IDM(O%)| is also a higher-order
Zﬁv—l 7 (OR: (1) ® (25 1@ —*)) infinitesimal quantity of 85-¢(©*). Thus, we only need
=— : : to prove that each element &M (O*) is a higher-order
N
2i=1hj® infinitesimal quantity of 85-¢(©*). In the following, we
SN iR YN, y,-j(t)Z;‘_l(x(t) —m¥) will consider the elements abM (©*) in different block
B N 2 forms.
hi(t
N (Z’;)l / (*)) O We begin with the partial derivativéocg.kﬂ) /aa§k). Ac-
0§ ma b (O @ P —mH+ (" —mi) @ 1] cording to Eq. (16), for each pair dfand], we have
SiLahj ) |
(23) 0+ L LN
lim —L < lim = 0
(k) = Y
az;]H_l) N—00 aai oH_gr o N—oo N ]
k 1 -
oz | gw_er <e(0%) = o5 4(0")).

X ahiOR(D @ YL 90U ()
200 1L1h(1)?

As to the block form aa§k+l)/am§k>, according to

B YL 71j (R () ® Ui (1) (24) Eq. (17) we have
V0
QotktD LN
where Jim -0 = Jim Z 1 O )
i o) =g* t=1
7ij (0) = Bij — hi ) (0), - / 7 XY — )

o P(xD|m?¥, X¥)
Yy POt X
Ri(t) = —mH(x® —m)T,

hi(t) =

If g(x, ©®*) is any element of the matriX?‘_l(x —mY), it
is a regular and convertible function with= 1. According

Uiy =2t = 5O —mh O —m)TEr to Lemma 1, we have
and&ij is the Kronecker function. aoc(k+1)

With the above preparations, we are ready to give our |, _J = 0(95-¢(0%)).
main theorem. N—o0 amgk) ob—o*

Theorem 1. Given i.i.d. samplegx®}) from a mixture of
K Gaussian distributions of the paramete$ that satisfies
conditions(1-3),whene(©@*) is considered as an infinites-
imal, as it tends to zerowe have almost surely

That is, each element of Iim_)ooaoc(“l)/@ml(k)|@<k):@*

J
is 0(€257¢(0%)).
Similarly, according to Eq. (18) we can prove:

lim |DMy(©%)]|=I DM(6%)|=0(e>574(0%)),  (25)
N—oo aa(k+1) 1

Nllm T = - E-/‘VU(X)UI(X)dx
wheree > 0 is an arbitrarily small number. T | g

_ 0.5—¢, o*
Proof. Under the law of large number, we have almost =o(® (@),

surely:
where
lim [DMy(@)| =] lim DMy(©"]
N—o00 N—o00
— |IDM(O%)]. (26) Ui =2t = 55 e —m e —mH Tt
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We turn to the block formam(kH)/aoc(k) given by
Eqg. (19) and have

6m(.k+1)
lim
Vo 0 | gu_g
D METITIOL
N=oo af Sy hj(r)

YN hix XN 50
2y hj ()]
Ny 0x®

= lim ——= - Jim

N=oo o[ N hj(0)/NT  N=oo YN hj(r)
Z, 1hjOxOA/N)YN 90
o [N 1k (1)/N]
1 1
= //U(x)xdx *oc* /h (x)xdx/yl-j(x)dx

*
5 o
i7j J

— lim

N—o0

1 1
=~ /yij(x)xdx - oc*oc*m e (O).
tJ J

Letting g(x, @*) be anyx; and by Lemma 1, we have

oxk+D
i J _ ,(20.5—¢ g*
1

oh=p*

(k+1)
For the block form gl (k) given in Eq. (20), we have
om (k+1)

im ———
N—o0 am(k)

K _e*

1

== ( / 7 0x ® (27 M — m)]T dx
J

- / 7 ) m @ (25 — m)IT dx) :

Letting g(x, @) be any element of ® [}~ (x — mH]T

orm!® [Z;*_l(x — m;“)]T and by Lemma 1, we have

(k+1)
jm = 0(e”57%(@"))
N—o0 am(k) N '
]

oh=p*

We further consider the block for@vn(k+1)/a>:(k) Ac-
cording to Eq. (21) we have

omt+D

lim ji
N—o00 az(k)

@(k):@*
= ﬁ/?ij(x)[m}f —x]® U; (x) dx.
J

Letting g(x, ©*) be any element o[fm —x]® U;(x) and
by Lemma 1, we have

om*+h
lim 7/(]() =0(®57%(0")).
N—o0 az oP_g

Furthermore, according to Eq. (22) we have

625“_1)
im ———
N—o0 aoc( )

oh=p*
1
= oc;"T </ 7ij ()R (x) dx — Z*el] (@*))

k
J
where

Rj(x) = (x —m¥)(x — mj.)T.

Letting g(x, ©*) be any element aR ; (x) and by Lemma
1, we have

orh+D)

; J _ 05 Erm*
% leh_g*

As to the block formaZ(kH)/am(k) given by Eq. (23),
since

Sk OU © GO-mH)+ O -mH @11 _

lim
SN hi)

N—o0

under the law of large number, we have

az(k+1)
lim —L
N—o0 aml@

o®v=p*
1 x—1 *
== (f 9 OR; (1) @ [XF 1w — m)]dx

J
—fy,-joc)[z* (mf —mH)mf —m*7]

o - m;k)]dx> :

Letting g(x, @*) be any element oR; (x)®[Z*7l(x m¥)]

or [Zf — om} — m*)(mf —mH T @ [2]~ 1(x —m$)] and
by Lemma 1 we ﬁave

= 0(€>7(0%)).
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Now we turn to the last case, i.e., the block form
625”1)/625]‘). By the law of large number, we have

kD

lim ———
(k)

N—o00 azi ob_g*

1

=55 (/ 71 COLZF = (mf = m*)(mf —m)T]
J

QU;(x)dx — /yl-j(x)R,-(x) ® U; (x) dx) .

Letting g(x, ©%) be any element g — (m} — m}f)(m?‘ —
mjf)T] ®U; (x) or R; (x) ® U; (x) and by Lemma 1, we have

okt D
Nlim % = o(e"57¢(0%)).
e azi Ok _@g*

Summing up all the results, we obtain that each element
of DM(©*) is 0(e%5~¢(©*)). Therefore, we finally have
IDM(6%)]| = 0(€>574(6%)).

The proof is completed.

According to Theorem 1, as the average overlap of
Gaussians in the original mixture becomes small, or more
precisely, €©*) — 0, the norm of DM (©*) becomes a
higher-order infinitesimal of&~¢(©*). That is, the norm
of DM(O*) can be arbitrarily small as long ag@*) is
small enough. Because lijn, oo DMy
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Fig. 1. The sketch of variation af(m*) with m}.
12 14 16 18 20

Fig. 2. The sketch of variation dfDM y (m™*)|| with m§
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Table 1
The simulation results on the correct convergence of the EM algorithm with the average exerfap

m} 2 4 6 10 14 20

e(m*) 0.4260 0.1140 0.0164 457826014 5.7979e-036 1.7031e057
mb 0.0314 0.02426 0.007 —0.0116 0.0196 —0.0349
m) 1.9531 3.9830 5.9714 9.9840 14.0066 19.9752
DM y (m*)]| 0.7295 0.6514 0.2647 0.0018 4.705@99 2.8513e018
DMy (mN)| 0.7462 0.6590 0.2581 0.0010 4.930D69 1.217e-023
rm™) 0.25 0.93 1.75 3.87 4.78 7.43

rather complicated in details, where we have randomly se-  Although our studies in this paper are purely theoretical,
lected 5000 samples from each original Gaussian mixture. they are also significant to the practical applications of the

As analyzed in the previous section, whet®*) is EM algorithm. In fact, these results on the correct conver-
small enough|| DM p (@*)|| becomes small enough so that gence of the EM algorithm as well as the previous results
| DMy (©N)] is less than 1 and the EM algorithm becomes [12—14]on the convergence rate of the EM algorithm show

a contraction mapping within a neighborhood@?® . Now, that the EM algorithm is a quite efficient method for the
we further demonstrate these theoretical results by the sim- parameter estimation when the overlap of Gaussians in the
ulation experiments. We select 6 typical values:gf and original mixture is small enough. Practically, if we can mea-
get the corresponding average overlaps*) of two Gaus- sure the average overlap of actual Gaussians from the sam-
sians in the original mixtures. Then, for each valuerdf, ple data directly, we may get the condition for the EM al-
we computd| DM y (m*)|| and|| DM y (m™)||, respectively, gorithm to converge correctly on the sample data, which is
on a set of 5000 samples from the original mixture. Finally, Vvaluable for the applications of the EM algorithm. Clearly,
we get the largest radiugm” ) of the neighborhood ofiV it is probable to define a measure of the average overlap of
in which ||[DM y(m)| < 1. That is, the EM algorithm can  actual Gaussians from the sample data directly. However, it
converge correctly teeN when the initia|mo is set within is still difficult to give a reasonable and computable defini-

it. Clearly, r(mN) denotes the largest correct convergence tion for it and we will investigate this problem in our future
radius of the EM algorithm from the point of view of the ~ works.
contract mapping. The simulation results for the 6 values
of m3 are listed inTable 1
According to the simulation results given ifable 1 Acknowledgements
DM ym™)|| is approximately equal tdDM y(m*)].
Moreover, as the average overlap of the Gaussians in the  The authors wish to express their gratitude to Prof. Lei
original mixture becomes smaller, the correct convergence x,, and Prof. Bingyuan Cao for some helpful discussions,

radius of the EM algorithm becomes larger. Therefore, it 54 also to Miss Liangliang Wang for her support of the
is demonstrated by the simulation results that the EM al- gimylation experiments.

gorithm for Gaussian mixtures tends to converge correctly
when the overlap of Gaussians in the original mixture
becomes small.
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