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Finite mixture is widely used in the fields of information processing and data analysis. However, its model
selection, i.e., the selection of components in the mixture for a given sample data set, has been still a rather
difficult task. Recently, the Bayesian Ying–Yang (BYY) harmony learning has provided a new approach to
the Gaussian mixture modeling with a favorite feature that model selection can be made automatically
during parameter learning. In this paper, based on the same BYY harmony learning framework for finite
mixture, we propose an adaptive gradient BYY learning algorithm for Poisson mixture with automated
model selection. It is demonstrated well by the simulation experiments that this adaptive gradient BYY
learning algorithm can automatically determine the number of actual Poisson components for a sample
data set, with a good estimation of the parameters in the original or true mixture where the components
are separated in a certain degree. Moreover, the adaptive gradient BYY learning algorithm is successfully
applied to texture classification.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

As a powerful probabilistic model, finite mixture distribution has
been adopted extensively in a wide variety of practical situations
where data can be viewed as arising from two or more populations
linearly mixed in certain proportions (e.g. [1–3]). In fact, there are a
variety of finite mixtures. Among them, Gaussian mixture is the most
well known and frequently used. Clearly, the sample data subject to
a Gaussian mixture should be continuous. However, there are many
available discrete data which can be regarded being generated from
a finite mixture model. Certainly, we can transform these discrete
data into continuous ones via some appropriate techniques and still
use the Gaussian mixture model to analyze them, e.g. like the cor-
respondence analysis of categorical data. But such a transformation
approach has serious limitations because some useful information
can be lost during the transformation. Moreover, the Gaussian or
normal assumption may not be appropriate for some practical prob-
lems, especially in the cases of count data. For these reasons, more
attention is being focused on the finite mixtures whose components
are not Gaussian densities. Actually, Poisson mixture is a typical non-
Gaussian finite mixture with a variety of practical applications such
as biological and medical data modeling (e.g. [4,5]), analysis of user
accesses to web pages [6], text mining [7], shopper classification [8]
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and gray level texture classification [9]. Theoretically, Poisson mix-
tures are identifiable [10] and owns a great number of properties
(refer to the recent review [11]).

In the conventional finite mixture modeling or parameter learn-
ing, in particular for Poisson mixture, it is usually assumed that the
number k of components in the mixture is pre-known. In this situa-
tion, several statistical or unsupervised learning methods have been
established for parameter estimation or learning. The most classical
method of this kind may be the method of moments (e.g. [12,13]).
But it can only solve the problem of parameter estimation for the
mixture with two components or a number of simple components.
Clearly, the maximum likelihood principle can be applied to the pa-
rameter estimation of finite mixture in general, which led to the EM
algorithm for finite mixture [14,15]. Although the EM algorithm has
certain good convergence behaviors [16–18], it still has some weak-
nesses or limitations. Essentially, the EM algorithm is a local search-
ing approach, thus “bad” initialization can make it get trapped in
a local solution. Moreover, the Bayesian inference can also be uti-
lized to solve the parameter estimation of finite mixture [3], but it
is rather difficult to set up a set of reasonable prior distributions for
the parameters in the mixture. On the other hand, the parameter es-
timation problem of finite mixture can be solved with the minimum
distance principle with the help of defining certain distance measure
between the underlying (or actual) and the estimated distributions
(e.g. [2,19]). Although many such distances have been established, it
is usually rather difficult to implement the minimum distance prin-
ciple for the parameter estimation of finite mixture efficiently.
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When the number of components is not known in advance, the
finite mixture modeling becomes complicated and difficult because
the selection of an appropriate number of components must bemade
jointly with the estimation of the parameters [20]. Since the num-
ber of components is just a scale of the finite mixture model, its
selection for the mixture to model a sample data set is usually re-
ferred to as the model selection. Certainly, as a typical class of finite
mixtures, Poisson mixtures face the same compound modeling prob-
lem of parameter estimation or learning and model selection. Al-
though this problemmight be solved by choosing a best number k∗ of
components as the clusters in the sample data set via one of informa-
tion, coding and statistical selection criteria such as Akaike's Infor-
mation Criterion [21] or its extensions (e.g. [22,23]), MDL [24], MML
[25], likelihood ratio test (LRT) [26] and the Bootstrapping methods
[27,28], the process of evaluating a criterion incurs a large compu-
tational cost since we need to repeat the entire parameters learning
process at a large number of different values of k. Moreover, all the
existing theoretical selection criteria have their limitations and often
lead to a wrong result.

Since 1990s, there have appeared some new approaches to solve
this compound mixture modeling problem. One approach was to use
a kind of stochastic simulation to infer the optimal mixture model.
The two typical implementations are the methods of Dirichlet
processes [29] and reversible jump Markov chain Monte Carlo
(RJMCMC) [30]. However, these stochastic simulation methods gen-
erally require a large number of samples through different sampling
rules. Another approach was the unsupervised learning [31] on finite
mixture which introduces certain competitive learning mechanism
into the EM algorithm such that the model selection can be made
during the parameter learning by annihilating the components with
very small mixing proportions during the parameter learning via
the MML principle. As a matter of fact, our proposed approach in the
current paper follows a similar rule on the model selection and thus
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distribution can be defined via a multivariate reduction technique.
For example, in the case of q = 2, we can use three independent
Poisson random variables Yi, with parameters �i, for i ∈ S = {1, 2, 0},
and obtain the following representation formulae respectively for
X1,X2:

X1 = Y1 + Y0,

X2 = Y2 + Y0.

In this situation, matrix A is given by

A =
(
1 0 1

0 1 1

)
,

and Y=(Y1,Y2,Y0)
T . Particularly, the probability distribution or func-

tion of X = [X1,X2]
T at each point x = (x1, x2)

T is given as follows:

p(x1, x2|�1,�2,�0)

= e−(�1+�2+�0) �
x1
1

x1!
�x2
2

x2!

min(x1,x2)∑
i=0

(
x1

i

)(
x2

i

)
i!
(

�0

�1�2

)i

. (2)

Clearly, Y0 acts as a correlation term between X1 and X2. More-
over, the correlation can be seen from the expressions of mean vec-
tor and covariance matrix of the random vector X, which can be
computed as follows:

E(X) = AM, (3)

Var(X) = ARAT, (4)

where

M = E(Y) = (�1,�2, . . . ,�m)
T

and R is the covariance matrix of Y given by

R= E[(Y − E(Y))(Y − E(Y))T ] = E[(Y − M)(Y − M)T ]

= diag[�1,�2, . . . ,�m].

For practical applications with the multivariate Poisson model,
we generally assume that either there is a common correlation-
generating term for any two random variables or simply all the
variables are independent in the random vector. For the former
correlation case, we let X = (X1,X2, . . . ,Xm)

T be constructed from
Y = (Y0,Y1, . . . ,Ym)

T via the simple relations: Xi = Yi + Y0(i= 1, . . . ,m),
where each Yi is an independent Poisson random variable with pa-
rameter �i. In this way, the probability distribution or function of X
at each point x = (x1, x2, . . . , xm)

T can be expressed as follows:

p(x1, x2, . . . , xm|�0,�1, . . . ,�m)

= exp

⎛
⎝−

m∑
i=0

�i

⎞
⎠ m∏

i=1

�xi
i

xi!

s∑
l=0

m∏
j=1

(
xj

l

)
l!

(
�0∏m
k=1�k

)l

, (5)

where s = min(x1, x2, . . . , xm).
For the latter independent case, supposing that all the random

variables Xi are independent Poisson random variables with param-
eters �i, we can easily get the probability distribution or function of
X = (X1,X2, . . . ,Xm)

T at each point x = (x1, x2, . . . , xm)
T as follows:

p(x1, x2, . . . , xm|�1,�2, . . . ,�m) =
m∏
i=1

�xi
i

xi!
e−�i . (6)

2.2. Poisson mixture

In many practical applications, the observed data can be consid-
ered being generated from a number of components that are lin-
early mixed in certain proportions. That is, the observed data are
subject to a finite mixture distribution. The major task is then to
solve the compound mixture modeling problem of model selection
and parameter estimation, i.e., to determine the number of compo-
nents and estimate the parameters of the component distributions
as well as the mixing proportions, only with a set of sample data.
Theoretically, we consider the following finite mixture model:

q(x|�k) =
k∑

j=1

�jq(x|�j), (7)

where q(x|�j) are component probability densities or distributions
with parameters �j, k is the number of components in the mixture,
x denotes the variable or variable vector, and �j�0 are mixing pro-

portions of the components with the constraint that
∑k

j=1�j = 1. For

clarity, we let �k ={�j,�j}kj=1 be the set of all parameters in the mix-
ture model.

If all q(x|�j) in Eq. (7) are Poisson probability distributions, the
finite mixture is called a Poisson mixture. As a typical class of finite
mixtures, Poisson mixtures are not only important in statistics, but
also widely used in practical applications. As discussed in the pre-
vious section, many efforts have been made on the model selection
and parameter estimation of Poisson mixture. As a matter of fact, the
EM algorithm is probably the most frequently used method to esti-
mate the parameters of the Poisson mixture with a sample data set
[14,15]. However, the EM algorithm is constructed under a frame-
work of maximum likelihood and thus is unable to make model se-
lection for Poisson mixture only with a set of sample data. In the
following, based on the BYY harmony learning, we will construct a
BYY harmony learning algorithm for Poisson mixture to make model
selection automatic during parameter learning.

3. Adaptive gradient BYY learning algorithm

In this section, we further introduce the BI-architecture of the
BYY learning system on which the harmony learning turns into the
parameter learning with automated model selection on the finite
mixture model [34,36], and then derive the adaptive gradient BYY
learning algorithm for Poisson mixture.

3.1. BYY learning system and harmony function for Poisson mixtures

A BYY system describes each observation x ∈ X ⊂ Rn and its
corresponding inner representation y ∈ Y ⊂Rm via the two types of
Bayesian decomposition of the joint density: p(x, y) = p(x)p(y|x) and
q(x, y)=q(y)q(x|y), which are called Yang machine and Ying machine,
respectively. Given a data set Dx={xt}Nt=1 from the Yang or observable
space, the goal of harmony learning on a BYY learning system is to
extract the hidden probabilistic structure of xwith the help of y from
specifying all aspects of p(y|x), p(x), q(x|y) and q(y) via a harmony
learning principle implemented by maximizing the functional

H(p||q) =
∫

p(y|x)p(x) ln[q(x|y)q(y)]dxdy, (8)

which is essentially equivalent to minimizing the Kullback–Leibler
divergence between the Yang and Ying machines, i.e., p(x, y) and
q(x, y), because

KL(p‖q) =
∫

p(y|x)p(x) ln p(y|x)p(x)
q(x|y)q(y) dxdy = −H(p‖q) − H(p),

(9)

where H(p) is the entropy of p(x, y) and invariant to q(x, y).
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If both p(y|x) and q(x|y) are parametric, i.e., from a family of
probability densities with parameter �, the BYY learning system is
said to have a BI-directional architecture (BI-architecture). For the
Poisson mixture model with a given sample set Dx = {xt}Nt=1, we
can utilize the following specific BI-architecture of the BYY learning
system. The inner representation y is discrete in Y={1, 2, . . . , k} (i.e.,
with m = 1), and the observation x is also discrete from a Poisson
mixture distribution. On the Ying space, we let q(y = j) = �j�0

with
∑k

j=1�j = 1. On the Yang space, we suppose that p(x) is a blind
Poisson mixture probability distribution, with a set of sample data
Dx being generated from it. Moreover, in the Ying path, we let
each q(x|y = j) = q(x|�j) be a Poisson probability distribution with
parameter �j consisting of all its parameters, while the Yang path
is constructed under the Bayesian principle by the following para-
metric form:

p(y = j|x) = �jq(x|�j)
q(x|�k)

, q(x|�k) =
k∑

j=1

�jq(x|�j), (10)

where �k = {�j,�j}kj=1 and q(x|�k) is just a Poisson mixture that will
approximate the true Poisson mixture p(x) hidden in the sample
data Dx via the harmony learning on the BYY learning system.

With all these component densities in Eq. (8), we have

H(p||q) = Ep(x)

⎡
⎣ k∑

j=1

�jq(X|�j)∑k
i=1�iq(X|�i)

ln[�jq(X|�j)]

⎤
⎦ , (11)

that is, it becomes the expectation of a random variable∑k
j=1((�jq(X|�j))/(

∑k
i=1�iq(X|�i))) ln[�jq(X|�j)], where X is just the

random variable (or vector) subject to p(x). Based on the given
sample data set Dx, we get an estimate of H(p‖q) as the following
harmony function for Poisson mixtures with the parameter set �k:

J(�k) = 1
N

N∑
t=1

k∑
j=1

�jq(xt|�j)∑k
i=1�iq(xt|�i)

ln[�jq(xt|�j)]. (12)

Based on Eqs. (8), (11) and (12), we actually have a new derivation
of the harmony function J(�k) in finite mixture. With help of prob-
ability theory and statistics, this derivation is more reasonable and
clearer than the previous derivation in [34,36,37].

According to the BYY harmony learning principle [34,35], the
maximization of the harmony function J(�k) is able to make model
selection automatic during parameter learning for Poisson mixture
with a sample data set in which the number N of sample points is
large enough and the actual components are separated in a certain
degree. That is, in such a situation, as long as we set k to be larger
than the number k∗ of actual Poissons in the sample data, it can make
k∗ Poissons from the estimated mixture match the actual Poissons,
respectively, and force themixing proportions of the other k−k∗ extra
Poissons to attenuate to zero. In order to do so, we will construct an
adaptive gradient BYY learning algorithm to search the maximum of
J(�k) in the next subsection.

3.2. Derivation of the adaptive gradient BYY learning rule

For convenience of derivation of J(�k), we introduce a group
of intermediate variables Uj(x) = �jq(x|�j) for j = 1, 2, . . . , k, as we
previously did in [37]. In this way, J(�k) takes a simple and
structural form:

J(�k) = 1
N

N∑
t=1

Jt(�k), Jt(�k) =
k∑

j=1

Uj(xt)∑k
i=1Ui(xt)

lnUj(xt). (13)

Moreover, in order to get rid of the constrains on �j, we utilize the
following so-called softmax representation:

�j =
e�j∑k
i=1e

�i

, j = 1, 2, . . . , k, (14)

where −∞<�1, . . . ,�k <+ ∞.
With the above preparations, we can get the derivatives of J(�k)

with respect to �j and �j at sample point xt as follows:

�Jt(�k)

��j

=
k∑

i=1

�Jt(�k)

�Ui(xt)

�Ui(xt)

��j

= 1
q(xt|�k)

k∑
i=1

⎡
⎣1 −

k∑
l=1

(p(l|xt) − �il) lnUl(xt)

⎤
⎦

× (�ij − �j)Ui(xt), (15)

�Jt(�k)

��j
=

k∑
i=1

�Jt(�k)

�Ui(xt)

�Ui(xt)

��j

= 1
q(xt|�k)

⎡
⎣1−

k∑
l=1

(p(l|xt)−�jl) lnUl(xt)

⎤
⎦�j

�q(xt|�j)

��j
, (16)

where �ij is the Kronecker function.
Letting

�i(t) = 1 −
k∑

l=1

(p(l|xt) − �il) lnUl(xt), i = 1, . . . , k (17)

and according to Eqs. (15) and (16), we have the following general
adaptive gradient rules at sample xt:

∇�j
Jt(�k) = 1

q(xt|�k)

∑k

i=1
�i(t)(�ij − �j)Ui(xt), (18)

∇�j
Jt(�k) = �j(t)�j

q(xt|�k)
�q(xt|�j)

��j
. (19)

As each q(xt|�j) takes the form of univariate or multivariate Pois-
son distribution, we can get the adaptive gradient rules of J(�k) for
the mixture of univariate or multivariate Poisson distributions ac-
cording to the above general adaptive gradient rules. That is, we need
only to replace these �q(xt|�j)/��j, i.e., the derivative of q(xt|�j) with
respect to �j, by their particular expressions. Now, we give them for
the multivariate Poisson distributions in the two cases as follows.

(1) The correlation case (defined by Eq. (5)): Letting xt = (xt1,
xt2, . . . , xtm)

T and �j = (�j0,�j1, . . . ,�jm)
T , we then have

�q(xt|�j)

��j
=
(

�q(xt|�j)

��j0
,
�q(xt|�j)

��j1
, . . . ,

�q(xt|�j)

��jm

)T

. (20)

If there are some components of xt which are zero, i.e., there is a
nonempty subset H of {1, 2, . . . ,m} such that xth = 0 iif h ∈ H, the
derivatives of q(xt|�j) with respect to these �jh (i.e., h ∈ H) take the
following simple form (noting that 0! = 1):

�q(xt|�j)

��j0
= �q(xt|�j)

��jh
= − exp

⎛
⎝−

m∑
i=0

�ji

⎞
⎠ m∏

i=1

�xti
ji

xti!
. (21)

As for the derivatives of q(xt|�j) with respect to �jh′ where h′ /∈H,
we have

�q(xt|�j)

��jh′
= exp

⎛
⎝−

m∑
i=0

�ji

⎞
⎠( xth′

�jh′
− 1

) m∏
i=1

�xti
ji

xti!
. (22)
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On the other hand, if there is no zero component in xt , we have
the derivatives of q(xt|�j) with respect to each �ih as follows:

�q(xt|�j)

��jh
= q(xt|�j)

(
xth
�jh

− 1

)
− Vh(�j), (h>0) (23)

�q(xt|�j)

��j0
= V0(�j) − q(xt|�j), (24)

where

Vn(�j) = exp

⎛
⎝−

m∑
i=0

�ji

⎞
⎠ m∏

i=1

�xti
ji

xti!

s∑
i=1

m∏
l=1

(
xtl

i

)
i!

(
�j0∏m
k=1�jk

)i
i

�jn

for n = 0, 1, . . . ,m.
(2) The independent case (defined by Eq. (6)): In this situation, the

sample xt is represented in the same way, but there is no component
�j0 in �j. When some component xth of xt is zero, the derivative of
q(xt|�j) with respect to the corresponding �jh takes the following
simple form:

�q(xt|�j)

��jh
= −

m∏
i=1

�xti
ji

xti!
e−�ji . (25)

Otherwise, for a general component xth of xt that is not zero, the
derivative with respect to the corresponding �jh takes the following
slightly complicated expression:

�q(xt|�j)

��jh′
=
(
xth′

�jh′
− 1

) m∏
i=1

�xti
ji

xti!
e−�ji . (26)

For the situation where each component is expressed by Eq. (1),
i.e., a univariate Poisson distribution, it is certainly a special inde-
pendent case of Eq. (6).

Summing up all these derivations, we finally obtain the adaptive
gradient BYY learning rule for Poisson mixture as follows:

�new
j = �old

j + �∇�j
Jt(�k), (27)

�new
j = �old

j + �∇�j
Jt(�k), (28)

where �(>0) denotes the learning rate that starts from a reasonable
initial value and then reduces to zero with the iteration number n
in such a way that 0��(n)�1, and

lim
n→∞ �(n) = 0,

∞∑
n=1

�(n) = ∞. (29)

The typical example of the learning rate satisfying Eq. (29) is �(n)=
�0/n, where �0 is a positive constant.

4. Simulation results and comparisons

In this section, simulation experiments are carried out to demon-
strate the performance of the adaptive gradient BYY learning algo-
rithm for Poisson mixture for both model selection and parameter
estimation on a sample data set from a Poisson mixture, being com-
pared with that of the unsupervised learning algorithm [31] for
Poisson mixture.

4.1. Sample data sets

To test our proposed adaptive gradient BYY learning algorithm
for Poisson mixture, we generate eight typical sample data sets
S1,S2, . . . ,S8 from finite mixtures of Poisson distributions of dif-
ferent types (e.g. univariate, bivariate, trivariate, correlation and in-
dependent Poisson distributions) with different sample sizes or mix-
ing proportions, and the parameters of these Poisson mixtures are
summarized in Table 1.

Table 1
The parameters of the eight (original) Poisson mixtures to generate sample data
sets for simulation experiments.

Data set Poissons �i
1 �i

2 �i
0/�

i
3 �i Ni

S1(k∗ = 1) Poisson 1 6.0 1.0 300

S2(k∗ = 2) Poisson 1 1.0 0.20 100
Poisson 2 10.0 0.80 400

S3(k∗ = 2) Poisson 1 1.0 2.0 0.20 100
Poisson 2 7.0 8.0 0.80 400

S4(k∗ = 2) Poisson 1 3.0 2.0 0.50 250
Poisson 2 12.0 14.0 0.50 250

S5(k∗ = 2) Poisson 1 1.0 2.0 1.0 0.40 200
Poisson 2 11.0 12.0 8.0 0.60 300

S6(k∗ = 3) Poisson 1 1.0 2.0 1/3 200
Poisson 2 10.0 11.0 1/3 200
Poisson 3 23.0 22.0 1/3 200

S7(k∗ = 3) Poisson 1 3.0 2.0 1/3 200
Poisson 2 9.0 10.0 1/3 200
Poisson 3 15.0 16.0 1/3 200

S8(k∗ = 3) Poisson 1 1.0 2.0 1.0 1/3 200
Poisson 2 4.0 5.0 6.0 1/3 200
Poisson 3 10.0 12.0 11.0 1/3 200

Specifically, the first sample data setS1 contains the sample data
only from one univariate Poisson distribution, just as a degenerated
Poisson mixture, while the other sample data sets contain the sam-
ple data from two or three Poisson distributions which always have
some overlap, but keep separated in certain sense. The generating
Poisson variables are univariate, bivariate and trivariate for S1 to
S2, S3 to S7 and S8, respectively. Moreover, the sample data in
S5 are generated from a correlation Poissonmixture, while the sam-
ple data in any of the other sample data sets are generated from an
independent Poisson mixture. Particularly for S5, the two compo-
nent Poisson variables are correlated via a common Poisson variable
with parameter �0 as described previously in Section 2.2. For illus-
tration, we sketch the sample data or points in each of S3, . . . ,S8,
respectively, in Fig. 1, from which we can observe that the com-
ponent Poisson distributions in S3, . . . ,S6 are strongly separated,
while those in S7 and S8 are overlapped in a higher degree.

4.2. Simulation results

We implement the adaptive gradient BYY learning algorithm for
Poisson mixture on these eight synthetic data sets with k�k∗. The
parameters of the adaptive gradient BYY learning algorithm are ini-
tialized randomly in some intervals under the constraints. Particu-
larly in our experiments, we initialize the parameters as follows. At
first, we randomly set the initial values of the mixing proportions
�j under the constraints that �j�0 and

∑k
j=1�j. Then, according to

these given mixing proportions, we divide all the samples into k
classes. In the independent case of Poisson mixture, each component
parameter vector �j is initialized as the corresponding sample mean
vector of the j-th class. In the correlation case for S5, according to
Eqs. (3) and (4), we have the following probability relations on each
Poisson component j:

E(Xj) = (�j1 + �j0,�j2 + �j0)
T , (30)

Var(Xj) =
(

�j1 + �j0 �j0

�j0 �j2 + �j0

)
. (31)

When we use the sample mean vector and covariance matrix of S5
instead of the mean vector in Eq. (30) and the covariance matrix in
Eq. (31), respectively, we can get the two equations from which the
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3, (b) S 4, (c) S 5, (d) S 6, (e) S 7and (f)S 8.component parameters�jican be easily solved. Actually, we get the
statistical estimates of the component parameters and make them
as their initial values in our learning algorithm. As a result, we set
the initial values of the component parameters as their statistical
estimates on the sample data. In order to speed up the convergence,
we also add an annihilation mechanism on the components in our
learning algorithm in the same way of the unsupervised learning
algorithm on finite mixture [31]. That is, at each iteration, if the
mixing proportion of a component is less than a threshold value	>0,

we discard or annihilate this component from themixture directly. In
the simulation experiments, we set	=0.005 by experience. Learning

is stopped once the terminating criterion |J(�new
k)− J(�old

k)|<10−5is satisfied. Actually, we find that our learning algorithm always
converge in all attempts.

The average experimental results of the adaptive gradient BYY
learning algorithm on the eight sample data sets are listed in Table 2.
Typically, k=3k∗forS1andk=2k∗for all the other sample data sets.

For each sample data set, we conduct 100 experiments by selecting
different initial values of the mixing proportions. In all the cases, the
adaptive gradient BYY learning algorithm leads to the correct model
selection, i.e., finally allocating the correct number of Poissons for
the sample data set. In the meantime, it also results in an estimate
for each parameter in the original or true Poisson mixture which
generated the sample data. The average results of the parameter
estimations as well as the standard deviations from 100 experiments
for each sample data set are listed in Table 2. As compared with the
original parameters in Table 1, we can find that the adaptive gradient
BYY learning algorithm always obtains a stable and accurate estimate
for each parameter in the independent Poisson mixture. However,
for the correlation Poisson mixture, the parameter estimations from
the adaptive gradient BYY learning algorithm are still acceptable, but
their stabilities and accuracies are decreased considerably, which is
probably caused by the correlation feature of this special mixture
architecture.Table 2
The average experimental results of the adaptive gradient BYY learning algorithm
on the eight sample data sets.

Data set Poissons

¯�i
1±
i
1¯�i
2±
i
2¯�i
3±
i
3¯�i±
i

S1(k= 3) Poisson 1 6.0 ± 0.001 1 ± 0S2(k= 4) Poisson 1 0.91 ± 0.001 0.20 ± 0.001
Poisson 2 9.9 ± 0.002 0.80 ± 0.001S3(k= 4) Poisson 1 0.92 ± 0.001 2.1 ± 0.001 0.19 ± 0.001

Poisson 2 6.9 ± 0.001 8.2 ± 0.003 0.81 ± 0.001S4(k= 4) Poisson 1 3.1 ± 0.001 2.0 ± 0.001 0.5 ± 0.001
Poisson 2 11.9 ± 0.005 14.3 ± 0.006 0.5 ± 0.001S5(k= 4) Poisson 1 1.0 ± 0.013 2.0 ± 0.014 0.91 ± 0.012 0.40 ± 0.001

Poisson 2 10.7 ± 1.21 11.6 ± 1.23 8.2 ± 1.20 0.6 ± 0.001S6(k= 6) Poisson 1 1.0 ± 0.001 1.9 ± 0.001 0.33 ± 0.001
Poisson 2 9.9 ± 0.010 11.0 ± 0.008 0.34 ± 0.001
Poisson 3 23.1 ± 0.021 22.6 ± 0.031 0.33 ± 0.001S7(k= 6) Poisson 1 2.8 ± 0.004 2.0 ± 0.004 0.33 ± 0.003

Poisson 2 8.7 ± 0.09 9.8 ± 0.11 0.34 ± 0.009
Poisson 3 15.9 ± 0.14 16.6 ± 0.11 0.33 ± 0.009S8(k= 6) Poisson 1 0.96 ± 0.001 1.88 ± 0.002 0.98 ± 0.001 0.33 ± 0.001

Poisson 2 4.2 ± 0.005 5.2 ± 0.009 5.7 ± 0.01 0.35 ± 0.001
Poisson 3 10.5 ± 0.007 12.3 ± 0.009 11.0 ± 0.007 0.32 ± 0.001

4.3. Comparisons with the unsupervised learning algorithm

We further compare the adaptive gradient BYY learning algo-
rithm with the unsupervised learning algorithm [31] for Poisson
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Table 3
The comparisons of the AGL-BYY and UL-MML algorithms on the average imple-
mentation times.

Data set Initial value of k UL-MML (s) AGL-BYY (s)

S2(N = 500) 2k∗ − 1 0.8988 1.9341
2k∗ 2.3256 1.7743
2k∗ + 1 4.0159 2.2281

S3(N = 500) 2k∗ − 1 1.3563 1.9877
2k∗ 3.0686 1.7986
2k∗ + 1 6.13325 1.9381

S4(N = 500) 2k∗ − 1 1.3969 1.8689
2k∗ 0.8672 1.8789
2k∗ + 1 3.7414 2.4684

S6(N = 600) 2k∗ − 1 2.9780 3.8177
2k∗ 4.7775 5.2666
2k∗ + 1 28.926 5.6242

S7(N = 600) 2k∗ − 1 4.0789 6.7984
2k∗ 23.8398 7.3975
2k∗ + 1 29.7119 8.3292

mixture is referred to as the AGL-BYY algorithm, while the
unsupervised learning algorithm for Poisson mixture based on the
MML criterion is referred to as the UL-MML algorithm. For simplic-
ity, we only consider the sets of sample data from the independent
Poisson mixtures. For both algorithms, the threshold value for the
annihilation mechanism is set as 0.01. On each sample data set, we
implement the two algorithms for 100 times with different initial
settings and compare their average implementation times and the
average parameter estimation accuracies. The AGL-BYY algorithm
is implemented with the initial setting as above in the previous
subsection. In this situation, the AGL-BYY algorithm can still always
lead to the correct model selection. However, if the initial mixing
proportions are randomly set as above, the UL-MML algorithm often
leads to a wrong result on model selection. In order to overcome this
weakness, we set each initial mixing proportion by 1/k, i.e., �j = 1/k.
(Here k is severed as kmax in the unsupervised learning algorithm
on finite mixture [31].) Accordingly, the sample data are equally
divided into k classes and each component parameter vector �j is
also initialized as the corresponding sample mean vector of the j-th
class. With such a parameter initial setting, the UL-MML algorithm
generally leads to a correct model selection. Certainly, by different
divisions of the sample data, we can get different parameter initial
settings. For comparison, we only record the experimental results
of the UL-MML algorithm that are successful on model selection.

We first compare the AGL-BYY and UL-MML algorithms on im-
plementation time or convergence speed. The average implementa-
tion times (seconds) of the AGL-BYY and UL-MML algorithms on the
typical sample data sets S2,S3,S4,S6 and S7 for k=

1 , d a t a t h e
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Poisson1Poisson2Fig. 2.The sketch ofS 9 and the experimental result. (a)S 9 and (b) the classification result of the adaptive gradient BYY learning algorithm onS 9 . d o s o , w e b e g i n t o d i s c u s s w h e n t h e a l g o r i t h m c a n l e a d t o t h e c o r r e c t
m o d e l s e l e c t i o n . A c t u a l l y , t h e p r o b l e m o f c o r r e c t m o d e l s e l e c t i o n v i a
t h e B Y Y h a r m o n y l e a r n i n g w a s a l r e a d y i n v e s t i g a t e d t h e o r e t i c a l l y o n
Gaussian mixture in[42]and it was proved that the maximization of

t h e h a r m o n y f u n c t i o n c a n l e a d t o t h e c o r r e c t m o d e l s e l e c t i o n a s l o n g
a s t h e o v e r l a p a m o n g t h e a c t u a l c o m p o n e n t s i n t h e o r i g i n a l o r t r u e
mixture is small enough. Although we cannot extend this result to
P o i s s o n m i x t u r e , m a n y e x p e r i m e n t a l r e s u l t s s h o w t h a t i t i s a l s o t r u e
f o r P o i s s o n m i x t u r e . T h a t i s , a s l o n g a s t h e o v e r l a p a m o n g t h e a c t u a l
Poissons in the original mixture keeps a low level, the maximization
o f t h e B Y Y h a r m o n y f u n c t i o n , E q . ( 1 2 ) , l e a d s t o t h e c o r r e c t m o d e l
s e l e c t i o n a n d t h e r e f o r e t h e a d a p t i v e g r a d i e n t B Y Y l e a r n i n g a l g o r i t h m
c a n c o n v e r g e w i t h t h e c o r r e c t m o d e l s e l e c t i o n . O n t h e o t h e r h a n d ,
w h e n a n y t w o a c t u a l P o i s s o n s a r e s t r o n g l y o v e r l a p p e d , t h e a d a p t i v e
g r a d i e n t B Y Y l e a r n i n g a l g o r i t h m m a y l e a d s t o a w r o n g r e s u l t . F o r
i l l u s t r a t i o n , w e g i v e a n e x a m p l e o f s u c h s a m p l e d a t a s e t s a s S 9 , being

shown inFig. 2( a ) , a n d i t s c l a s s i f i c a t i o n r e s u l t o f t h e a d a p t i v e g r a d i e n tB Y Y l e a r n i n g a l g o r i t h m i s s h o w n i n Fig. 2( b ) . A c t u a l l y , s i n c e t h e t h r e ePoissons inS 9 a r e s t r o n g l y o v e r l a p p e d , t h e a d a p t i v e g r a d i e n t B Y Yl e a r n i n g a l g o r i t h m w i t h k= 6 c o n v e r g e s t o a m i x t u r e o f t w o P o i s s o n sinFig. 2
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Fig. 3. The gray images: D03, D04, D29, D51, D09, D32, D38 and D24.

location and shape by learning these two kinds of independent
parameters.

5. Application to texture classification

In this section, for practical usage and test, we apply the adap-
tive gradient BYY learning algorithm for Poisson mixture to texture
classification or recognition on gray-scale Brodatz textures,1 and
compare it with two current state-of-the-art approaches.

5.1. Poisson mixture learning based texture classification

As is well known, texture is a basic characteristic of an image and
texture classification is a fundamental problem in image analysis
and computer vision [43]. Actually, the task of texture classification
(or recognition) is to classify images into a number of classes with
different textures and the major difficulty relies on the description
and measure of texture on an image. In the literature, the main focus
is on the extraction techniques of texture features. In this work, we
use the Poisson mixture model to directly describe the gray images
with a particular texture so that our adaptive gradient BYY learning
algorithm can be applied to texture classification on gray images.

We adopt the spatial analysis technique for gray images which
is fundamental for texture classification [44]. Via this technique, a
discrete gray image can be decomposed as a series of gray-level
planes defined as follows:

fg(u,v) =
{
1, f (u,v) = g,

0, f (u,v)� g,
(32)

where (u,v) denotes a pair of discrete coordinates for a pixel at the
image, f (u,v) is the discrete gray level of the image at the pixel
(u,v), and fg(u,v) is just the gray plane with gray-level g. In this way,
the stochastic nature of a gray image can be described through the
distributions of the numbers of different gray-level points within a
patch, i.e., a square region or block, picked up in the image. Supposing
that {0, 1, . . . ,G − 1} is the set of gray levels in consideration, as we
pick up a patch B of L×L pixels in the image, we get a random feature
vector W = (W0, . . . ,WG−1)

T , where each component Wg is just the
number of points in B with gray-level g, being computed by

Wg =
∑
u,v∈B

fg(u,v). (33)

1 Brodatz texture images from http://www.cipr.rpi.edu/resource/stills/
brodatz.html.

With this random feature vector W, we can construct a Bayesian
classifier for texture classification. Firstly, we pick up a number of
patches of a fixed size (i.e., L × L pixels) from the given gray images
with different texture classes, being denoted by {1, 2, . . . ,C}. Then, we
can get the feature vectorsWs for those image patches with the help
of Eq. (33) as well as their corresponding texture indexes. Based on
these sample data, we can train the Bayesian classifier through the
posteriori probability given as follows:

P(Tc|W) = P(W|Tc)P(Tc)∑C
i=1P(W|Ti)P(Ti)

, (34)

where Tc represents texture class c, P(Tc
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Table 5
The results of the texture classification on the eight gray images.

DC RC1 RC2 RC3 RC4 RC5 RC6 RC7 RC8 CAR (%)

DC1 254 2 0 0 0 0 0 0 99.22
DC2 1 249 0 0 6 0 0 0 97.27
DC3 0 0 256 0 0 0 0 0 100
DC4 5 5 1 237 6 0 0 2 92.58
DC5 0 22 0 0 234 0 0 0 91.41
DC6 0 0 0 0 0 256 0 0 100
DC7 0 0 0 0 0 0 256 0 100
DC8 0 1 0 0 10 0 0 245 95.70

Here DCi represents data class i, RCi represents resulted class i and CAR represents classification accuracy rate.

Fig. 4. The 40 gray images used in [45,46].

5.2. Experimental results and comparisons

To test the effectiveness of the adaptive gradient BYY learning
algorithm on the Poisson mixture based texture classification, we
apply it to learning each P(Wi|�i,c) for eight typical gray texture
images (denoted by D03, D04, D29, D51, D09, D32, D38 and D24)
with 128×128 pixels and 0-255 gray levels from the Brodatz image
base, which are, respectively, shown in Fig. 3. So, the number of
texture classes is eight, i.e., C = 8.

We begin to randomly pick up 128 image patches of 16×16 pixels
from each texture image, and compute their feature vectors to form
a training data set. On the other hand, we randomly pick up the
other 256 image patches of 16 × 16 pixels from each texture image
and compute their feature vectors to form a testing data set. During
our training, if some component Wi is always 0 for every texture
class, it is obvious that these P(Wi|�i,c) have no influence on the
texture classification and we need not consider these degenerated
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Table 6
The comparison results of the BYY learning method and the spectral histograms
method.

Size of patches Average classification accuracy rates of the two methods

Spectral histogram
method (%)

BYY learning
method (%)

24 × 24 89.65 90.48
32 × 32 92.50 94.65

texture classification on the testing data set from a general training
experiment are listed in Table 5.

From those results, we can find that the total accuracy rate of
texture classification on the whole eight texture classes is 97.2%, but
the accuracy rates of texture classification on the first, second, third,
sixth and seventh classes are quite high and three of them even reach
at 100%, that is, all the testing samples in these three classes are
classified correctly. Though the texture classification accuracy rates
on the other three classes are relatively low (92.58%, 91.42% and
95.70%, respectively), they are still acceptable because there really
exists certain similarity between the textures of some two images
(like d04 and d09), especially in certain local regions.

For comparison, we select two current state-of-the-art ap-
proaches on texture classification. One is the spectral histogram
method [45] which employs the spectral histogram of sub-band
images obtained from a bank of given filters on an image window
as the feature statistic for texture classification. The other is the
bit-plane probability (BP) signature method [46] which models the
wavelet sub-band histograms of an image window as the product
Bernoulli distributions (PBD) and uses the bit-plane probabilities
or parameters in these PBD models, i.e., the BP signatures, as the
feature statistic for texture classification. For convenience, we con-
sider the set of 40 gray 256 × 256 images from the Brodatz image
base used in both [45,46], which are, respectively, shown in Fig. 4.
Actually, this gray image or texture set is challenging because there
are significant variations within some texture and some of them are
very similar to each other.

In comparison with the spectral histogram method, we randomly
pick up two disjoint sets of 256 image patches from each texture
image to form a training and test data sets, respectively. As suggested
in [45], we test on two sizes of patches. One size is 24 × 24 pixels,
while the other is 32×32 pixels. As there are 40 gray images, G=256.
The average classification accuracy rates of our BYY learning method
on the two sizes of patches over 100 trials are listed in Table 6, being
with those of the spectral histogram method obtained in [45]. It can
be found from Table 6 that our BYY learning method is slightly better
than the spectral histogram method on texture classification.

In order to compare our BYY learning method with the BP sig-
nature method on these 40 gray images, we conduct the above
BYY learning experiments with the image patches of 48 × 48 pix-
els and find out that the average classification accuracy rate reaches
at 97.59%. According to the fact that the classification accuracy rate
of a texture classification method increases with the size of image
patches, the average classification accuracy rate of our BYY learning
method on the image patches of 128 × 128 pixels should be larger
than 97.59%, which is considerably higher than 96.8%, the average
classification accuracy rate of the BP signature method for these 40
gray images on the image patches of 128×128 pixels obtained in
[46]. Thus, we can believe that our BYY learning method is more
efficient than the BP signature method on texture classification.

In summary, our adaptive gradient BYY learning algorithm is able
to automatically determine the number of actual Poisson compo-
nents in the real-world data from a gray image and construct a good
Poisson mixture model for them, which can be successfully applied

to the texture classification and even better than the two current
state-of-the-art texture classification methods.

6. Conclusions

We have applied the Bayesian Ying–Yang harmony learning
mechanism to the Poisson mixture modeling for parameter learning
with automated model selection by constructing an adaptive gradi-
ent BYY learning algorithm for Poisson mixture. It is demonstrated
by the simulation experiments that with a sample data set, our
proposed adaptive gradient learning algorithm not only determines
the number of actual Poisson components automatically during
parameter learning, but also obtains a good estimation of the pa-
rameters in the original Poisson mixture, as long as those actual
Poisson components are separated in a certain degree. Moreover, it
outperforms the unsupervised learning algorithm for Poisson mix-
ture on model selection. Moreover, the adaptive gradient learning
algorithm can be used to build an efficient Bayesian classifier for
texture classification on gray images.
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