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Abstract

This paper presents a theoretical analysis on the asymptotic memory capacity of the generalized Hopfield network. The perceptron
learning scheme is proposed to store sample patterns as the stable states in a generalized Hopfield network. We have oftained that
1) and 2 are a lower and an upper bound of the asymptotic memory capacity of the netwonkofons, respectively, which shows that the
generalized Hopfield network can store the larger number of sample patterns than Hopfield neth@9R.Elsevier Science Ltd. All rights
reserved.
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1. Introduction learning scheme has not been investigated in depth. From
the literature of neural networks, the following theoretical
When Hopfield network was proposed as an associative results are related to the memory capacity of the GHN.
memory model in 1982, the sum-of-outer product scheme Abu-Mostafa and Jacques (1985) defined the memory
was applied to store the sample patterns (Hopfield, 1982).capacity as the maximal number of arbitrary state patterns
Hopfield demonstrated by computer simulation that the that can be stable in a GHN ofneurons and provédhat it
network with n neurons could store about Orlpatterns is bounded byn. In fact, this deterministic definition of
in the form of the stable states. It is now well known that memory capacity is too strict since we can easily verify
the asymptotic memory capacity of Hopfield network with  that any pair of the two state patterns with one Hamming

neurons igV(4 log n) patterns (McMliece et al., 1987). distance cannot be stable in any GHN. Therefore the
Hopfield network is a single layer recurrent networknof ~ memory capacity defined by this deterministic formulation
bipolar (or binary) neurons uniquely defined KW, 6) is insignificant and the obtained bound is loose and useless.

whereW is a symmetric zero-diagonal real weight matrix, The other way to define the memory capacity of some
and 6 is a real threshold vector. If the weight matrix is kind of neural network (with some learning scheme) is via
changed to be an asymmetric and zero-diagonal one, thethe probability sequencd(m,n) that m random state
network is usually called an asymmetric Hopfield network. patterns can be stable in a choice of the neural network of
In this paper, we define a generalized Hopfield network n neurons (by the learning scheme). Venkatesh and Psaltis
(GHN) to be such kind of a network with a general (asym- (1989) defined a functio@(n) as the (asymptotic) memory
metric or symmetric) and zero-diagonal real weight matrix. capacity if, and only if, for everyx € (0,1), ash — oo,

Recent researches (Ma, 1997) show that the GHN havingP(m,n) approaches one whenevar= (1 — A)C(n), and
stable states can be stable in the same way as a Hopfieldzero whenevem = (1 + A)C(n). By this definition, they
network. Thus it is possible to apply this neural architecture found thatC(n) = 2n is the asymptotic memory capacity
to associative memory with some learning scheme which of the recurrent network defined by a general weight matrix
enables a set of prescribed patterns as the stable states ofand a threshold vector (Venkatesh, 1987; Venkatesh and
GHN. Moreover, several such learning schemes on the Psaltis, 1989). In a special case that the threshold vector is
GHNSs for associative memory have already been estab-zero, it was proved thaZ(n) = n under each of the spectral
lished (see, e.g. Gardner, 1988; Wang et al.,, 1993). strategies (Venkatesh & Psaltis, 1989). Obviously, the
However, the memory capacity of the GHN with any

[ — ! Since the weight matrix of the network in the theorem of Abu-Mostafa
*Tel.. + 86-754-2902170, 2903473; fax: + 86-754-2510654, and Jacques (1985) is just a real-valued zero-diagonal matrix, the model of
2510517. the network is actually a GHN.
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recurrent network is also a generalization of Hopfield
network, but the diagonal elements of the weight matrix
are not necessarily zero. Thus it is different from the GHN
defined in this paper.

Here we prefer the model of the GHN that remaivs=
0 for the two reasons: (1) It is proved that the GHN with
nonnegative weights is stable in randomly asynchronous
mode and it is also shown by simulation experiments that
almost any GHN having stable states is stable in randomly
asynchronous mode (Ma, 1997). By these results, we can
consider that the GHN maintains some important properties
of the stability of Hopfield network for associative memory.
(2) Whenw; is restricted to be zero, the network is easy to
be implemented for the applications.

However, the restriction that; = 0, actually brings the
difficulty on solving the asymptotic memory capacity and
we cannot use the results obtained by Venkatesh and Psaltis
(1989). In this paper we will use a method of combinatorial
analysis to study the asymptotic memory capacity of the
GHN.

The main contribution of this paper is obtaining lower
and upper bounds of the asymptotic memory capacity of
the GHN. In Section 2, we will propose the main theorem
after a brief description of the GHN and the perceptron
learning scheme. The proof of the main theorem is given
in Section 3. A brief conclusion is given in Section 4.

2. The main theorem

We first give the mathematical model of a GHN. A GHN
is composed of interconnected neurons witkV, 6) where
W is annx n zero-diagonal matrix with element ; denot-
ing the weight on the connection from neurjoi® neuroni;
and@ is a vector of dimension with componen®, denoting
the threshold of neuron For simplicity, we letg; =0, i =
1,2,...,nin this paper.

Every neuron can be in one of two possible states, either 1
or — 1. The state of neuronat timet is denoted by;(t).
The state of the network at timds denoted by the vector
X(t) = [X,(1), Xo(b), ... X,(D)]". The state of
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of storage of the GHN as follows: memory capacity (function) is more reasonable and applic-
able.

_ 1 2 m . 1 2 m ;
P(m,m)=P{ X, X%, ... X7} {X, X%, ..., X"} is storable}), We now propose our main theorem as follows:

wherem,n & = {1,2,...}. Obviously,P(m, n) decreases
with m, . . -
. . L Theorem 1. Supposing Bnn) is the probability
We now introduce the 'mathematlcal definition of the sequence of storage of the GHN, we have
asymptotic memory capacity of the GHN basedRim, n) Q)
as follows: '
lim Pn—1,n =1,
n—oo

Definition 2. An integer functionC(n) is the asymptotic (ii).
memory capacity of the GHN if the following conditions

hold: lim inf P(2n,n) =< 1

(1) e 2

lim P(mn) =1 4

n—oo

whenevem = C(n); The proof of the main theorem is given in next section. We
(2). now discuss the significance of the theorem. Bec&asen)

lim inf P -1 5 decreases witin, we have by the main theorem that— 1)

am, 1N (m ©) and 2 are a lower and an upper bound of the asymptotic

memory capacity function of the GHN, respectively. Since
there exists the asymptotic memory capacity of the GHN
C(n), then C(n) = n— 1. ThereforeC(n) is much greater
than n/(4 logn)—the asymptotic memory capacity of
Hopfield network oh neurons with the sum-of-outer product
scheme. On the contral@(n) < 2n, which seems reasonable
since each neuron of the network can store at mopgRerns
when the threshold value is not necessarily zero.

whenevem > C(n).

We sayC(n) is a lower bound of the asymptotic memory
capacity of the GHN if it satisfies the first condition; and that
C(n) is an upper bound of the asymptotic memory capacity
if Eq. (5) holds whenevem = C(n).

It is clear that this probabilistic definition of the asymp-
totic memory capacity is different from the definition of
Venkatesh and Psaltis (1989) (see in Section 1). We propose
this probabilistic definition in order to overcome the two
weaknesses of Venkatesh and Psaltis’ definition. First,
cannot be proved that the existence of the asymptotic
memory capacity of the GHN by Venkatesh and Psaltis’
definition. Second, even if there exists the asymptotic
memory capacity in this case, it may be not unique under
Venkatesh and Psaltis’ definition. However, under this prob-
abilistic definition and by the decreaseRgfn, n) with m, we
can easily prove that there exists a unique asymptotic

memory capacity (function) of the GHN. Further, this prob- 0 . tth bl f checking the i bil
abilistic definition of the asymptotic memory capacity is 't’ W? ar(r:ily?]at N prfo _eT 0 Ct ec_n&gnile n;]gahr separapil-
consistent with the general understanding. Suppose thatjtﬁ’eo di:fIiCLL(I:tyO;nn(;%r?envecto\rf;?ersnl)nIongé:\:nlge::ruasli)st')si
C(n) is the asymptotic memory capacity function of the . ! o . e
W ymp y capactty tion. In order to overcome the difficulty, we will use a suffi-

GHN. If m= C(n), almost all choices ofn patterns can ent diti f st : timate th b t th
be made stable in a GHN. Otherwise nf > C(n), the C|ten th:on ||on| 0 storggetho es |rtr)1_a et 'el numl ero ftr?
number of the choices ah patterns that cannot be made storable sample sets. By the combinatorial analyses of the
: : number of the storable sample sets over the total number of

stable in any GHN is of order . ) .
the sample sets, we will complete the proof of relation (i).

(2") On the contrary, we will use Cover's inequality (Cover,

it 3- The proof of the main theorem

In this section, we will prove the main theorem. The basic
difficulty to prove the theorem comes from the fact thiat
must have zero diagonal. Whew is not necessarily zero,
the proof of relation (i) is closely related to the question of
computing theVapnik dimensiorof the linear classifier
(Pollard, 1989). In this case, things are not difficult (linear
separability oin — 1 bipolar vectors iR"). But whenw; =

1965) to prove relation (ii).

We first give some lemmas and begin with a sufficient
i.e. the number of all choices oh patterns with a finite condition of storage under the perceptron learning scheme.
number ofn. ThenC(n) is the maximal number of random
state patterns that can be stable in a GHN with probability
one. Therefore it is consistent with the general understand-Lemma 1. Consider a sample sék*, X2, ..., X" }. If the
ing and this probabilistic definition of the asymptotic same component of each of the vectofsXX, ... X" ! is

m
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deleted and the A 1 remaining(n — 1)-dim vectors are estimate holds
linearly independent thefix®, X2, ..., X"} is storable.

n—-1
Proof. Let Bmn) = [#¢ )| = C(mn) =2 ; cm (10)

X = [X1.X2 uXinl  (=12..,n—1). (6)

As for {X},X? ..,X" 1} and the ith neuron of the
network N = (W, O), we construct the following system Now we are ready to prove the main theorem.
of linear equations:

XpaWig oot Xgi—aWiji—1 + Xgj+aWij+1 T o XpaWin = X

XoaWig ot Xoj—aWiji—1 + Xoj+aWij+1 T o+ XonWin = X

Xp—11WA1

where Wi g, ..., Wij—1,Wijs1, ..., Wi, are (n—1) unknown The Proof of the Main Theorem. (i) Assuming that

numbers. X X2, .., X"! are represented as Eq. (3), we introduce
Using the condition of the lemma, it is deduced that the the following symbols.

rank of the system matrix of linear equations Eq. (1nis-

1). Thus the linear equations have a unique solution of

Wi 1, oo Wij—1, Wij+1, ..., Wi . IN this way for all the neurons, i1 is the complementary set 6f, ), and

we can obtainW. According to Egs. (2) and (7),

X, X2, ..., X" ! are the stable states of the obtained network Din-1 = [Z(n-1)

N = (W, O). Therefore §*,X?, ..., X"} is storable and

Din-p =X ., X XY ., X" Y is not storable}

5 D?n—l) = |~@?n—l)|~

the proof is completed. O €1 €2 o €

Lemma 2. Let €20 S22 v Can

E(nfl)xn =
An= |{(ai,j)n><n (g € {1,-1} and ranl(ai,j)nxn =n-— 1}|’
) €h-11 &-12 " &-1n

where|B| is the number of the elements of the set B. Then we

have €1 v Gi-g Ci+v1 t ©un
- An) €1 v &i-1 &1 €
lim|(— ) =0. 8 ) . : : :
n—oo ( 27 ® En-1xn(i) =

€-11 " Gh-1i-1 €n-1iv1 0 En-1n
The proof is analogous to that of Komlos’ theorem o ) ]
(Komlos, 1967) (Komlos' resultis fanx n{0, 1} matrices, ~ Where &; € {1, ~1},Eq-1xn(i) is defined for i=
but it holds well fornx n{ — 1,1} matrices). L2...n
Foranym-setofpoints (vector) C R"let’ )denote g% —(E  \ " rankE, () =n— Li=12...n},
the family of dichotomies## thatare homogeneous linearly

separable. Here a dichotorffy *#7 ) belongs to#f’ ) if, &1, is the complementary set f,_y, and
and only if, there exists a weight vectoW =

Wy, Wy, ... W,]" € R" such thatX = [xg, ..., X,]' € R") En-1 = €01 En-1 = 601l
n 1 ifxet +. We consider the following matrix constructed by
sgriwW'X) = sgr( vvixi) = { 9) Xt X2, .., X"t as
= -1 iftxe? .
X11 X1,2 X1n
The following estimate for the number of homogeneous
%21 X322 X2n

linearly separable dichotomies was given and proved by _
Cover (1965). X130 =

Lemma3. Let’ C R" be an m-set of points. The following Xn—11 Xn-12 * Xn—1n



Then it is anE,_)x, Matrix. According to Lemma 1, we Then we have

have the following inequality:
g thequailty Er-1 = D kue{1,-13"t:u

(n - 1)' X D(n—l) = E(n—l)~ (11) (€1,...60—1)EBO_1

We now estimaté&, s, in the following. Let & 7 (e, ...e 1}

, = > Sy {u:u

(B1,---€n-2)EOn_2 6, 1&#(Ey,...60-2)

€ #(e,...e 2} = > en-1

(€,...&0-2,U)EB;

An,k = |{(ai,j)n><n ey € {17 _1} and rank(ai,j)nxn = k}

wherek=1,2,...n;
n—-1

Av=> Ay
k=1

{1, -1}"" e 1 & ey, .0 €2}
and E(n—l)x(n—l) = E(n_l)xn(n). Then the number Of — 2n—lAn
elements ofé,_;, can be estimated frorf_;)n-1, by o ~in-2:
extending a column vector as follows: Summing up the results of the two cases, we have
(1) I rank  Ep-pxn-1y <n—1, obviously, L 5 - -
En-1xn € €n-1)- Define Ej,_y as the number of the En-y=En-3+En-1=2" A1 +2" Avino
matrices ofE,_y)xn in that case. Then N
=2'A 1.

1 n—1 n—1 n—1
- + 4ot .
En-1) = An-112 An-122 An-1n-22 According to Lemma 2 and the fact
— An,12n71.

"m<2 )=1 (PR =nin—1-(n—m+1) (13

(2) If rank Ep—1yxn-1y = N— 1 and Ep—1yxn € (n-1» oo\ Po,
then thenth column vector ofg,_;)., must be able to be have
represented as a linear combination of ¢the- 1) column we
vectors ofE,_1xn-1). Define E(Zn,l) as the number of the 1-PMn—1n) = Dh-i . (M—D!Dp,
matrices ofEy_1)x, in this case. Leky, e, ...,e,_; be the S 2" - n
column vectors ofE,_1xn-1), then {e;, &, ....e,1} is a ( ) (n— 1)!( )
base ofR" 1. Thus anyU € R"* has a unique representa- n-1 n-1
?ison of linear combination on the base{e,, ..., e,_1}, that (n— 1D, ; ( on(n=1) ) ( (n — 1)!Dn71)

[ [ 2nn=1)

n—1

2 2
U=> ae. 12 _ (2" (Ena ) oo 27, ( A
=1 - gn 2n(n71) - gn Z(n, 12

U is called a non-zero linear combination of

{e1,e,...6 1} if ¢ # 0 for eachj=1,2,...n— 1; and — 0(n — o).

we let 7 (ey, &, ... &-1) = {U € {1, 13"t u is a non- Therefore we have

zero linear combination of {ge,,...,e,_1}}. We define for .

q e{l,_l}nil,izl,.--,k @kz {(el’eZ""’ rl)E»roloP(n_l’n):l'

&) : €, 6, ..., are linear independent " V}; and 6; ) L ”

is the complementary set @,. Now we have (i) For a sample setX”, X7, ..., X"}, we let
i

Ba,= >  fueq,-u"t:u X

(er,...,_1)EB,_1
& 7 (e, ...e 1}

In order to estimateéE, ), we further define fok =
n—-1

‘;'/(el’ eZ’ e Q() = lﬁ(el’ e2’ CEE) ek) N {1v - 1}(“*1)’

where “(e;, e, ...,8) is the linear spanning space of
{ene,...a7.



matrix

1
X11 X2 ot Xy X1 XD
X201 Xo2 v Xgp X201 X2(1)
Xonxn = =
2
Xon1 Xon2 t Xonn Xon1 XT(D)

According to Lemma 3 and the fact(2n,n—1) <
2271 we have

(Zn)!Din <= 22n><(2n—l)C(2n’ n— 1) <= 22”)((2[1—1)22“—1
_ 2(2n)271

and

P(2n,n) = Don

(=)



