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On the other hand, the Robust Gaussian processes (RGPs) [7–9]
have been suggested to overcome the second problem. In conven-
tional Gaussian processes, the noises are assumed to be also Gaus-
sian. Under this assumption, the latent function can be integrated
out analytically, and the marginal likelihood can be calculated
explicitly. However, Gaussian distribution is not heavy-tailed,
which means it is sensitive to outliers. In [8,9], student-t distribu-
tion or Laplace distribution is utilized to model the noise so that



Fig. 3. Illustrations of two mixture of experts architectures. Here, xi denotes i-th
input, yi denotes i-th output, and the latent variable zi represents the expert index
corresponding to i-th observation. Left: the discriminative mixture of experts
model. Right: the generative mixture of experts model.

Fig. 4. Illustrations of two kinds of mixture of Gaussian processes. Note that the
outputs y1; y2; � � � ; yn are no longer independent. Here, xi denotes i-th input, yi
denotes i-th output, and the latent variable zi represents the expert index
corresponding to i-th sample. Note that the samples are not identically indepen-
dently distributed in these models. Left: the discriminative mixture of Gaussian
processes. Right: the generative mixture of Gaussian processes.
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the modified Gaussian process becomes robust. However, this
robust Gaussian process becomes much more complicated than
the conventional Gaussian process because its exact solving pro-
cess of the parameters via Maximum likelihood (ML) is intractable.
Therefore, certain approximate mechanisms should be adopted
into the ML learning of the parameters such as Expectation Propa-
gation (EP) [10], Laplace approximation [11], Variational Bayesian
(VB) [12] and so on.

In practical applications, it is common that the data source is
non-stationary, while there exist outliers at the same time, due
to technical reasons or some factors beyond our control. Thus it
is vital to develop a regression model that is not only able to model
non-stationary data but also robust to outliers. In this paper, by
combining the ideas of MGP and RGP together, we propose a novel
model: Mixture of Robust Gaussian Processes (MRGP), which
inherits the advantages of both MGP and RGP to solve the multi-
model data and outlier-sensitive problems. Moreover, we design
a hard-cut EM algorithm with variational bounding approximation
for the parameter learning of MRGP. It is demonstrated by the
experimental results on both synthetic and real-world datasets
that our proposed MRGP model with the hard-cut EM algorithm
is much more effective and robust than the competitive nonlinear
regression models.

The contributions of this paper are summarized as follows:

� We establish a model that is both robust to outliers and able to
model non-stationary data, which overcomes the problems of
traditional Gaussian processes simultaneously.

� We develop an effective learning algorithm for the proposed
model based on the variational bounding technique.

� We conduct extensive experiments on various datasets to com-
pare common non-linear regression techniques in the presence
of outliers.

The rest of this paper is organized as follows. In Section 2, we
review related works on MGP, approximate inference in the train-
ing of GP, as well as the robust modeling. Then we introduce the GP
and MGP models in Section 3. The MRGP model and its hard-cut
EM algorithm are presented in Section 4. We summarize the exper-
imental results on both synthetic and real-world datasets in Sec-
tion 5. Finally, we conclude this paper in Section 6.
2. Related works

2.1. Mixture of Gaussian processes and learning algorithms

The mixture of experts (ME) was originally introduced in [2]
with the idea that the final prediction result is a weighted summa-
tion of the prediction results obtained by certain local experts, and
their weights are calculated by a gating function adaptively. Actu-
ally, this kind of ME architecture is discriminative, as shown in the
left panel of Fig. 3. Tresp [4] adopted the idea of ME to the case of
Gaussian processes and further introduced the mixture of Gaussian
processes with the architecture in a similar way, as shown in the
left panel of Fig. 4. The major difference between ME and MGP is
that the samples of MGP are not independent but correlated, and
the prediction is based on the correlation relationships between
these samples. In the MGP model, both local experts and gating
networks are Gaussian processes. So, we can utilize an MGP to
model any general conditional probability density and address
the input-dependent bandwidth problem of a stochastic process.
The MGP model is further extended to the Dirichlet process based
infinite mixture of Gaussian processes in [13].

From an alternative view of ME [3], the ME architecture can be
fully generative and uses the posterior responsibilities from a mix-
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ture distribution as the gating network, as shown in the right panel
of Fig. 3. Based on this architecture, an infinite mixture of Gaussian
processes model [6] was also developed. In fact, the generative
finite mixture of Gaussian processes has been investigated exten-
sively in recent years [14–18], and the corresponding probabilistic
graphical model is shown in Fig. 4. It is clear that the MGP model is
generative in the sense that for each sample xi, we assume there is
a latent variable zi such that ðxi; yiÞ is generated from the zi-th
component.

To date, there are three major approaches to parameter learning
of the mixture model: EM algorithm [19,20], variational Bayesian
inference [21], and MCMC [22]. As a stochastic simulation method,
MCMC, or more precisely Gibbs sampling method [23] has been
successfully applied in MGP [13,6]. However, its time consumption
can be prohibitively large if you want to achieve accurate results
on a large dataset. Variational Bayesian inference is efficient, but
the conditional independent assumption sometimes leads to
unsatisfactory results. Nevertheless, variational Bayesian inference
has already been employed for the parameter learning of MGP
[24,25]. The EM algorithm is a general framework for parameter
estimation from incomplete data, which is both effective and effi-
cient. When we use the EM algorithm to estimate the parameters
of MGP, the main challenge is that there are exponentially many
summations in the Q-function because the samples are not inde-
pendent. To overcome this difficulty, several approximate EM
methods have been proposed [14,26,15]. Certainly, it is a good
way to combine these three methods to design new learning algo-
rithms. For example, an MCMC-EM algorithm was already pro-
posed to approximate the Q-function via MCMC sampling
[17,18]. Moreover, the MCMC-EM algorithm can be extended to
more general models such as the two-layer mixture of Gaussian
processes [27] for functional data analysis.





assumed to be zero for simplicity, while the covariance C is deter-
mined by x. Given a covariance function cð�; �; hÞ parameterized by
h, then Cij ¼ cðxi; xj; hÞ.
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and then get the final prediction result by

ŷ ¼
XK
k¼1

pðz� ¼ kÞŷðkÞ;

where ŷðkÞ is assumed to be the prediction result of the k-th Gaus-
sian process at x� given by Eq. (1).

4. The proposed mixture of robust Gaussian processes

4.1. Model formulation

Although the mixture of Gaussian processes is quite effective to
model non-stationary temporal data which has a multi-model
structure, it is still sensitive to outlier and thus not so robust in
practical applications. In order to overcome this problem, we pro-
pose a mixture of robust Gaussian processes in which the noises of
each component Gaussian process are assumed to be heavy-tail
distributions instead of Gaussian ones. Here, we mainly consider
Laplace noise and student-t noise. For a Laplace noise, the corre-
sponding likelihood term takes the following form:

pðyijf i; cÞ ¼
1
2c

exp � jyi � f ij
c

� �
:

where c is the dispersion parameter. For a student-t noise, the like-
lihood term is given by

pðyijf i; cÞ ¼
Cðcþ1

2 Þ
Cðc2Þ

1ffiffiffiffiffifficpp 1þ ðyi � f iÞ2
c

 !�cþ1
2

;

where Cð�Þ is the Gamma function and c is now the degree of free-
dom. The mixture of robust Gaussian processes can be defined in
the same way as the mixture of Gaussian processes in Section 3.2
except that the probability density function of each noise is that
of Laplace or student-t. Although the formal modification seems
minor, it makes the analysis far more challenging because ykjxk is
no longer Gaussian. In fact, the marginal likelihood of the k-th com-
ponent Gaussian process, i.e., the conditional probability of yk with
respect to xk, is

pðykjxk; hk; ckÞ ¼
Z

pðykjfk; ckÞpðfkjxk; hkÞdfk: ð3Þ

The main difficulty arises from the intractable integral in
pðykjxk; hk; ckÞ. On one hand, in the M-step, the updating of
fhk; ckg becomes difficult because pðykjxk; hk; ckÞ does not have a
closed-form expression. On the other hand, in the E-step, the allo-
cation of zi involves the calculation of pðyijxi; hk; ckÞ that is also
intractable. Instead of calculating the marginal likelihood explic-
itly, we employ a variational bounding method to calculate the
marginal likelihood approximately. Moreover, we need the poste-
rior fk of each component Gaussian process in the prediction stage.
Since the noises are non-Gaussian, ½yk; f �� is not Gaussian but ½fk; f ��
is still Gaussian and we can predict f � by conditioning on fk. As we
will see, this approximate marginal likelihood can lead to an
approximate posterior at the same time.

4.2. Variational approximation of marginal likelihood

For ease of notation, we omit the subscript k in marginal likeli-
hood and consider one single Gaussian process temporarily, since
we learn each Gaussian process expert separately in the M-step.
The variational bounding method introduced here has been used
in large scale linear models [35], image processing [36] and Gaus-
sian processes [50], but there are no complete derivations for the
case of robust Gaussian processes to the best of our knowledge.
For completeness, we give the strict derivations of the variational
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bounding approximation results for the marginal likelihood of
robust Gaussian processes in detail, which are summarized in the
following theorem.

Theorem 1. Let tðs; cÞ be a super-Gaussian probabilistic density
function centered at 0; gðxÞ ¼ log tð ffiffiffi

x
p Þ and hðkÞ ¼ 2g�ð�1=ð2kÞÞ

where g� is the Fenchel-Legendre dual function of g. Furthermore, let

k ¼

k1
k2;

..

.

kn

2
66664

3
77775; K ¼

k1 0 � � � 0
0 k2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � kn

2
66664

3
77775; hðkÞ ¼

Xn
i¼1

hðkiÞ;

we have the following theoretical results:

(a) The marginal likelihood pðyjx; h; cÞ takes the following varia-
tional form
pðyjx; h; cÞ ¼ jCj�1=2 exp � 1
2min
k�0;f

uðk; fÞ
� �

;

uðk; fÞ ¼ hðkÞ þ log jAj þ ðy � fÞTK�1ðy � fÞ þ fC�1f:
(b) Given v ¼ rk�1 log jAj ¼ diagððC�1 þ K�1Þ�1Þ,
/vðk; fÞ ¼
Xn
i¼1

v i þ ðyi � f iÞ2
ki

þ hðkiÞ þ fC�1f � g�
1ðvÞ

is an upper bound for uðk; fÞ.

(c) /vðk; fÞ can be further optimized by the alternative minimiza-

tion of k and fÞ: the minimum of k is

ki ¼ �ð2g0ðv i þ ðyi � f iÞ2ÞÞ
�1

when f is fixed, while the mini-
mum of f can be obtained by the gradient descent algorithm
when k is fixed.
Proof. We prove the three results one by one. Since tðs; cÞ is a
super-Gaussian [34] probabilistic density function (for example,
Laplace distribution or Student-t distribution) centered at
0; log tðs; cÞ is symmetric and monotone decreasing with respect
to s. Furthermore,

ffiffi
s

p ! log tðs; cÞ is convex whenever s P 0, so
gðxÞ ¼ log tð ffiffiffi

x
p Þ is convex and monotone decreasing. According to

Fenchel-Legendre duality, we have

gðxÞ ¼ sup
w

ðxw� g�ðwÞÞ;

where g�ðwÞ ¼ supxP0ðxw� gðxÞÞ is the dual function of gðxÞ.
Because gðxÞ is decreasing, the domain of g�ðwÞmust be bR�. There-
fore, it is equivalent to have

gðxÞ ¼ sup
w60

ðxw� g�ðwÞÞ ¼ sup
wP0

ð�xw� g�ð�wÞÞ:

By taking k ¼ 1=ð2wÞ;hðkÞ ¼ 2g�ð�1=ð2kÞÞ, we have

log tðs; cÞ ¼ gðs2Þ ¼ sup
wP0

� s2

2k
� g�ð� 1

2k
Þ

� �

¼ sup
kP0

� s2

2k
� 1
2
hðkÞ

� �
: ð4Þ

Since pðyjf; cÞ ¼Qn
i¼1pðyijf i; cÞ is decomposable with respect to

individual observations, we can consider each individual term sep-
arately. Putting pðyijf i; cÞ ¼ pðf i � yij0; cÞ ¼ tðf i � yiÞ into Eq. (4), we
obtain a variational representation of log pðyijf i; cÞ as follows:

logpðyijf i; cÞ ¼ sup
kiP0

�ðyi � f iÞ2
2ki

� 1
2
hðkiÞ

 !
:



Consequently, we have

logpðyjf; cÞ ¼ sup
kP0

�1
2
ðy � fÞTK�1ðy � fÞ � 1

2
hðkÞ

� �
:

With this representation, we further have pðyjx; h; cÞ:
pðyjx; h; cÞ ¼ R pðyjf; cÞpðfjx; hÞdf

¼ R exp log pðyjf; cÞð ÞNðfj0;CÞdf
¼ max

kP0
exp � 1

2 hðkÞ
� � R

exp � 1
2 ðy � fÞK�1ðy � fÞ� �

Nðfj0;CÞdf:
ð5Þ

The term inside the integral is actually a lower bound of the
posterior of f. By completing the squares, we can find out that
the approximate posterior of f given observations x; y and param-

eter k is Gaussian Nðh;A�1Þ where

A ¼ K�1 þ C�1;h ¼ A�1K�1y: ð6Þ
The integral in Eq. (5) can be calculated explicitly, but we seek a

variational form for further purpose. Given h and A defined above,
we have

exp � 1
2 ðy � fÞK�1ðy � fÞ� �

Nðfj0;CÞR
exp � 1

2 ðy � fÞK�1ðy � fÞ� �
Nðfj0;CÞdf

¼ jAj1=2
ð2pÞn=2

exp �1
2
ðf � hÞTAðf � hÞ

� �
:

Taking maximum with respect to f, we further haveR
exp � 1

2 ðy � fÞK�1ðy � fÞ� �
Nðfj0;CÞdf

¼ ð2pÞn=2
jAj1=2 max

f
exp � 1

2 ðy � fÞK�1ðy � fÞ� �
Nðfj0;CÞ

¼ 1
jACj1=2 max

f
exp � 1

2 ðy � fÞK�1ðy � fÞ � 1
2 f

TC�1f
	 


:

ð7Þ

By combining Eq. (5) and (7), we can rewrite pðyjx; h; cÞ into a
variational form with respect to f and k as

pðyjx; h; cÞ ¼ jCj�1=2 exp � 1
2min
k�0;f

uðk; fÞ
� �

;

uðk; fÞ ¼ hðkÞ þ log jAj þ ðy � fÞTK�1ðy � fÞ þ fC�1f:

This proves part (a) of Theorem 1.
It follows from (a) that the problem of calculating marginal

likelihood pðyjx; h; cÞ boils down to solve the optimization problem
mink�0;fuðk; fÞ. The main difficulty lies in the term log jAj that
depends on k. We use a majorization-minimization method to

tackle this problem. As shown in [36], let k�1 ¼ ½k�1
1 ; k�2

2 ; � � � ; k�1
n �T,

then k�1 ! � log jAj is a convex function. Again by Fenchel-
Legendre transformation, we obtain

log jAj ¼ minvP0 vTk�1 � g�1ðvÞ
	 


, where g�1 is the dual function.

For a fixed k�1, the equality holds when

v ¼ rk�1 log jAj ¼ diagððC�1 þ K�1Þ�1Þ: ð8Þ
For a general v P 0; log jAj 6 vTk�1 � g�

1ðvÞ, and we thus have

/vðk; fÞ ¼ vTk�1 � g�
1ðvÞ þ hðkÞ þ ðy � fÞTK�1ðy � fÞ þ fC�1f

¼
Xn
i¼1

v iþðyi�f iÞ2
ki

þ hðkiÞ þ fC�1f � g�
1ðvÞ;

which is an upper bound of uðk; fÞ. This proves part (b) of
Theorem 1.

We further employ the double loop optimization method to
optimize uðk; fÞ, i:e:, to get a tighter bound instead. In the inner
loop, we minimize the upper bound uvðk; fÞ given v. While in the
outer loop, we update current v to achieve tighter bounds. In the
inner loop there are two variables, and we solve this optimization
problem with the two variables alternatively. For the k part,
according to the definition of hðkiÞ, it is easy to get
min
ki�0

v iþðyi�f iÞ2
ki

þ hðkiÞ ¼ min
ki�0

2 v iþðyi�f iÞ2
2ki

þ 2g� � 1
2ki

	 
	 

¼ �2max

ki�0
ð� v iþðyi�f iÞ2

2ki
� g�ð�2kiÞÞ

¼ �2gðv i þ ðyi � f iÞ2Þ ¼ �2 log t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v i þ ðyi � f iÞ2

q� �

¼ �2 log p yij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v i þ ðyi � f iÞ2

q
þ yi; c

� �
:

At first glance, this result is a little surprising since we do not
need to know the explicit form of h. By the optimal condition,
when f i is fixed, the optimal value is obtain when

ki ¼ �ð2g0ðv i þ ðyi � f iÞ2ÞÞ
�1
. After updating k, the objective func-

tion becomes

fTC�1f � 2
Xn
i¼1

logp yij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v i þ ðyi � f iÞ2

q
þ yi; c

� �
;

which can be easily solved using the gradient descent algorithm.
This process is very similar to finding the posterior mode of f, the
only difference here is the likelihood term is smoothed by v.

To calculate approximate marginal likelihood pðyjx; h; cÞ accord-
ing to Theorem 1 in practice, we begin to iteratively update k and f
in the inner loop until convergence. Then, we turn to the outer loop
and update v according to Eq. (8) to get a new upper bound for
uðk; fÞ. The entire optimization process is guaranteed to converge
due to the convexity [35,36]. After the process has converged, we
also obtain an approximation for the posterior of f given y as indi-
cated in Eq. (6). The approximate marginal likelihood in Theorem 1
involves optimization procedure and has no explicit formula, so it
is still intractable to calculate gradients with respect to h and c.
However, part (c) of Theorem 1 gives an f, which is an estimation
of latent function values without noises. Therefore we can approx-
imate the gradients by taking derivates of the surrogate log-
likelihood:

�1
2
log jCj � 1

2
fTC�1f þ

Xn
i¼1

log tðyi � f i; cÞ:
4.3. The hard-cut EM algorithm

We further establish the hard-cut EM algorithm for mixtures of



given in Section 4.2 in the EM algorithm. With the hard-cut version
of z, let Ik ¼ fijzi ¼ kg, then the Q-function is given by

QðHÞ ¼
XK
k¼1

X
i2Ik

ðlogpk þ logpðxi;lk;rkÞÞ þ
XK
k¼1

log pðykjxk; hk; ckÞ:

The M-step aims to maximize QðHÞ with respect to all the

parameters. For fpk;lk;r.1806 121.833 646.2424 Tm
(k)Tj
.42902 8648.4562 Tm
(k)Tj
/F9 1 Tf
8.1853 0 0 7.9702 105.9874 38.4534 Tm
(p)Tjg6 121.833 646.2424 Tm
(k)Tj
.429(in)188.4523 2 TDKy

58isk





Table 2
The average RMSEs of our MRGP and competitive regression methods on 12 synthetic datasets over 10 trials, where the outlier level m is fixed to be 2 and the outlier ratio g varies
in f0:05;0:10;0:15g, and the best results are in bold.

Outlier ratio Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Low (g ¼ 0:05) GP 0.5400 0.4520 0.4493 0.5846 0.4924 0.6082 0.5362 0.7158 0.3761 0.5596 0.5992 0.6276
GP (TS) 0.5352 0.3326 0.3664 1.1176 0.3421 0.4792 0.8739 0.4638 0.2924 0.5734 0.3223 0.4397
SVM 0.6340 0.5723 0.6128 0.8040 0.5132 0.7262 0.6830 1.0649 0.8271 0.9303 0.9521 0.9675

SVM (TS) 0.6192 0.7468 0.6329 0.9790 0.5597 0.9149 0.7302 1.1217 0.7871 0.9526 0.8941 1.2704
FNN 0.7206 0.7867 0.9111 0.9280 0.8937 1.0610 0.7764 1.0618 0.8158 0.9775 0.7570 1.0105

FNN (TS) 0.6789 0.5527 0.5610 0.8304 0.4839 0.5518 0.7351 0.8649 0.5026 0.8682 1.0765 0.4729
RGP (Laplace) 0.2951 0.3232 0.3511 0.3196 0.3409 0.4682 0.2842 0.4228 0.2573 0.3576 0.2232 0.4124
RGP (Student-t) 0.2673 0.3404 0.3416 0.3175 0.4300 0.4944 0.3128 0.4479 0.2231 0.3732 0.2203 0.3696

MGP 0.4256 0.4291 0.5794 0.5251 0.3841 0.5765 0.4980 0.8658 0.3597 0.5148 0.6279 0.5949
MGP (TS) 0.5082 0.3050 0.2618 0.9272 0.2378 0.3934 0.4747 0.4019 0.2844 0.3960 0.2344 0.3426

MRGP (Laplace) 0.2337 0.3067 0.2749 0.2254 0.1983 0.3638 0.2639 0.3806 0.2259 0.2873 0.1907 0.3180
MRGP (Student-t) 0.2423 0.3042 0.2579 0.2175 0.1913 0.3521 0.2448 0.3346 0.1716 0.2839 0.1843 0.3498

Medium (g ¼ 0:10) GP 0.7016 0.6503 0.6376 0.7378 0.5475 0.7241 0.4490 0.6233 0.4854 0.6545 0.5435 0.6198
GP (TS) 0.3921 0.4050 0.4421 1.1092 0.9433 0.5273 0.7827 0.5054 0.3799 0.5747 0.3236 0.4574
SVM 0.5497 0.6017 0.6469 0.7451 0.5128 0.8483 0.6839 1.0515 0.8651 0.9253 0.9332 1.2003

SVM (TS) 0.6559 0.7621 0.6909 0.9613 0.6052 0.8823 0.7979 1.0965 0.7544 0.9060 0.9030 1.0341
FNN 0.7998 0.8114 0.9290 1.0415 0.9035 1.0000 0.6563 1.0923 0.8244 0.9356 1.0852 1.0427

FNN (TS) 0.5656 0.8313 0.4430 1.2403 0.6054 0.5850 0.3775 1.3183 0.8635 0.6244 0.5952 1.1725
RGP (Laplace) 0.2706 0.3657 0.3815 0.3620 0.3551 0.4985 0.3066 0.4280 0.3028 0.4442 0.2491 0.4260
RGP (Student-t) 0.2772 0.3483 0.3810 0.3322 0.4151 0.5076 0.3081 0.4983 0.2797 0.3729 0.2510 0.3718

MGP 0.6027 0.6286 0.5859 0.7606 0.5319 0.6762 0.4662 0.5556 0.5236 0.7324 0.5124 0.6475
MGP (TS) 0.3319 0.3633 0.3734 1.0008 0.4990 0.4814 0.3042 0.3754 0.3088 0.3588 0.3394 0.4319

MRGP (Laplace) 0.2345 0.3318 0.2847 0.3005 0.2256 0.3876 0.2679 0.3565 0.2276 0.3295 0.2275 0.3517
MRGP (Student-t) 0.2386 0.3066 0.2487 0.2206 0.1905 0.3519 0.2557 0.3334 0.1756 0.2856 0.1816 0.3483

High (g ¼ 0:15) GP 0.7638 0.7572 0.6772 0.5284 0.6902 0.7660 0.6386 0.9249 0.6012 0.6628 0.6867 0.7110
GP (TS) 0.6405 0.4680 0.5191 0.9625 0.4749 0.5387 0.4655 0.5018 0.4118 0.5728 0.4870 0.5194
SVM 0.6512 0.7286 0.6013 0.7446 0.5717 0.9725 0.6919 1.0509 0.7539 0.9679 0.9028 0.8428

SVM (TS) 0.6774 0.5645 0.6914 1.0055 0.5044 0.7471 0.7239 1.0886 0.7939 0.9586 0.9126 1.0185
FNN 0.7828 1.0117 1.0115 0.9070 0.8758 0.8234 0.8956 1.2199 0.7831 1.0207 1.1145 1.3124

FNN (TS) 0.6940 0.8043 1.3943 0.9322 0.6360 0.5590 0.4354 1.0600 0.7791 0.7547 0.6825 0.7442
RGP (Laplace) 0.4906 0.4616 0.4324 0.3582 0.5282 0.5017 0.3732 0.4730 0.3446 0.5010 0.3987 0.4406
RGP (Student-t) 0.3534 0.3631 0.3600 0.3154 0.4480 0.5281 0.2961 0.4591 0.2516 0.3972 0.2571 0.4034

MGP 0.8257 0.7689 0.6554 0.7423 0.6015 0.7788 0.6346 0.9758 0.6540 0.6620 0.7462 0.7363
MGP (TS) 0.6007 0.4221 0.8251 0.8401 0.4597 0.4720 0.3438 0.4039 0.3982 0.6399 0.6649 0.4876

MRGP (Laplace) 0.2844 0.3947 0.3573 0.3532 0.2459 0.4042 0.3034 0.3751 0.2480 0.4402 0.3555 0.3943
MRGP (Student-t) 0.2412 0.3192 0.2664 0.2130 0.3526 0.3531 0.2504 0.3815 0.1733 0.3892 0.1814 0.4388

Table 3
The average RMSEs of our MRGP and competitive regression methods on 12 synthetic datasets over 10 trials, where the outlier level m is fixed to be 0:10 and the outlier ratio g
varies in f1:5;2:5g, and the best results are in bold.

Outlier level Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Low (m ¼ 1:5) GP 0.5815 0.9124 0.5052 0.7265 0.5381 0.6693 0.5401 0.5714 0.4223 0.5323 0.4586 0.6529
GP (TS) 0.3554 0.4678 0.4806 1.1282 0.4302 0.9689 0.9045 0.5263 0.3263 0.5163 0.4693 0.4512
SVM 0.5843 0.7907 0.6400 0.8825 0.5117 0.8211 0.6768 1.0485 0.8682 0.9242 0.7092 1.0971

SVM (TS) 0.6052 0.7901 0.6600 1.0219 0.5726 0.9329 0.7735 1.0686 0.8484 0.9251 0.9031 1.2059
FNN 0.7795 1.0624 1.0836 0.8211 0.8548 1.0864 0.8595 0.8541 0.9031 0.9287 1.0611 0.9513

FNN (TS) 0.6085 0.6892 0.8602 0.8547 0.5002 0.6120 0.5915 1.1037 0.7963 0.9556 1.1165 0.7909
RGP (Laplace) 0.2772 0.3752 0.3822 0.3329 0.3503 0.4865 0.3332 0.4338 0.2727 0.3532 0.2407 0.4248
RGP (Student-t) 0.3470 0.3427 0.3780 0.3242 0.4209 0.4951 0.2969 0.4253 0.2226 0.3621 0.2427 0.3807

MGP 0.4734 0.8827 0.5617 0.6385 0.3800 0.6549 0.4887 0.5394 0.3870 0.5980 0.4386 0.6850
MGP (TS) 0.3577 0.4963 0.5293 1.0362 0.3679 1.1550 0.6118 0.4723 0.2817 0.4068 0.4312 0.4815

MRGP (Laplace) 0.2454 0.3295 0.3000 0.2994 0.2096 0.3960 0.2641 0.3738 0.2011 0.3012 0.2265 0.3562
MRGP (Student-t) 0.2308 0.3069 0.2486 0.2182 0.1911 0.3568 0.2530 0.3366 0.1738 0.2889 0.1766 0.3521

High (m ¼ 2:5) GP 0.8333 0.8952 0.6695 0.9217 0.7114 0.8344 0.6561 0.9250 0.5149 0.7747 0.6471 0.7967
GP (TS) 0.3935 0.3776 0.4518 1.1000 0.3655 0.6355 0.8009 0.4960 0.3593 0.6713 0.3841 0.5105
SVM 0.5737 0.6755 0.6331 0.8132 0.5771 0.7490 0.6864 1.0585 0.8207 0.8996 0.8179 1.1225

SVM (TS) 0.5372 0.7552 0.5887 0.9769 0.5172 0.9883 0.8181 1.1089 0.8510 0.9610 0.8921 1.0987
FNN 1.3731 0.8585 1.0517 1.0505 0.9015 2.8179 0.7714 1.2513 0.8520 0.8899 0.9924 1.2133

FNN (TS) 0.5754 0.8092 1.0313 1.0387 0.5670 0.7117 0.6830 1.0960 0.8531 0.6736 1.1491 0.8296
RGP (Laplace) 0.2702 0.3658 0.3746 0.4047 0.5446 0.4743 0.3438 0.4437 0.3086 0.4154 0.2936 0.4544
RGP (Student-t) 0.3427 0.3486 0.4267 0.3153 0.2953 0.5094 0.2962 0.4442 0.2380 0.3867 0.2554 0.4213

MGP 0.7807 0.9288 0.7934 0.9149 0.7557 0.8304 0.6083 1.1960 0.7060 0.8164 0.7260 0.6668
MGP (TS) 0.3843 0.3946 0.3859 0.9135 0.2755 0.6007 0.3322 0.3667 0.3149 0.7110 0.3192 0.4317

MRGP (Laplace) 0.2200 0.3391 0.2865 0.3684 0.3670 0.3947 0.3311 0.3903 0.2251 0.3505 0.2504 0.3585
MRGP (Student-t) 0.2528 0.3108 0.2502 0.2229 0.1908 0.3515 0.3193 0.3358 0.1735 0.2841 0.1768 0.3640
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liers. Finally, our proposed methods obtain the best results in
almost all cases, which demonstrates the effectiveness of the pro-
posed models. We can observe that MRGP (Student-t) outperforms
233
MRGP (Laplace) almost all, but there are a few cases that MRGP
(Laplace) outperforms MRGP (Student-t). Therefore, we can not
conclude which model is generally better, and this may depend



2
(Student-
on the dataset. Empirically, we find out that when the outlier ratio
is relatively low, MRGP (Laplace) and MRGP (Student-t) lead to
similar results, but as the outlier ratio increases, MRGP(Student-
t) generally becomes better than MRGP (Laplace).

The hard-cut EM algorithm is an approximation of the original
EM algorithm. Specifically, in the E-step, the posterior distributions

of latent variables fzigNi¼1 are approximated by deterministic hard-
cut allocations. Such an approximation may cause errors in the
learning process. We evaluate the quality of approximation empir-
ically. Since the original EM algorithm for MGP consists of expo-
nentially many summation terms and is prohibitively time-
consuming, it is intractable to run the original EM algorithm and
compare the performances with the results of the hard-cut EM
algorithm. Nevertheless, we can calculate the Classification Accu-
racy Rates (CARs) to validate the effectiveness of the hard-cut EM
algorithm. In synthetic datasets, we have the ground-truth compo-
nent labels, so we can compare the estimated component labels

fẑigNi¼1 by hard-cut EM algorithm with the ground-truth labels

fzigNi¼1. Formally, the CAR is defined as

CAR ¼ max
n2PK

1
N

XN
i¼1

bIðzi ¼ nðz^ iÞÞ:

Here, PK denotes the set of K-permutations, and the permuta-
tion n is employed to account for the label switching problem. Intu-
itively, CAR measures how well we cluster the observations into
correct components. The results are shown in Table 4. Since MGP
is also learned by the hard-cit EM algorithm, we also include the
CARs of MGP for comparison. From this table, we find that in terms
of CARs, the hard-cut EM algorithm based MGP andMRGPmethods
perform well on all the synthetic datasets, under all settings. This
observation demonstrates that the hard-cut EM algorithm is effec-
tive and the quality of approximation is satisfying. We also find the
CARs are relatively high on S5;S11 and relatively low on S6;S12.
This observation coincides with the fact that S5;S11 are mildly
overlapped thus easier to cluster the samples, while S6;S12 are
heavily overlapped thus harder to cluster the observations cor-
rectly. Besides, we find that on S6 and S12, the classification accu-
racy rates of MGP drop significantly (97:0% ! 95:3% and
98:2% ! 96:8%) as we increase the outlier ratio and outlier level
from g ¼ 0:05; m ¼ 2:0 to g ¼ 0:10; m ¼ 2:5. On the other hand, the
classification accuracy rates of MRGP (Laplace) and MRGP
(Student-t) are not sensitive to the outlier ratios and outlier levels.
This further demonstrates that MRGP models are more robust than
the MGP model.

For further comparison, the posterior curves of these methods

https://www.cs.toronto.edu/delve/data/boston/bostonDetail.html
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+Five+Chinese+Cities
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ber of components in f2;3;4;5g respectively. For each dataset, we
run each method for 10 times, and list the average RMSE (together
with standard deviations) and running time in Table 5. From this
table, we can find out MRGP (Laplace) and MRGP (Student-t) out-
perform the other methods on the prediction performance. Specif-
ically, on Boston housing dataset MRGP (Student-t) with K ¼ 2
achieves the lowest RMSE, and MRGP (Laplace) with K ¼ 3 obtains
the best results on Electricity and Weather datasets. This indicates
both MRGP (Laplace) and MRGP (Student-t) have their own advan-
tages and it is generally difficult to determine which model is more
suitable for the task in hand. The choice of K is also subtle. From
Table 5, we can see K influence the prediction performances
severely. The choice of K also depends on the dataset. On Electricity
and Weather datasets, 2 components are far from enough to fit the
data, while too many components (i:e:,K ¼ 5) also lead to large
errors due to over-fitting. On the Boston housing dataset, increas-
ing K almost always leads to larger errors. One possible explana-
tion is the inputs lie in a 13-dimensional space, but we only have
250 training samples. Therefore, dividing these samples to several
components will cause difficulty for learning in each individual
component since the samples are too sparse in the 13-
dimensional space. We can observe that the proper number of
components for different mixture models are almost the same:
K ¼ 2 for Boston housing dataset and K ¼ 3 for Electricity and
Weather dataset. Thus, how to set K relies heavily on the dataset
rather than the mixture model. Finally, we can also find out that
our proposed methods are much more time-consuming than the
other methods because. Therefore, the proposed methods may
not be well-suited for real-time tasks.
6. Conclusion and discussion

We have established the mixture of robust Gaussian processes
(MRGP) by adopting Laplace or student-t noises with heavy-
tailed property into Gaussian processes. In such a way, the MRGP
model has the ability to model non-stationary temporal data effec-
tively and also to be insensitive to outliers. The hard-cut EM algo-
rithm is further developed for the MRGPmodel with the help of the
variational bounding method to make the marginal likelihood of
the robust Gaussian process be tractable in the ML solving process.
It is demonstrated by the experimental results on both synthetic
and real-world datasets that our proposed MRGP methods are
much more effective and robust than the competitive nonlinear
regression models.

How to set the number of components adaptively in real appli-
cations is an interesting direction. We can further develop auto-
mated model selection methods for the mixture of robust
Gaussian processes. In fact, split-and-merge EM algorithm
[53,54], rival penalized EM algorithm [55], reversible jump MCMC
[56,57], entropy penalty [58–60] and Bayesian Ying-Yang (BYY)
harmony learning [61–65] have been shown to be effective for
the automated mode selection on mixture models. However, these
methods are not so easy to apply to the mixture of Gaussian pro-
cesses since the samples are not independent and highly corre-
lated. A synchronously balancing criterion [66] has been
proposed for model selection of MGP, but its penalty coefficient
is still difficult to determine. The automatic model selection for
the mixture of robust Gaussian processes is certainly a potential
future direction. It is also promising to reduce the computational
cost by introducing inducing points to our proposed model. Using
inducing points [47,67,43] in Gaussian processes can improve the
computational complexity significantly, and the extension to a
mixture of Gaussian processes has been studied in [16]. However,
sparse Gaussian processes usually have lower prediction accuracy,
and how to balance the trade-off between performance and com-
236
putational time generally depends on the particular task in hand.
The extensions of the proposed model to classification task [33]
or state-space model [68–70] is also promising. Finally, further
incorporating domain-specific priors in the model [71] is a poten-
tial direction.
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