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1. Introduction

The EM algorithm is a widely used method for maximum likelihood (ML) or
maximum a posteriori (MAP) estimation [3]. The convergence of EM and related
methods has been studied by many authors (e.g., [2,4,12,15,16,18,19]). Generally, the
EM algorithm is considered as a first order or linearly convergent algorithm and it
really shows the slow convergence in some situations. Then, there have been
proposed several acceleration methods for the EM algorithms such as Aitken
acceleration [9], conjugate gradient acceleration [5], quasi-Newtonian acceleration
[6,10], parameter expansion acceleration [13] and ‘‘working parameter’’ approach [7].

However, as the EM algorithm has been successfully applied to large-scale
problems such as hidden Markov models [17], probabilistic decision trees [7] and
mixtures of experts architectures [8], many evidences show that its convergence
rate can be significantly faster than those of conventional first-order iterative
algorithms (i.e., gradient ascent). In fact, it is further found by the empirical results
that the EM algorithm converges faster when the overlap in the given mixture
becomes smaller.

Xu and Jordan [20] showed that the condition number of the effective Hessian of
the EM algorithm for Gaussian mixtures is smaller than the condition number of the
Hessian of the log likelihood associated with gradient ascent, which provides a
general guarantee of the dominance of the EM algorithm over the gradient
algorithm. Moreover, in the case that the mixture components are well separated,
they showed that the condition number for EM approximately converges to one,
which indicates a local superlinear convergence rate. Thus, in this restrictive case, the
EM algorithm has the favorable property of showing quasi-Newton behavior as it
nears an ML or MAP solution.

It has been further found by Ma et al. [14] that the asymptotic convergence rate of
the EM algorithm is actually dominated by a measure of the average overlap of
component densities in the Gaussian mixture as the overlap tends to zero. Based on
the mathematical connection between the EM algorithm and gradient algorithm and
one of its intermediate results on the convergence rate by Xu and Jordan [20], they
proved that the asymptotic convergence rate locally around the true solution is a
higher order infinitesimal than a positive order power of an average overlap measure
of component densities in the mixture as this measure tends to zero. That is, the large
sample local convergence rate of the EM algorithm tends to be asymptotically
superlinear when the overlap of densities in the mixture tends to zero.

In the current paper, based on one of the EM convergence rate properties
obtained by Render and Walker [18], we further prove a general result that extends
the results in [14] from Gaussian mixtures to mixtures of densities from a class of
exponential families. Under certain regular conditions, we have found that the large
sample local convergence rate of the EM algorithm for a mixture of densities from
the exponential families tends to be asymptotically superlinear when the average
overlap measure of component densities in the mixture tends to zero. From the
general result, we also provide an alternative proof on the main theorem firstly
obtained in [14] on Gaussian mixtures.
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Section 2 describes the EM algorithm for mixtures of densities from the
exponential families. In Section 3, we introduce and prove our main theorem on
the asymptotic convergence rate of the EM algorithm. We further detailize this result
on Gaussian mixtures in Section 4 and then conclude in Section 5.
2. The EM algorithm for mixtures of densities from exponential families

2.1. The mixture model

We study the following mixture model:

PðxjFÞ ¼
XK

i¼1

aiPiðxjfiÞ; aiX0;
XK

i¼1

ai ¼ 1, (1)

where x ¼ ½x1; . . . ;xn�
T 2 Rn; each Pi is a density from a family of probability

distributions parameterized by fi 2 Oi � Rdi ; and K is the number of the mixture
components. The parameter F consists of the mixing proportions ai and the
component parameters fi; that is, F ¼ ða1; . . . ; aK ;f1; . . . ;fK Þ 2 O; with

O ¼ ða1; . . . ; aK ;f1; . . . ;fK Þ :
XK

i¼1

ai ¼ 1 and aiX0;fi 2 Oi for i ¼ 1; . . . ;K

( )
.

If each PiðxjfiÞ ¼ Piðxjmi;SiÞ is a Gaussian density given by

PiðxjfiÞ ¼ Pðxjmi;SiÞ ¼
1

ð2pÞn=2ðdet SiÞ
1=2

e	ð1=2Þðx	miÞ
TS	1

i ðx	miÞ, (2)

where mi ¼ ½mi1; . . . ;min�
T is the mean vector, Si ¼ ðsi

klÞn
n is the covariance matrix
which is positive definite, it becomes a Gaussian mixture which has been extensively
studied in literature. In fact, the asymptotic convergence rate of the EM algorithm
for Gaussian mixtures with respect to the overlap in the mixture have already studied
in [14]. In this paper, we further study the same problem on the EM algorithm for
mixtures of densities from exponential families. That is, the components are
extended from Gaussian densities into densities of exponential families.

A parametric family of densities qðxjyÞ; y 2 Y � Rd on Rn is said to be an
exponential family if its members take the form

qðxjyÞ ¼ aðyÞ	1bðxÞ eyTtðxÞ; x 2 Rn, (3)

where bðxÞ; tðxÞ are functions of x on Rn and aðyÞ is given by

aðyÞ ¼
Z

Rn

bðxÞ eyTtðxÞ dm

for an appropriate underlying measure m on Rn: It is assumed that bðxÞX0 for all
x 2 Rn; aðyÞoþ1 for y 2 Y and tðxÞ; called a statistic, relates to the observed data
only. Also, the support of every member of an exponential family is same as that of
the function bðxÞ:
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On the other hand, the members of the exponential family can be equivalently
represented by

PðxjfÞ ¼ qðxjyðfÞÞ ¼ aðfÞ	1bðxÞ eyðfÞTtðxÞ; x 2 Rn

with the ‘‘expectation’’ parameter f ¼ EyðtðX ÞÞ which will be used in our analysis
(refer to [1] or [18] for details).

This paper further focuses on a class of exponential families in which every density
PðxjfÞ has the mean vector m and the covariance matrix S; and is sheltered by an
envelope or upper bounded function UðxjfÞ as follows:

PðxjfÞpUðxjfÞ ¼ wðxÞðlmaxÞ
	c1e	rð1=ZðxÞÞ	c2

, (4)

where

ZðxÞ ¼
ðlmaxÞ

n

kx 	 mk

and lmax is the maximum eigenvalue of S of PðxjfÞ: Moreover, c1; c2; r and n are a
group of positive numbers, and wðxÞ is a positive polynomial function of x1; . . . ; xn

with constant coefficients. Here and hereafter, we use the Euclidean norm for a
vector and its inductive norm for a matrix. Actually, the class of these families
includes many of the most commonly used exponential families such as the binomial,
Gaussian and exponential distributions.

In the mixture, each PiðxjfiÞ is assumed to have the ‘‘expectation’’ parameteriza-
tion for fi 2 Oi � Rdi as follows:

PiðxjfiÞ ¼ aiðfiÞ
	1biðxÞ e

yiðfiÞ
TtiðxÞ; x 2 Rn (5)

and F� ¼ ða�1; . . . ; a
�
K ;f

�
1; . . . ;f

�
K Þ is used to denote the ‘‘true’’ parameter value of the

mixture to be estimated, that is, the sample data come from the mixture of the
parameter F�: Also, the components of tiðxÞ are assumed to be polynomials of
x1; . . . ;xn:

Moreover, the envelope function of Piðxjf
�
i Þ is given as follows:

Piðxjf
�
i ÞpUiðxjf

�
i Þ ¼ wðxÞðli

maxÞ
	c1 e	rð1=ZiðxÞÞ

c2
, (6)

where

ZiðxÞ ¼
ðli

maxÞ
ni

kx 	 m�
i k

and m�
i and li

max are the mean vector and the maximum eigenvalue of the covariance
matrix S�

i of Piðxjf
�
i Þ; respectively. c1; c2;r and wðxÞ may depend on i implicitly.

Furthermore, we assume that these li
max are always bounded. We let n to be the least

one among all these ni and modify r such that these Uiðxjf
�
i Þ are still the envelope

functions of the component densities. As a result, we can let

ZiðxÞ ¼
ðli

maxÞ
n

kx 	 m�
i k

; i ¼ 1; . . . ;K ,

where n is a common positive number.
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2.2. The EM algorithm and its asymptotic convergence rate

We consider a set of sample data SN ¼ fxðtÞ : t ¼ 1; . . . ;Ng and suppose that
f1; . . . ;fK are mutually independent variables. If Fc ¼ ðac1; . . . ; a

c
K ;f

c
1; . . . ;f

c
K Þ is a

current ML estimate of the log-likelihood function LðFÞ ¼
PN

t¼1 log PðxðtÞjFÞ for the
mixture of densities from the exponential families Eq. (1), the EM algorithm
recursively gets the next estimate by

aþi ¼
1

N

XN

t¼1

aci Piðx
ðtÞjfc

i Þ

PðxðtÞjFcÞ
, ð7Þ

fþ
i ¼

XN

t¼1

tiðx
ðtÞÞ

aci Piðx
ðtÞjfc

i Þ

PðxðtÞjFcÞ

( ), XN

t¼1

aci Piðx
ðtÞjfc

i Þ

PðxðtÞjFcÞ

( )
, ð8Þ

for i ¼ 1; . . . ;K :
This iterative procedure converges to a local maximum of LðFÞ [3,19]. Moreover,

under certain regularity conditions, the EM iteration converges to a consistent
solution that maximizes the log likelihood LðFÞ [18]. In this paper, assume that the
EM algorithm asymptotically converges to the true parameter F� correctly (i.e.,
when the size N of the sample data SN is large, the EM algorithm converges to FN

with limN!1FN ¼ F� in probability one), we analyze the local asymptotic
convergence rate around F�:

In [18], Render and Walker represented the EM iteration as a functional iteration
Fþ ¼ GðFcÞ and have

Fþ 	 FN ¼ GðFcÞ 	 GðFN Þ ¼ G0ðFNÞðFc 	 FN Þ þ OðkFc 	 FNk2Þ (9)

for any Fc in O near FN ; where G0ðFÞ denotes the Jacobian of GðFÞ at FN and OðxÞ

means that it is a same order infinitesimal as x ! 0: By the strong large number law,
they proved that as N increases to infinity, with probability one, G0ðFN Þ converges to
its expectation EðG0ðF�ÞÞ ¼ I 	 QðF�ÞRðF�Þ; where

QðF�Þ ¼ diagða�1; . . . ; a
�
K ; a

�	1
1 P1; . . . ; a�	1

K PK Þ (10)

with

Pi ¼

Z
Rn

½tiðxÞ 	 f�
i �½tiðxÞ 	 f�

i �
TPiðxjf

�
i Þdm

and

RðF�Þ ¼

Z
Rn

V ðxÞV ðxÞTPðxjF�Þdm (11)

with

V ðxÞ ¼ ðb1ðxÞ; . . . ;bK ðxÞ; a
�
1b1ðxÞG1ðxÞ

T; . . . ; a�KbK ðxÞGK ðxÞ
T
Þ
T,

biðxÞ ¼ Piðxjf
�
i Þ=PðxjF�Þ,

GiðxÞ ¼ P	1
i ½tiðxÞ 	 f�

i �.



Here and hereafter, Eð�Þ ¼ EF� ð�Þ: It follows from Eq. (9) that the convergence rate
of the EM algorithm locally around FN is upper bounded by the norm kG0ðFN Þk: By
increasing N to infinity, we then get the following upper bound of the asymptotic
convergence rate r of the EM algorithm locally around F�:

rp lim
N!1

kG0ðFN Þk ¼ lim
N!1

G0ðFNÞ

����
����

¼ kEðG0ðF�ÞÞk ¼ kI 	 QðF�ÞRðF�Þk. ð12Þ

In the following, we will study the asymptotic convergence rate of the EM
algorithm for mixtures of densities from the bell sheltered exponential families via
this upper bound through defining an average overlap measure of the component
densities in the mixture such that we can analyze its change as the overlap measure
tends to zero.
3. The main result

3.1. The measures of the overlap

We revisit the measures used in [14] for the overlap of component densities in a
Gaussian mixture. We consider the following posterior densities for the mixture Eq.
(1) with the true parameters F�:

hiðxÞ ¼
a�i Piðxjf

�
i ÞPK

j¼1a
�
j Pjðxjf

�
j Þ

for i ¼ 1; . . . ;K . (13)

It follows from Eq. (11) that

hiðxÞ ¼ a�i biðxÞ. (14)

We further let

gijðxÞ ¼ ðdij 	 hiðxÞÞhjðxÞ for i; j ¼ 1; . . . ;K, (15)

where dij is the Kronecker function. Then, we define a group of quantities on the
overlap of component densities as follows:

eijðF�Þ ¼

Z
Rn

jgijðxÞjPðxjF
�Þdm

for i; j ¼ 1; 2; . . . ;K ; where eijðF�Þp1 since jgijðxÞjp1:
For iaj; eijðF�Þ can be considered as a measure of the average overlap between the

densities of components i and j in the mixture. When Piðxjf
�
i Þ and Pjðxjf

�
j Þ have a

high overlap at a point x; hiðxÞhjðxÞ
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We start at observing the special case eðF�Þ ¼ 0 which means that

hiðxÞhjðxÞ ¼ 0 for iaj

with probability one, i.e., the component densities in the mixture are well separated.
In this case, it follows from the result obtained in [18] that the asymptotic
convergence rate is zero and the EM algorithm gets a Newton type convergence
behavior for the large size of samples. However, this case happens in only a
degenerated situation. In this paper, we consider a more general case that the
component densities are not well separated, but the mixture can tend to be well
separated with the overlap measure eðF�Þ attenuating to zero. Although the
asymptotic convergence rate of the EM algorithm for such a mixture does not
become zero exactly, it is interesting to study how the convergence rate attenuates
with the average overlap measure eðF�Þ reducing.
3.2. Regular conditions and lemmas

The study starts at some assumptions that require the mixtures of densities from
the exponential families to satisfy the following regular conditions:

(1) Nondegenerate condition on the mixing proportions: We first assume that the
mixing proportions satisfy the nondegenerate condition:

a�i Xa for i ¼ 1; . . . ;K , (16)

where a is a positive number. If some mixing proportion reduces to zero, the
corresponding component distribution will disappear from the mixture, which
degenerates to a mixture with a lower number of the mixing components. This
assumption prevents this degeneracy.

(2) Uniform attenuating condition on the eigenvalues of the covariance matrices: We
let S�

i be the covariance matrix of the ith component density and li1; . . . ; lin its
eigenvalues. The eigenvalues of all the covariance matrices satisfy

blðF�ÞplijplðF�Þ for i ¼ 1; . . . ;K ; k ¼ 1; . . . ; n, (17)

where b is a positive number and lðF�Þ is defined to be the maximum eigenvalue of
the covariance matrices S�

1; . . . ;S
�
K ; i.e.,

lðF�Þ ¼ max
i;j

lij

which is assumed to be always upper bounded by a positive number B: That is, all
the eigenvalues uniformly attenuate or reduce to zero when they tend to zero. It
follows from Eq. (17) that the condition numbers of the K covariance matrices are
also uniformly upper bounded, i.e.,

1pkðS�
i ÞpB0 for i ¼ 1; . . . ;K,

where kðS�
i Þ is the condition number of S�

i and B0 is a positive number.



(3) Regular condition on the mean vectors: The third assumption is that the mean
vectors of the component densities in the mixture, i.e., m�

1; . . . ;m
�
K ; satisfy

mDmaxðF�ÞpDminðF�Þpkm�
i 	 m�

j kpDmaxðF�Þ for iaj, (18)

where DmaxðF�Þ ¼ maxiajkm�
i 	 m�

j k; DminðF�Þ ¼ miniajkm�
i 	 m�

j k; and m is a
positive number. That is, all the distances between two mean vectors are the same
order as they tend to infinity. Moreover, when the overlap of densities in the mixture
reduces to zero, any pair of two means m�

i ;m
�
j cannot be arbitrarily close, i.e., there

should be a positive value T such that km�
i 	 m�

j kXT when iaj: In this situation,
Eq. (18) certainly holds if m�

1; . . . ;m
�
K are always bounded.

We further get an upper estimation of kP	1
i k; where Pi is given in Eq. (10). Since

each component Piðxjf
�
i Þ comes from an exponential family, we have the following

equality [11]:

Pi ¼
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ZðF�Þ ! 0: Therefore, we have that ZðF�Þ ! 0 while eðF�Þ ! 0 and thus ZðF�Þ ! 0
is equivalent to ZðF�Þ ! 0 in this general situation.

As we need only to consider the general situation that the component densities
cannot be well separated, but tend to be well separated with eðF�Þ attenuating to
zero, we will use the equivalence of ZðF�Þ ! 0 and eðF�Þ ! 0 in our study.

Since ZðF�Þ is not an invertible function, i.e., there may be many F�s for a value of
ZðF�Þ; we further define

f ðZÞ ¼ sup
ZðF�Þ¼Z

eðF�Þ (21)

which is well defined because eðF�Þ is always not larger than 1. By the definition, we
certainly have

eijðF�ÞpeðF�Þpf ðZðF�ÞÞ for iaj. (22)

Finally, have three lemmas as follows (see the Appendix A for the derivation).

Lemma 1. Suppose that a mixture of K densities from the bell sheltered exponential

families of the parameter F� satisfies Conditions (1)–(3). As ZðF�Þ tends to zero, we

have
(i)
 ZðF�Þ; Ziðm
�
j Þ and Zjðm

�
i Þ are the equivalent infinitesimals.
(ii)
 For iaj; we have

km�
i kpT 0km�

i 	 m�
j k, (23)

where T 0 is a positive number.

(iii)
 For any two nonnegative numbers with p þ q40; we have

km�
i 	 m�

j k
pðli

maxÞ
	nqpOðZ	p_qðF�ÞÞ, (24)

where p _ q ¼ maxfp; qg:
Lemma 2. Suppose that a mixture of K densities from the bell sheltered exponential

families of the parameter F� satisfies Conditions (1)–(3). As ZðF�Þ tends to zero, we

have for each i
(i)
 kPikpckm�
i 	 m�

j k
p, (25)

where jai; c and p are some positive numbers.

(ii)
 EðktiðX Þ 	 f�

i k
2ÞpuM

q
i ðF

�Þ, (26)

where MiðF�Þ ¼ maxjaikm�
i 	 m�

j k; u and q are some positive numbers.
Lemma 3. Suppose that a mixture of K densities from the bell sheltered exponential

families of the parameter F� satisfies Conditions (1)–(3) and ZðF�Þ ! 0 as an

infinitesimal, we have

f e
ðZðF�ÞÞ ¼ oðZpðF�ÞÞ, (27)
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where e40; p is any positive number and oðxÞ means that it is a higher order

infinitesimal as x ! 0:

These three lemmas establish certain important relations between the useful
quantities which will appear in the proof of the main theorem. Especially, the
relation between eðF�Þ and ZðF�Þ given by Lemma 3 actually reflects the
characteristic of the densities from the bell sheltered exponential families.

3.3. The main theorem

With the above preparations, we are ready to give our main theorem.

Theorem 1. Given a mixture of K densities from the bell sheltered exponential families

of the parameter F� that satisfies Conditions (1)–(4), as eðF�Þ tends to zero as an

infinitesimal, we have

rpkEðG0ðF�ÞÞk ¼ oðe0:5	eðF�ÞÞ, (28)

where e is an arbitrarily small positive number.

According to this theorem, under certain regular conditions, as the overlap of
components in the mixture of densities from the bell sheltered exponential families
becomes small, or more precisely, eðF�Þ ! 0; kEðG0ðF�ÞÞk is a higher order
infinitesimal than e0:5	eðF�Þ: Therefore, as eðF�Þ tends to zero, the asymptotic
convergence rate of the EM algorithm locally around F� is a higher order
infinitesimal than e0:5	eðF�Þ: That is, when eðF�Þ is small and N is large enough, the
convergence rate of the EM algorithm approaches approximately zero. In other
words, the EM algorithm in this case has a quasi-Newton type convergence
behavior. Moreover, it follows from the theorem that the asymptotic convergence
rate attenuates exponentially with the overlap measure as it tends to zero. This
means that as the overlap measure in the mixture reduces, the convergence speed of
EM increases greatly. This result may provide a theoretic basis for the study of the
convergence rate of EM in the cases of finite overlap and data.

On the other hand, the theorem has also provided a new mathematical proof for
the well-known fact that the rate of the EM algorithm is determined by the fraction
of missing-data information. Actually, the measure of overlap among the component
densities is equivalent to the fraction of missing-data information in the mixture.
While the overlap measure tends to zero, the component density of each sample data
becomes very clear. That is, the fraction of missing-data information reduces to zero.
Therefore, the overlap measure can be considered as the fraction of missing-data
information in the mixture. In this way, the theorem has also proved that the EM
algorithm tends to converge superlinearly as the fraction of missing-data
information tends to be zero. Moreover, this theorem also provides another proof
for the correctness of the acceleration methods like the ‘‘working parameter’’ method
[16] and the PX-EM algorithm [13], which are based on the concept that the EM
algorithm will have a fast rate of convergence if the fraction of missing-data
information is small.
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Proof of Theorem 1. We begin with the computation of the product QðF�ÞRðF�Þ:
According to the expressions of QðF�Þ and RðF�Þ; we compute the elements of
QðF�ÞRðF�Þ by blocks, as follows:

QðF�ÞRðF�Þ ¼ diag½diag½AT�; a�	1P1; . . . ; a�	1
K PK �




Rb;bT Rb;GT
1

� � � Rb;GT
K

RG1;bT RG1;GT
1

� � � RG1;GT
K

..

. ..
. . .

. ..
.

RGK ;b
T RGK ;GT

1
� � � RGK ;GT

K

0
BBBBBBB@

1
CCCCCCCA

¼

diag½AT�Rb;bT diag½AT�Rb;GT
1

� � � diag½AT�Rb;GT
K

a�	1
1 P1RG1;b

T a�	1
1 P1RG1;GT

1
� � � a�	1

1 P1RG1;GT
K

..

. ..
. . .

. ..
.

a�	1
K PK RGK ;b

T a�	1
K PK RGK ;GT

1
� � � a�	1

K PK RGK ;GT
K

0
BBBBBBBB@

1
CCCCCCCCA
,

where bðxÞ ¼ ½b1ðxÞ; . . . ;bK ðxÞ�
T and A ¼ ½a�1; . . . ; a

�
K �

T: The blocks of the matrix
RðF�Þ are defined according to the blocks of V ðxÞ as

V ðxÞ ¼ ½bðxÞT; a�1b1ðxÞG1ðxÞ
T; . . . ; a�KbK ðxÞGK ðxÞ

T
�T.

(a) The computation of diag½AT�Rb;bT : From the definition of biðxÞ and the relation
that hiðxÞ ¼ a�i biðxÞ; we haveZ

Rn

biðxÞbjðxÞPðxjF
�Þdm ¼

1

a�i a�j
eijðF�Þ if iaj,

Z
Rn

b2
i ðxÞPðxjF

�Þdm ¼
1

a�i
	

1

ða�i Þ
2

eiiðF�Þ

which lead to

diag½AT�Rb;bT ¼ IK þ

	a�	1
1 e11ðF�Þ a�	1

2 e12ðF�Þ � � � a�	1
K e1K ðF�Þ

a�	1
1 e21ðF�Þ 	a�	1

2 e22ðF�Þ � � � a�	1
K e2K ðF�Þ

..

. ..
. . .

. ..
.

a�	1
1 eK1ðF�Þ a�	1

2 eK2ðF�Þ � � � 	a�	1
K eKK ðF�Þ

0
BBBBBB@

1
CCCCCCA
.

Because

1

a�j
eijðF�Þp

1

a
eijðF�Þ ¼ oðe0:5	eðF�ÞÞ,



we further have

diag½AT�Rb;bT ¼ IK þ o
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Specifically, we consider each item in the above first matrix. It follows from the
Cauchy–Schwarz inequality and the fact jgijðxÞjp1 that

jEðhjðX ÞðhiðX Þ 	 dijÞðti;kðX Þ 	 f�
i;kÞÞj

pEðjhjðX ÞðhiðX Þ 	 dijÞjjðti;kðX Þ 	 f�
i;kÞjÞ

pE1=2ðg2ijðX ÞÞE1=2ððti;kðX Þ 	 f�
i;kÞ

2
Þ

pE1=2ðjgijðX ÞÞE1=2ððti;kðX Þ 	 f�
i;kÞ

2
Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eijðF�Þ

q
E1=2ððti;kðX Þ 	 f�

i;kÞ
2
Þ.

According to Lemma 2, EðktiðX Þ 	 f�
i k

2jF�Þ is upper bounded by uM
q
i ðF

�Þ: Then, all
the terms E1=2ððti;kðX Þ 	 f�

i;kÞ
2
Þ are certainly upper bounded by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uM

q
i ðF

�Þ
p

:
Therefore, we have

Eðdiag½AT�a�i biðX ÞbðX ÞðtiðX Þ 	 f�
i Þ

T
Þ ¼ OðM

q=2
i ðF�Þe0:5ðF�ÞÞ.

According to Lemmas 1 and 3, M
q=2
i ðF�Þe0:5ðF�Þ is also an infinitesimal as eðF�Þ or

ZðF�Þ tends to zero. It further follows from the properties of the matrix norms that

kEðdiag½AT�a�i biðX ÞbðX ÞðtiðX Þ 	 f�
i Þ

T
Þk ¼ OðM

q=2
i ðF�Þe0:5ðF�ÞÞ.

Moreover, we always have

kdiag½AT�Rb;GT
i
kpkEðdiag½AT�a�i biðX ÞbðX ÞðtiðX Þ 	 f�

i Þ
T
ÞkkP	1

i k

and

kP	1
i k ¼ kIðf�

i ÞkpOðkm�
i k

t1 ðli
maxÞ

	t2Þ

under Condition (4). Thus, we further have

kdiag½AT�Rb;GT
i
kpukm�

i 	 m�
j0 k

q1ðli
maxÞ

	q2e0:5ðF�Þ,

where q1 ¼ ðq=2Þ þ t1; q2 ¼ t2; and u is a positive number.
Therefore, it follows from Lemmas 1 and 3 that

kdiag½AT�Rb;GT
i
kpOðZ	q1_q2 ðF�ÞÞe0:5ðF�Þ ¼ oðe0:5	eðF�ÞÞ.

By the properties of matrix norms, we are finally led to

diag½AT�Rb;GT
i
¼ oðe0:5	eðF�ÞÞ.

(c) The computation of a�	1
i PiRGi ;b

Tði ¼ 1; . . . ;KÞ: According to condition (1) and
Lemma 2, a�	1

i kPik is upper bounded by ð1=aÞckm�
i 	 m�

j k
p; where jai; c and p are

positive numbers. Because RGi ;b ¼ RT
b;GT

i
; in a similar way as (b) we can prove:

a�	1
i PiRGi ;b

T ¼ oðe0:5	eðF�ÞÞ.
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(d) The computation of a�	1
i PiRGi ;GT

i
ði ¼ 1; . . . ;KÞ: By the definition of V ðxÞ; we

have

a�	1
i PiRGi ;GT

i
¼ a�	1

i PiEðh2
i ðX ÞGiðX ÞGT

i ðX ÞÞ

¼ a�	1
i Eðh2

i ðX ÞðtiðX Þ 	 f�
i ÞðtiðX Þ 	 f�

i Þ
T
ÞP	1

i

¼ Idi
þ a�	1

i EðhiðX ÞðhiðX Þ 	 1ÞðtiðX Þ 	 f�
i ÞðtiðX Þ 	 f�

i Þ
T
ÞP	1

i ,

where we have used the fact:

PiEðhiðX ÞGiðX ÞGT
i ðX ÞÞ ¼ a�i I di

.

Furthermore, considering that EðktiðX Þ 	 f�
i k

2jF�Þ is upper bounded by uM
q
i ðF

�Þ

and a�	1
i is upper bounded, in a similar way as above, we can prove:

a�	1
i EðhiðX ÞðhiðX Þ 	 1ÞðtiðX Þ 	 f�

i ÞðtiðX Þ 	 f�
i Þ

T
ÞP	1

i ¼ oðe0:5	eðF�ÞÞ

from which, we have

a�	1
i PiRGi ;GT

i
¼ Idi

þ oðe0:5	eðF�ÞÞ.

(e) The computation of a�	1
i PiRGi ;GT

j
ðjaiÞ: By the definition of V ðxÞ; we have

a�	1
i PiRGi ;GT

j
¼ a�	1

i Eða�i biðX Þa�j bjðX ÞðtiðX Þ 	 f�
i ÞðtjðX Þ 	 f�

j Þ
T
ÞP	1

j

¼ a�	1
i EðhiðX ÞhjðX ÞðtiðX Þ 	 f�

i ÞðtjðX Þ 	 f�
j Þ

T
ÞP	1

j .

Similarly as in (b), we can prove that

a�	1
i PiRGi ;GT

j
¼ oðe0:5	eðF�ÞÞ.

Summing up the results in (a)–(e), we obtain:

QðF�ÞRðF�Þ ¼ I þ oðe0:5	eÞ.

Thus, according to Eq. (12), we finally get

rpkI 	 QðF�ÞRðF�Þk ¼ oðe0:5	eðF�ÞÞ: &
4. A typical class: Gaussian mixtures

We further discuss the asymptotic convergence rate of the EM algorithm for
Gaussian mixtures which are a typical class of mixtures of densities from exponential
families. As proved in [1], a Gaussian density Piðxjmi;SiÞ given by Eq. (2) can be
considered as a exponential family with yi ¼ ðS	1

i mi;S	1
i Þ and the corresponding

tiðxÞ ¼ ðx;	 1
2

xxTÞ: Therefore, the mean parameter fi; corresponding to yi; is
ðmi;	1

2
ðSi þ mim

T
i ÞÞ which is equivalent to the common parameter ðmi;SiÞ for the

multivariate normal family.
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Next, we have the following lemma which indicates that Gaussian densities are
bell-sheltered if the condition numbers of their covariance matrices are upper
bounded.

Lemma 4. Suppose that Piðxjf
�
i Þ ¼ Piðxjm

�
i ;S

�
i Þ is a Gaussian distribution with the

mean m�
i and the covariance matrix S�

i ; and that the condition number of S�
i ; i.e., kðS�

i Þ;
is upper bounded by B0: We have that Piðxjf̂

�

i Þ is bell-sheltered, i.e.,

Piðxjf
�
i Þ ¼ Piðxjm

�
i ;S

�
i Þpb

1

ðli
maxÞ

n=2
e	ð1=2li

maxÞkx	m�
i k

2

, (29)

where b is a positive number.

Proof. By the orthogonal linear transformation y ¼ Uiðx 	 m�
i Þ with the notation

Pðyjli
maxÞ ¼

1

ð2pli
maxÞ

n=2
e	ð1=2li

maxÞkyk2 ,

we have

Piðxjm
�
i ;S

�
i ÞpB0n=2Pðyjli

maxÞ,

since kðS�
i ÞpB0: Moreover, from kyk ¼ kx 	 m�

i k; we certainly have

Piðxjm
�
i ;S

�
i Þpb

1

ðli
maxÞ

n=2
e	ð1=2li

maxÞkx	m�
i k

2

,

where b ¼ ðB0=2pÞn=2: &

By Lemma 4, under conditions (1)–(3), a Gaussian mixture of the parameter F� is
certainly a mixture of K densities from the same bell sheltered exponential family.
Moreover, for each component density Piðxjf

�
i Þ ¼ Piðxjm

�
i ;S

�
i Þ; tiðxÞ takes the

following form:

tiðxÞ ¼
x for m�

i ;

	 1
2

xxT for 	 1
2
ðS�

i þ m�
i ðm

�
i Þ

T
Þ:

(

We then have that the components of each tiðxÞ are polynomials of x1; . . . ; xn:
Therefore, a Gaussian mixture of the parameter F� under conditions (1)–(3) satisfies
all the assumptions on the mixture of the main theorem except condition (4).
Fortunately, on a Gaussian distribution, condition (4) is implied in condition (2),
which is shown by the following lemma. For convenience of expression, we let
f�

i ¼ ½ðm�
i Þ

T; vec½ _S
�

i �
T�T; where _S

�

i ¼ 	 1
2
ðS�

i þ m�
i ðm

�
i Þ

T
Þ; and f̂

�

i ¼ ½ðm�
i Þ

T; vec½S�
i �
T�T:

Lemma 5. Suppose that Piðxjf
�
i Þ ¼ Piðxjm

�
i ;S

�
i Þ is a Gaussian density and kðS�

i Þ is

upper bounded. As li
max tends to zero, we have

kIðf�
i Þk ¼ Oððli

maxÞ
	t
Þ, (30)

where t is a positive number.
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Proof. By derivation, we have

qPiðxjm
�
i ;S

�
i Þ

qm�
i

¼ ðx 	 m�
i ÞS

�
i Piðxjm

�
i ;S

�
i Þ, ð31Þ

qPiðxjm
�
i ;S

�
i Þ

qS�
i

¼ 	
1

2
ðS�	1

i 	 S�	1
i ðx 	 m�

i Þðx 	 m�
i Þ

TS�	1
i ÞPiðxjm

�
i ;S

�
i Þ. ð32Þ

According to the definition of the Fisher information matrix, we also have

Iðf�
i Þ ¼ Ef�

i

qPiðX jf�
i Þ

qf�
i

� �
qPiðX jf�

i Þ

qf�
i

� �T
 !

¼ Ef�
i

qðf̂
�

i Þ
T

qf�
i

qPiðX jf�
i Þ

qf̂
�

i

 !
qPiðX jf�

i Þ

qf̂
�

i

 !T
qðf̂

�

i Þ
T

qf�
i

 !T
0
@

1
A

¼
qðf̂

�

i Þ
T

qf�
i

Iðf̂
�

i Þ
qðf̂

�

i Þ
T

qf�
i

 !T

,

where

Iðf̂
�

i Þ ¼ Ef�
i

qPiðX jf�
i Þ

qf̂
�

i

 !
qPiðX jf�

i Þ

qf̂
�

i

 !T
0
@

1
A.

If Eqs. (31) and (32) are substituted into the above equation and the power
P3

i ðxjm
�
i ;S

�
i Þ in the integrand of Iðf̂

�

i Þ is transformed into a Gaussian density
Piðxjm

�
i ;

1
3
S�

i Þ multiplied by a negative order power of jS�
i j with a positive constant

coefficient, we further have

Iðf̂
�

i Þ ¼ Eðm�
i
;ð1=3ÞS�

i Þ
ðGðX ;f�

i ÞÞ,

where Gðx;f�
i Þ is a matrix function of x 	 m�

i and S�
i : Take the transformation

y ¼ x 	 m�
i ; we then have

Iðf̂
�

i Þ ¼ Eð0;ð1=3ÞS�
i Þ
ðGðY ;S�

i ÞÞ,

where Gðy;S�
i Þ is a matrix whose components gpqðy;S

�
i Þ are the polynomial functions

of y1; . . . ; yn: If we represent S�	1
i via its adjoint matrix by

S�	1
i ¼ jS�

i j
	1

a11 a12 � � � a1di

a21 a22 � � � a2di

..

. ..
. . .

. ..
.

adi1 adi2 � � � adidi

0
BBBBB@

1
CCCCCA,

where akl is the determinant of the complementary submatrix of s�i
kl in S�

i ; the
coefficients in each gpqðy;S

�
i Þ are clearly the constant polynomial functions of s�j

kl

multiplied by a negative order power of jS�
i j: Since these s�i

kl are always upper
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bounded, there exits a positive number t such that the absolute values of all the
coefficients in each ðli

maxÞ
tgpqðy;S

�
i Þ are upper bounded. By the properties of

Gaussian distribution and lmaxoB; we have that Eð0;1=3S�
i Þ
ððli

maxÞ
tgpqðY ;S�

i ÞÞ is also
bounded. Therefore, we have

kIðf̂
�

i Þk ¼ kðli
maxÞ

	t
ðli

maxÞ
tIðf�

i Þk

¼ ðli
maxÞ

	t
kðli

maxÞ
tIðf�

i Þk

poðli
maxÞ

	t,

where o is a positive number. Because

kIðf�
i Þkp

qðf̂
�

i Þ
T

qf�
i

�����
�����kIðf̂

�

i Þk
qðf̂

�

i Þ
T

qf�
i

 !T
������

������ ¼ 4kIðf̂
�

i Þk,

where kqðf̂
�

i Þ
T=qf�

i k ¼ kðqðf̂
�

i Þ
T=qf�

i Þ
T
k ¼ 2; which can be easily verified from the

expression of the matrix, Eq. (30) certainly holds. &

Summing up the above results, we have proved that only the conditions (1)–(3) are
enough to let the main theorem applicable to the EM algorithm on Gaussian
mixtures, that is,

Theorem 2. Given a Gaussian mixture of K densities of the parameter F� that satisfies

conditions (1)–(3), as eðF�Þ tends to zero as an infinitesimal, we have

kG0ðF�Þk ¼ oðe0:5	eðF�ÞÞ, (33)

where e is an arbitrarily small positive number.

In other words, Theorem 1 applies to Gaussian mixture when only conditions
(1)–(3) are satisfied.
5. Conclusions

In the mixtures of densities from the bell sheltered exponential families, when the
overlap of any two component densities is small enough under certain regular
conditions, the large sample local convergence behavior of the EM algorithm is
similar to a quasi-Newton algorithm. Moreover, the large sample convergence rate is
dominated by an average overlap measure of the densities in the mixture as they both
tend to zero.
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Appendix
Proof of Lemma 1. We begin to prove (i). For convenience of analysis, we let
ZðF�Þ ¼ maxiajZiðm

�
j Þ ¼ Zi0 ðm

�
j0 Þ: According to conditions (2) and (3), there exists

three pairs of positive numbers a1; a2; b1; b2; c1; c2 such that

a1ðl
i0

maxÞ
npðli

maxÞ
npa2ðl

i0

maxÞ
n, ð34Þ

b1ðl
i
maxÞ

npðlj
maxÞ

npb2ðl
i
maxÞ

n, ð35Þ

c1km�
i0 	 m�

j0 kpkm�
i 	 m�

j kpc2km�
i0 	 m�

j0 k. ð36Þ

Compare Eqs. (34) and (35) with Eq. (36), there exist two other pairs of positive
numbers a0

1; a
0
2; b

0
1; b

0
2 such that

a0
1ZðF

�ÞpZiðm
�
j Þpa0

2ZðF
�Þ,

b0
1Ziðm

�
j ÞpZjðm

�
i Þpb0

2Ziðm
�
j Þ.

Therefore, ZðF�Þ; Ziðm
�
j Þ and Zjðm

�
i Þ are the equivalent infinitesimals.

We then consider (ii), if km�
i 	 m�

j k is upper bounded as ZðF�Þ ! 0; Eq. (23)
obviously holds. If km�

i 	 m�
j k increases to infinity as ZðF�Þ ! 0; by the inequality

km�
i kpkm�

i 	 m�
j k þ km�

j k; Eq. (23) certainly holds if either km�
i k or km�

j k is upper
bounded. Otherwise, if both km�

i k and km�
j k increase to infinity, the order of the

infinitely large quantity km�
i k must be lower than or equal to that of km�

i 	 m�
j k;

which also leads to Eq. (23). Therefore, (ii) holds under the assumptions.
Finally, we turn to (iii) for three cases as follows.
In the simple case p ¼ q40; according to (i), we have

km�
i 	 m�

j k
pðli

maxÞ
	nq

¼ km�
i 	 m�

j k
pðli

maxÞ
	np

¼ ðZiðm
�
j ÞÞ

	p
¼ OðZ	pðF�ÞÞ ¼ OðZ	p_qðF�ÞÞ.

If p4q; since li
max is upper bounded and according to (i), we have

km�
i 	 m�

j k
pðli

maxÞ
	nqpOðZ	pðF�ÞÞ ¼ OðZ	p_qðF�ÞÞ.

If poq; as km�
i 	 m�

j kXT ; we can have

km�
i 	 m�

j k
pðli

maxÞ
	nqpOðZ	qðF�ÞÞ ¼ OðZ	p_qðF�ÞÞ.

Summing up the results on the three cases, we have

km�
i 	 m�

j k
pðli

maxÞ
	nqpOðZ	p_qðF�ÞÞ: &

Proof of Lemma 2. We begin to prove (i). According to the norm theory, we have

kPik ¼ kEf�
i
ððtiðX Þ 	 f�

i ÞðtiðX Þ 	 f�
i Þ

T
ÞkpEf�

i
ðktiðX Þ 	 f�

i k
2Þ. (37)

Since tiðxÞ is assumed to be a polynomial of x1;x2; . . . ;xn; i.e., the components of x;
we transform it into the following expression:

tiðxÞ ¼ P0 þ P1x þ P2x2 þ � � � þ Pkxk,



ARTICLE IN PRESS

J. Ma, L. Xu / Neurocomputing 68 (2005) 105–129 123
where kX0; each Pi is a di 
 ni matrix, and xi is a product vector containing all the
product terms xj1xj2 � � � xji

as its components, where each xjp
comes from

x1;x2; . . . ;xn: It can be easily verified that kxikp
ffiffiffi
n

p
kxki for i ¼ 0; 1; . . . ; k:

Based on the above expression, we have

tiðxÞ ¼ tiðx 	 m�
i þ m�

i Þ

¼ P0
0 þ P0

1ðx 	 m�
i Þ þ P0

2ðx 	 m�
i Þ

2
þ � � � þ P0

kðx 	 m�
i Þ

k, ð38Þ

where each P0
i is still a di 
 ni matrix, but its elements are polynomials of m�

i1; . . . ;m
�
in:

We then have

f�
i ¼ Ef�

i
ðtiðX ÞÞ ¼ P0

0 þ Ef�
i
ðP0

1ðX 	 m�
i ÞÞ þ � � � þ Ef�

i
ðP0

kðX 	 m�Þ
k
Þ (39)

with Ef�
i
ðP0

1ðX 	 m�
i ÞÞ ¼ P0

1Ef�
i
ðX 	 m�

i Þ ¼ 0; and

tiðX Þ 	 f�
i ¼

Xk

j¼1

½P0
jðX 	 m�

i Þ
j
	 Ef�

i
ðP0

jðX 	 m�
i Þ

j
Þ�.

Now, we have

Ef�
i
ðktiðX Þ 	 f�

i k
2Þ ¼ Ef�

i
ðkðtiðX Þ 	 f�

i Þ
T
ðtiðX Þ 	 f�

i ÞkÞ

¼ Ef�
i

Xk

j1¼1;j2¼1

½P0
j1
ðX 	 m�

i Þ
j1 	 Ef�

i
ðP0

j1
ðX 	 m�

i Þ
j1 Þ�T

�����
 


 ½P0
j2
ðX 	 m�

i Þ
j2 	 Ef�

i
ðP0

j2
ðX 	 m�

i Þ
j2Þ�

�����
!

p
Xk

j1¼1;j2¼1

Ef�
i
ðk½P0

j1
ðX 	 m�

i Þ
j1 	 EðP0

j1
ðX 	 m�

i Þ
j1Þ�Tk


 k½P0
j2
ðX 	 m�

i Þ
j2 	 Ef�

i
ðP0

j2
ðX 	 m�

i Þ
j2 Þ�kÞ

p
Xk

j1¼1;j2¼1

E
1=2
f�

i
ðkP0

j1
ðX 	 m�

i Þ
j1 	 Ef�

i
ðP0

j1
ðX 	 m�

i Þ
j1Þk2Þ


 E
1=2
f�

i
kP0

j2
ðX 	 m�

i Þ
j2 	 Ef�

i
ðP0

j2
ðX 	 m�

i Þ
j2 jf�

i Þk
2Þ. ð40Þ

Particularly, we have

Ef�
i
ðkP0

j1
ðX 	 m�

i Þ
j1 	 Ef�

i
ðP0

j1
ðX 	 m�

i Þ
j1 Þk2Þ

¼ Ef�
i
ðkP0

j1
ðX 	 m�

i Þ
j1k2Þ 	 kEf�

i
ðkP0

j1
ðX 	 m�

i Þ
j1 Þk2

pEf�
i
ðkP0

j1
ðX 	 m�

i Þ
j1k2Þp

ffiffiffi
n

p
Ef�

i
ðkP0

j1
k2kX 	 m�

i k
2j1 Þ

¼
ffiffiffi
n

p
kP0

j1
k2Ef�

i
ðkX 	 m�

i k
2j1Þ. ð41Þ
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Because Piðxjf
�
i ÞpUiðxjf

�
i Þ; we further have

Ef�
i
ðkX 	 m�

i k
2j1 Þp

Z
kx 	 m�

i k
2j1Uiðxjf

�
i Þdx

¼

Z
kyk2j1wðy þ m�

i Þðl
i
maxÞ

	c1 e	rð1=ðli
maxÞ

nc2 Þkykc2
dy, ð42Þ

where we take the transformation y ¼ x 	 m�
i : Since wðxÞ is a positive polynomial,

we certainly have

wðy þ m�
i Þpw0 þ w1kyk þ � � � þ wk0 kykk0

, (43)

where k0 is a positive integer, and w0;w1; . . . ;wk0 are a group of positive polynomials
of km�

i k; i.e.,

wi ¼ wi
0 þ wi

1km�
i k þ � � � þ wi

ci
km�

i k
ci for i ¼ 0; 1; . . . ; k0, (44)

where wi
0;w

i
1; . . . ;w

i
ci

are nonnegative numbers, and c0; . . . ; ck0 are nonnegative
integers. By Lemma 1, we further have

wipvi
0 þ vi

1km�
i 	 m�

j k þ � � � þ vi
ci
km�

i 	 m�
j k

ci for i ¼ 0; 1; . . . ; k0, (45)

where vi
0; v

i
1; . . . ; v

i
ci
are nonnegative numbers. Take the upper bound of wðy þ m�

i Þ

into the inequality Eq. (42), we have

Ef�
i
ðkX 	 m�

i k
2j1 Þp

Xk0

l¼0

wlðl
i
maxÞ

	c1

Z
kyk2j1þl e	rð1=ðli

maxÞ
nc2 Þkykc2

dy

¼
Xk0

l¼0

wlðl
i
maxÞ

	c1þnð2j1þlþ1Þ

Z
kuk2j1þl e	rkukc2

du,

where we take the transformation u ¼ y=ðli
maxÞ

n: Clearly,
R
kuk2j1þl e	rkukc2 du is finite

and upper bounded if j1 is upper bounded. Since li
max is upper bounded, we have that

Ef�
i
ðkX 	 m�

i k
2j1 Þ is upper bounded by a positive polynomial of km�

i 	 m�
j k:

Moreover, as each element of P0
j1
is a polynomial of m�

i1; . . . ;m
�
in; kP0

j1
k is upper

bounded by a positive polynomial of km�
i k: Therefore, Ef�

i
ðkP0

j1
ðX 	 m�

i Þ
j1k2Þ is

upper bounded by a positive polynomial of km�
i 	 m�

j k:
As a result, Ef�

i
ðkP0

j1
ðX 	 m�

i Þ
j1 	 Ef�

i
ðP0

j1
ðX 	 m�

i Þ
j1 Þk2Þ is upper bounded by a

positive polynomial of km�
i 	 m�

j k: Since km�
i 	 m�

j kXT 0; we further have that

Ef�
i
ðkP0

j1
ðX 	 m�

i Þ
j1 	 Ef�

i
ðP0

j1
ðX 	 m�

i Þ
j1 Þk2Þpcj1

km�
i 	 m�

j k
pj1 , (46)

where cj1
and pj1

is some positive numbers.
Take Eq. (46) into Eq. (40), we have

Ef�
i
ðktiðX Þ 	 f�

i k
2Þpckm�

i 	 m�
j k

p, (47)

where c and p are positive numbers. Therefore, according to Eq. (37), (i) holds under
the assumptions.
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As to (ii), when jai; we let f0
j ¼ Ef�

j
ðtiðX ÞÞ and have

Ef�
j
ðktiðX Þ 	 f�

i k
2ÞpEf�

j
ððktiðX Þ 	 f0

jk þ kf0
j 	 f�

i kÞ
2
Þ

¼ Ef�
j
ðktiðX Þ 	 f0

jk
2 þ 2ktiðX Þ 	 f0

jkkf0
j 	 f�

i k þ kf0
j 	 f�

i k
2Þ

pEf�
j
ð2ktiðX Þ 	 f0

jk
2 þ 2kf0

j 	 f�
i k

2Þ

¼ 2Ef�
j
ðktiðX Þ 	 f0

jk
2Þ þ 2kf�

i 	 f0
jk

2. ð48Þ

In the same way as above, we can prove that

Ef�
j
ðktiðX Þ 	 f0

jk
2Þpc1km�

i 	 m�
j k

p1 , (49)

where c1 and p1 are positive numbers. Moreover, we certainly have

kf�
i 	 f0

jkpkf�
i k þ kf0

jk.

By Eq. (38), in a similar way we can prove that both kf�
i k and kf0

jk are upper
bounded by c2km�

i 	 m�
j k

p2 ; where c2 and p2 are some positive numbers. Therefore,
by Eq. (48), Ef�

j
ðktiðX Þ 	 f�

i k
2Þ is upper bounded by a positive polynomial of km�

i 	

m�
j k: Since km�

i 	 m�
j kXT 0; we have

Ef�
j
ðktiðX Þ 	 f�

i k
2Þpcjkm�

i 	 m�
j k

pj ; jai, (50)

where cj and pj are positive numbers.
By Eqs. (47) and (50), we have

EðktiðX Þ 	 f�
i k

2Þ ¼
XK

j¼1

a�j Ef�
j
ðktiðX Þ 	 f�

i k
2ÞpuM

q
i ðF

�Þ,

where MiðF�Þ ¼ maxjai km�
i 	 m�

j k; u and q are positive numbers. &

Proof of Lemma 3. We first prove that

f ðZÞ ¼ oðZpÞ,

as Z ! 0; where p is an arbitrarily positive number.
We consider the mixture of K densities from the bell sheltered exponential families

of the parameter F� under the relation ZðF�Þ ¼ Z: When iaj; for a small enough Z;
there is certainly a point m�

ij on the line between m�
i and m�

j such that

a�i Piðm
�
ijjf

�
i Þ ¼ a�j Pjðm

�
ijjf

�
j Þ.

We further define

Ei ¼ fx : a�i Piðxjf
�
i ÞXa�j Pjðxjf

�
j Þg,

Ej ¼ fx : a�j Pjðxjf
�
j Þ4a�i Piðxjf

�
i Þg.

As ZðF�Þ tends to zero, ðli
maxÞ

n=ðkm�
i 	 m�

j kÞ and ðlj
maxÞ

n=ðkm�
i 	 m�

j kÞ are the same
order infinitesimals. Moreover, kðS�

i Þ and kðS�
j Þ are both upper bounded. Thus, there

certainly exists a neighborhood (i.e., a hypersphere) of m�
i (or m�

j ) in Ei (or Ej). For
clarity, we let Nri

ðm�
i Þ and Nrj

ðm�
j Þ be the largest neighborhood in Ei and Ej ;

respectively, where ri and rj are their radiuses. Since kðS�
i Þ and kðS�

j Þ are always
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upper bounded, ri and rj are both proportional to km�
i 	 m�

j k when km�
i 	 m�

j k either
tends to infinity or is upper bounded. So there exist a pair of positive numbers b1 and
b2 such that

riXbikm�
i 	 m�

j k and rjXbjkm�
i 	 m�

j k.

We further define

Di ¼ Nc
ri
ðm�

i Þ ¼ fx : kx 	 m�
i kXrig,

Dj ¼ Nc
rj
ðm�

j Þ ¼ fx : kx 	 m�
j kXrjg

and thus

Ei � Dj ; Ej � Di.

Moreover, from the definitions of eijðF�Þ and hkðxÞ we have

eijðF�Þ ¼

Z
hiðxÞhjðxÞPðxjF�Þdm

¼

Z
Ei

hiðxÞhjðxÞPðxjF�Þdm þ

Z
Ej

hiðxÞhjðxÞPðxjF�Þdm

p
Z
Dj

hiðxÞhjðxÞPðxjF�Þdm þ

Z
Di

hiðxÞhjðxÞPðxjF�Þdm

p
Z
Dj

hjðxÞPðxjF�Þdm þ

Z
Di

hiðxÞPðxjF�Þdm

¼ a�j

Z
Dj

Pjðxjf
�
j Þdm þ a�i

Z
Di

Piðxjf
�
i Þdm.

We now consider
R
Di

Piðxjf
�
i Þdm: Since riXbikm�

i 	 m�
j k;Z

Di

Piðxjf
�
i Þdmp

Z
kx	m�

i
kpbikm�

i
	m�

j
k

Piðxjf
�
i Þdm.

By the transformation y ¼ ðx 	 m�
i Þ=km�

i 	 m�
j k; we haveZ

Di

Piðxjf
�
i Þdm

p
Z
kykpbi

wðkm�
i 	 m�

j ky þ m�
i Þðl

i
maxÞ

	c1e	rðkm�
i 	m�

j k
c2 Þ=ðlmaxÞ

nc2kykc2
km�

i 	 m�
j k dm0

¼

Z
kykpbi

km�
i 	 m�

j kwðkm�
i 	 m�

j ky þ m�
i Þðl

i
maxÞ

	c1


 e	rðkm�
i 	m�

j k
c2 Þ=ðlmaxÞ

nc2kykc2
dm0, ð51Þ

where m0 is the transformed measure from m by the transformation.
Since each coefficient in the polynomial function wðkm�

i 	 m�
j ky þ m�

i Þ is a
polynomial function of m�

i multiplied by a positive order power of km�
i 	 m�

j k; there
certainly exists a positive number q such that the coefficients in the polynomial
function km�

i 	 m�
j k

	qwðkm�
i 	 m�

j ky þ m�
i Þ are upper bounded as ZðF�Þ ! 0: So
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km�
i 	 m�

j k
	qwðkm�

i 	 m�
j ky þ m�

i Þ can be upper bounded by another positive
polynomial function of y with constant coefficients. Moreover, by Lemma 1, we have

km�
i 	 m�

j k
1þqðli

maxÞ
	c1pOðZ	c0

1 Þ,

km�
i 	 m�

j k
c2 ðli

maxÞ
	nc2

XOðZ	c2 Þ,

where c01 ¼ ðq þ 1Þ _ ðc1=nÞ:
According to these results, we have from Eq. (51) thatZ

Di

Piðxjf
�
i Þdmp

Z
Bi

1

Zc0
1ðF�Þ

w1ðyÞ e
	r0ð1=Zc2 ðF�ÞÞkykc2

dm0

¼

Z
Bi

1

Zc0
1

w1ðyÞ e
	r0ð1=Zc2 Þkykc2

dm0, ð52Þ

where Bi ¼ fy : kykXbig; r0 is another positive number, and w1ðyÞ is a positive
polynomial function of y with constant coefficients.

Furthermore, we let

FiðZÞ ¼
Z
Bi

PðyjZÞdy; PðyjZÞ ¼
1

Zc0
1

w1ðyÞ e
	r0ð1=Zc2 Þkykc2

and consider the limit of FiðZÞ=Zp as Z tends to zero.
For each y 2 Bi; we have

lim
Z!0

PðyjZÞ
Zp

¼ w1ðyÞ lim
Z!0

1

Zðc
0
1
þpÞ

e	r0ð1=Zc2 Þkykc2

¼ w1ðyÞ lim
z¼1

Z!1

zðc
0
1
þpÞ

ezc2r0kykc2

¼ 0,

uniformly in Bi; which leads to

lim
Z!0

F iðZÞ
Zp

¼ lim
Z!0

Z
Bi

PðyjZÞ
Zp

dm0

¼

Z
Bi

lim
Z!0

PðyjZÞ
Zp

dm0

¼ 0

and thus FiðZÞ ¼ oðZpÞ: It further follows from Eq. (52) that

sup
ZðF�Þ¼Z

Z
Di

Piðxjf
�
i Þdm ¼ oðZpÞ. (53)

Similarly, we can also prove:

sup
ZðF�Þ¼Z

Z
Dj

Pjðxjf
�
j Þdm ¼ oðZpÞ.



As a result, we have

f ijðZÞ ¼ sup
ZðF�Þ¼Z

eijðF�Þ

p sup
ZðF�Þ¼Z

a�j

Z
Dj

Pjðxjf
�
j Þdm þ a�i

Z
Di

Piðxjf
�
i Þdm

 !

p sup
ZðF�Þ¼Z

Z
Dj

Pjðxjf
�
j Þdx þ sup

ZðF�Þ¼Z

Z
Di

Piðxjf
�
i ÞdmÞ

¼ oðZpÞ.

Thus, we have

f ðZÞpmax
ij

f ijðZÞ ¼ oðZpÞ. (54)

Moreover, because

lim
Z!0

f e
ðZÞ

Zp
¼ lim

Z!0

f ðZÞ

Z
p
e

� �e

¼ 0,

we finally have f e
ðZÞ ¼ oðZpÞ and thus f e

ðZðF�ÞÞ ¼ oðZpðF�ÞÞ: &
theEMapplDHRPoiBTD-RalST.mplekarican8187.d]T’iSTDfiTDfiH-klSTDwi[R33–wi[R4+i[R[6]dSkGHRK.dSHHCD-RLange,dSHH3zDTRD.B.dSfiTzDd]Tbin,dSfiz.DHRThedSfi.zGDfiRSoEdSfiTWDkRalW]T’iYdSfi.zm(n,dSfiWmNPaR�en985alW]cturafi.TD-RanddWapplSHfi.fizHDHRDHRthedSHedSfiWm5Rw:dSfiWmBthm,dSfiz-DTPX-Rw(cedSt. Si
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