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in the 1eld of neural networks have brought out certain good temporal models and
methods to meet this demand. One major method is to incorporate feedback into static
or mapping neural networks, making them recurrent. This leads to the so-called re-
current neural network [13]. In fact, the recurrent neural network contains many types
of neural network, such as Hop1eld network [2] as well as its generalized version
[4], simplex memory neural network [5], continuous-time recurrent neural network [8]
and discrete-time or real-time recurrent neural network [10,15]. Moreover, the recurrent
neural network has been widely applied to temporal information processing, such as
speech recognition, prediction, and system identi1cation and control (e.g., [7,9–11,14]).
However, little progress has been made on theoretical study of the capacity of the

recurrent neural network to learn and memorize spatio-temporal sequences. In literature,
we can only 1nd a theoretic result given by Amari [1] that the memory capacity of
the so-called autoassociative memory model with the sum-of-outer product scheme
on a simple spatio-temporal sequence, is about 0:27n, where n is the number of the
processing neurons. Actually, the autoassociative memory model is just a special form
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Fig. 1. The structure sketch of the time-delay recurrent neural network (TDRNN) with l-step delay feedback.

be fed back to Ii;1. All the input neurons are connected to each processing neuron in
the output layer.
The TDRNN operates in the following way. It starts with a set of initial states (i.e.,

bipolar patterns) X (0); X (1); : : : ; X (l − 1). We assume that the state of the array of
input neurons at the time t is [X (t); X (t − 1); : : : ; X (t − l + 1)]. Then, the output of
the TDRNN at the next time, i.e., X (t + 1) = [x1(t + 1); x i p i p
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Proof. By the function of a TDRNN, N can only produce a spatio-temporal sequence
with its order equal to or less than l, from any set of initial patterns. Thus via any
learning algorithm, N is only possible to memorize a spatio-temporal sequence whose
order is equal to or less than l. Therefore, the condition l¿ k is necessary. The proof
is completed.

Essentially, Theorem 1 gives a match law between a TDRNN and a spatio-temporal
sequence. That is, if the order of a spatio-temporal sequence is equal to or less than the
number of steps of time-delay feedback in a TDRNN, it is possible for the TDRNN
to learn and memorize this spatio-temporal sequence. Otherwise, the TDRNN cannot
learn and memorize this spatio-temporal sequence by any learning algorithm. It is also
clear that the condition l¿ k is not suJcient for memorizing any S by the TDRNN
via a general learning algorithm. However, we will prove that this condition is really
suJcient in certain case in the next section. For simplicity, we will only analyze the
memory capacity of the TDRNN on learning and memorizing bipolar spatio-temporal
sequences in the remainder of this paper. It is certain that the length of a non-periodic
bipolar spatio-temporal sequence S, i.e., m, is certainly 1nite if its order is 1nite.
When spatio-temporal sequences become binary, the following analysis is still true if
the states of the processing neurons become binary.

3. The higher order TDRNNs

We begin with the order of a TDRNN. For the storage of bipolar spatio-temporal
sequences, we use perceptrons as the processing neurons in the network. Then, the input
pattern for each of these perceptrons is just the state of the array of input neurons.
Mathematically, a perceptron becomes of higher order if some higher order terms of
the components of the input pattern are involved in the computation. It is natural to
de1ne the order of a TDRNN as the order of these perceptrons, i.e., the processing
neurons of the TDRNN. For the sake of clarity, we de1ne the higher order perceptron
and its generalized perceptron learning algorithm as follows.
As well-known, a perceptron is a processing unit with a d-dimensional input pattern

X = [x1; x2; : : : ; xd]T ∈Rd and a bipolar output y∈ {−1; 1} via a weight vector W =
[w1; w2; : : : ; wd]T and a threshold value � such that for an input pattern X , the output
y is computed by

y(X ) = T (X |W; �) = Sgn(H (X )) =

{
1 if H (X )¿ 0;

−1 otherwise;
(3)

where

H (X ) =
d∑
i=1

wixi − �:

We consider bipolar input patterns and assume that A;B are two disjoint subsets of a
sample set in {−1; 1}d. Then, (A;B) becomes a learning object of the perceptron, that
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is, the perceptron is expected to implement the following relationship:

T (X |W; �) =
{

1 if X ∈A;

−1 if X ∈B:
(4)

Clearly, if A and B are linearly separable in the d-dimensional Euclidean space, the
learning object (A;B) can be realized by a perceptron via the perceptron learning
algorithm [12] on the sample set A ∪ B, i.e., W and � are modi1ed by the following
learning rule:

KW
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Fig. 3. The structure sketch of the second-order perceptron.

input variables x1; x2; x3, respectively, while the other three weight vectors w(3; {1; 2}),
w(3; {1; 3}), w(3; {2; 3}) are corresponding to the three second terms of the input vari-
ables, i.e., x1x2
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(ii) If d¿ 2, there exists a Boolean function b(X ) on {−1; 1}d which is unable to
be realized by any (d − 1)th order perceptron, i.e., for any (d − 1)th order spread
weight vector Wd−1(d), there exists some X ∈ {−1; 1}d by which

T (Wd−1(d); X ) �= b(X ): (7)

The proof is given in Appendix A.
We now turn to the higher order TDRNN. That is, the TDRNN consists of n higher

order perceptrons as its processing neurons with the same input array in which the nl
input variables are considered independently. If all these perceptrons are of the pth
order (16p6 nl), the TDRNN is de1ned to be of the pth order. In this situation,
we can apply the perceptron learning algorithm to each of these pth order percep-
trons to train its weights and threshold value for learning and memorizing a bipolar
spatio-temporal sequence.
When the TDRNN is of the (nl)th order, that is, the order of each perceptron in

the TDRNN becomes the largest one—the number of components of the input pattern,
we call it the full order TDRNN. Actually, we have the following theorem on the full
order TDRNN for learning and memorizing bipolar spatio-temporal sequences.

Theorem 3. The full order TDRNN of l-step feedbacks is able to learn and memorize
any bipolar spatio-temporal sequence of the order k if k6 l.

Proof. By Theorem 1, it is possible for the full order TDRNN of l-step feedback
to learn and memorize a bipolar spatio-temporal sequence of the order k when k6 l.
Moreover, the network is able to learn and memorize a bipolar spatio-temporal sequence
S :P1P2 · · ·Pm if and only if it is able to realize the recurrent function:

F(Pi; Pi+1; : : : ; Pi+l−1) = Pi+l; i = 1; 2; : : : ; m− l: (8)

In other words, each perceptron (i.e., processing neuron) j(=1; 2; : : : ; n) is able to learn
and memorize the following learning object:

Aj(S) = {X nl(i) :Pi+l; j = 1; i = 1; 2; : : : ; m− l};
Bj(S) = {X nl(i) : Pi+l; j = −1; i = 1; 2; : : : ; m− l};

where

X nl(i) = vec[Pi; Pi+1; : : : ; Pi+l−1] = [PT
i ; P

T
i+1; : : : ; P

T
i+l−1]

T:

According to Theorem 2, the (nl)th order perceptron is able to realize any learning
object (Aj(S); Bj(S)). Thus, each perceptron in the full order TDRNN can realize
its learning object corresponding to the bipolar spatio-temporal sequence. Therefore,
the full order TDRNN of l-step feedback is able to learn and memorize this bipolar
spatio-temporal sequence. The proof is completed.

By Theorem 3, we have found that the condition l¿ k is really suJcient for learn-
ing and memorizing any bipolar spatio-temporal sequence by the full order TDRNN
of l-step feedback. By Theorem 2(ii), we have also found that the condition of the
full order is even necessary for the TDRNN to learn and memorize any bipolar
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spatio-temporal sequence. However, it is hard to implement the full order TDRNN
(or the higher order perceptron) when nl(orp) is large. In fact, the 1rst-order TDRNN
of one-step feedback is already useful for many applications and its implementation is
very easy. Therefore, it is still signi1cant to study the 1rst order TDRNN of one-step
feedback. Obviously, this is Amari’s autoassociative memory model. We will analyze
the memory capacity of this model under the perceptron learning algorithm in the
following section.

4. Memory capacity of the �rst-order TDRNN of one-step feedback

We 1rst give two basic properties of the 1rst-order TDRNN of one-step feedback
on learning and memorizing a bipolar spatio-temporal sequence.

Theorem 4. If P1; P2; : : : ; Pm−1 are linearly independent, the =rst-order TDRNN of
one-step feedback is able to learn and memorize the bipolar spatio-temporal sequence
P1P2 · · ·Pm.

Proof. According to the above de1nition, the 1rst-order TDRNN of one-step feedback
is uniquely de1ned by the weight matrix W and the threshold vector �, where wi;j is
the weight on the feedback line from the processing neuron j to i, �i is the threshold
value of the processing neuron i. So, we need only to prove that there exists such a
set of (W; �) that the network can realize the function:

F(Pi) = Pi+1; i = 1; 2; : : : ; m− 1: (9)

To solve for the weights and the threshold value of the ith processing neuron (a
perceptron) in the network, a solution of Eq. (9) can be found from the following
system of linear equations:



p1;1wi;1 + p1;2wi;2 + · · · + p1; nwi;n + �i = p2; i ;

p2;1wi;1 + p2;2wi;2 + · · · + p2; nwi;n + �i = p3; i ;

· · ·
pm−1;1wi;1 + pm−1;2wi;2 + · · · + pm−1; nwi;n + �i = pm;i;

(10)

where wi;1; wi;2; : : : ; wi;n and �i are the unknown numbers.
Because P1; P2; : : : ; Pm−1 are linearly independent, the rank of the system matrix of

linear equations given by Eq. (10) is just m− 1. Thus, the system of linear equations
has solutions for wi;1; wi;2; : : : ; wi;n; �i. In this way for all the processing neurons, we
certainly have a set of (W; �) that enable the network to realize the function F(Pi) =
Pi+1; i=1; 2; : : : ; m−1. Therefore, the network is able to learn and memorize this bipolar
spatio-temporal sequence. The proof is completed.
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By Theorem 4, we have a suJcient condition on bipolar spatio-temporal sequences
for them to be learned and memorized by the 1rst-order TDRNN of one-step feedback.

Theorem 5. With the =rst-order TDRNN of one-step feedback, we have
(i) If n¿ 2 and m6 4, any simple bipolar spatio-temporal sequence can be learned

and memorized.
(ii) If n¿ 3 and m = 5, there exists a simple bipolar spatio-temporal sequence

which cannot be learned and memorized.

Proof. If n¿ 2, for any simple bipolar spatio-temporal sequence P1P2P3P4, where
Pi ∈ {−1; 1}n, the rank of the matrix

A(P1; P2; P3) =



p1;1 p1;2 · · · p1; n 1

p2;1 p2;2 · · · p2; n 1

p3;1 p3;2 · · · p3; n 1


 (11)

is certainly 3. Then, in a similar way to the proof of Theorem 4 we can prove that
there exists a set of (W; �) which enable the network to realize P1P2P3P4. So it can be
learned and memorized by the network via the perceptron learning algorithm. If m¡ 4,
all simple bipolar spatio-temporal sequences are obviously able to be stored. Thus (i)
holds. As to (ii), since n¿ 3, we can easily construct a simple bipolar spatio-temporal
sequence P1P2 · · ·P5 with the following constraints:

P2 = −P1; P4 = −P3;
p2;1 = 1; p3;1 = 1; p4;1 = −1; p5;1 = −1:

If this spatio-temporal sequence can be learned and memorized, the 1rst processing
neuron is able to solve the XOR problem. This is contradictory to the fact that a
(1rst-order) perceptron is unable to solve the XOR problem of the corresponding di-
mension. Therefore, this bipolar spatio-temporal sequence is unable to be learned and
memorized by the network. The proof is completed.

By Theorem 5, we have found that the memory capacity of the network is trivial if
all possible simple bipolar spatio-temporal sequences of the same length are considered
to be stored by the network. This result is just like that of Hop1eld network to store
a group of bipolar patterns as stable states. However, we can analyze the asymptotic
memory capacity of the network which is signi1cant when the size of the network
becomes large.
We now consider that each Pi is an independent random vector and each component

of Pi is an independent random variable which takes the equal probability distribution
on {−1; 1}. In order to give the de1nition of the asymptotic memory capacity, we
introduce the following probability sequence:

P(m; n) = P({S= P1P2 · · ·Pm :S is storable});
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where “S is storable” which means that S can be learned and memorized by the
1rst-order TNRNN with one-step feedback via the perceptron learning algorithm. It is
easy to verify that P(m; n) decreases with m.

De�nition 2. An integer function C(n) is the asymptotic memory capacity of the
1rst-order TDRNN of one-step feedback if the following two conditions hold:
(i)

lim
n→∞P(m; n) = 1 (12)

whenever m6C(n);
(ii)

lim
n→∞ inf P(m; n)¡ 1; (13)

whenever m¿C(n).
We say that C(n) is a lower bound of the asymptotic memory capacity if it satis1es

the 1rst condition; and that C(n) is an upper bound of the asymptotic memory capacity
if Eq. (13) holds whenever m¿C(n).

Since P(m; n) decreases with m, we can easily prove that there exists a unique
asymptotic memory capacity (function) of this kind of TDRNN. We further have

Theorem 6. Suppose that C(n) is the asymptotic memory capacity of the =rst-order
TDRNN of one-step feedback. We have C(n)¿C1(n) = n+ 1.

Proof. We let Bm be the set of all bipolar spatio-temporal sequences of the length m
which are storable. Then we have

P(n+ 1; n) = P(Bn+1) =
|Bn+1|
2n(n+1) : (14)

We de1ne

En×n =




e11 e12 · · · e1n

e21 e22 · · · e2n

...
...

. . .
...

en1 en2 · · · enn



;

where eij ∈ {−1; 1} for 16 i; j6 n, and let

,n = {En×n : rank(En×n) = n};
and denote ,∗

n to be the complement set of ,n. We further de1ne

En = |,n|; E∗
n = |,∗

n |:
By Komlos theorem [3] that

lim
n→∞ (E∗

n =2
n2 ) = 0;
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and according to Theorem 4, we have

lim
n→∞P(n+ 1; n) = lim

n→∞
|Bn+1|
2n(n+1) ¿ lim

n→∞
En2n

2n(n+1)

= lim
n→∞

En
2n2

= 1 − lim
n→∞

E∗
n

2n2
= 1:

Because P(m; n) decreases with m, we have

lim
n→∞P(m; n) = 1; for m6 n:

Therefore, C1(n) = n+ 1 is a lower bound of the asymptotic memory capacity of the
1rst-order TDRNN of one-step feedback. The proof is completed.

By Theorem 6, we have found that the asymptotic memory capacity of the 1rst-order
TDRNN of one-step feedback is no less than n+1. It is much better than 0
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the others by

d∗
i =minj �=i dH(Qi; Qj) = min{dH(Qi; Qj) : j = 1; : : : ; i − 1; i + 1; : : : ; 10}:

As is well-known in information theory, d∗
1 ; d

∗
2 ; : : : ; d

∗
10 essentially give the bounds of

radii of attraction of these Arabic numbers in the 49-dimensional bipolar space. In fact,
the reasonable radius of attraction of each Qi should be no more than t∗i =[(d∗

i −1)=2],
where [x] denotes the integer part of a real number x. For an associative memory
model, only when the radius of attraction of each Qi is just t∗i , the error probability
of the retrieval of the stored patterns or sequences reaches the minimum in a general
noisy environment.
Based on the Hamming distances between these sample patterns, we have

(t∗1 ; t
∗
2 ; t

∗
3 ; t

∗
4 ; t

∗
5 ; t

∗
6 ; t

∗
7 ; t

∗
8 ; t

∗
9 ; t

∗
10) = (3; 6; 5; 4; 9; 4; 5; 8; 3; 4);

which will be used to design the object values of the radius of attraction of the Arabic
numbers in the OPLA algorithm [6] for learning simple spatio-temporal
sequences.

5.2. Learning complex numeral sequences

We 1rst consider the experiments of the TDRNN for learning and storing complex
numeral sequences by the perceptron learning algorithm. In each experiment, we gen-
erated a higher order numeral sequence and then used a proper TDRNN to learn it by
the perceptron learning algorithm on each processing neuron independently. Typically,
we selected three second-order numeral sequences as follows:

S1 = 0362717416354286590452695847296112137388205391402246798310756643325;

S2 = 19883615342524167023110328649184587926043512768905738220937465471485621;

S3 = 402582913962433681703121593427860832847269014163792206457485051987304495;

where the lengths of S1;S2 and S3 are 67, 71 and 72, respectively.
We began to use the 1rst-order TDRNN of two-step feedback to learn these three

numeral sequences by the perceptron learning algorithm and found that only a small
part of each numeral sequence can be learned and stored in the TDRNN. For example,
the longest subsequence of S1 that can be learned and stored by the TDRNN is
036271741635428659045, with the length 21. But when the second-order TDRNN
is used, S1, S2 and S3 became storable. That is, when we applied the generalized
(second-order) perceptron learning algorithm on each processing neuron, they had been
learned and stored in a second-order TDRNN of two-step feedback. However, as we
successively added some numerals to each of them and maintained the second-order, it
has been shown by the experiments that there exist certain expanded numeral sequences
which cannot be learned and stored in a second-order TDRNN of two-step feedback.
That is, they can only be learned and stored in a more higher order TDRNN of two-step
feedback.
By these and the other experiments, we have found that the TDRNN can learn and

store the complex numeral sequences eJciently by the perceptron learning algorithm.
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Moreover, as the order of the TDRNN becomes higher, the memory capacity, i.e., the
length of storable numeral sequence, increases considerably.

5.3. Learning simple numeral sequences and comparison

We then turn to the case of simple numeral sequences. The TDRNN of one-step
feedback was applied to learn and store a simple numeral sequence. Since there are
only ten Arabic numerals, the length of a simple numeral sequence is very limited. In
this speci1c situation, it is easy to learn and store a simple numeral sequence by the
perceptron learning algorithm. Actually, by the experiments we have found that every
simple numeral sequence can be quickly learned and stored in a 1rst-order TDRNN of
one-step feedback by the perceptron learning algorithm.
In order to store a simple numeral sequence with better behavior of associative mem-

ory, we further applied the object perceptron learning algorithm (OPLA) [6] to train
the TDRNN. For a simple numeral sequence S=P1P2 · · ·Pm, if it can be learned and
stored in a TDRNN of one-step feedback by the perceptron learning algorithm, we
only have Pi+1 = F(Pi), where F(·) is the function of the TDRNN. That is, Pi+1 can
be retrieved from Pi. However, in a noisy environment there may appear some errors
on certain bits of Pi, i.e., it may become P̂i with P̂i �= Pi, but the TDRNN is still
required to retrieve Pi+1 from the noisy pattern P̂i. In this way, the sequence can be
retrieved normally in a noisy environment. From the experiments with the perceptron
learning algorithm, we have found that there generally exists a basin of attraction of
Pi such that Pi+1 can be retrieved from any numeral within it. However, the radius
of attraction of Pi may be very small or trivial. To get a reasonable radius of attrac-
tion for each Pi (i = 1; 2; : : : ; m − 1), we applied the OPLA to train the TDRNN
on each processing neuron independently, with ti6 t∗i set as the object radius of
attraction of Pi.
We selected two simple numeral sequences 259471680 and 0314628, with their

lengths being 9 and 7, respectively. It was found by the experiments that they can be
learned and stored in a 1rst-order TDRNN of one-step feedback by the OPLA with
ti¿ t∗i − 2. That is, each Pi except the last one in any of these two simple numeral
sequences obtains the largest and reasonable radius of attraction. However, when we
expanded them by adding the other numerals, it was shown by the experiments that
the OPLA cannot make their expansions storable with ti¿ t∗i − 2. By these and the
other experiments we have found that the memory capacity of the TDRNN of one-step
feedback under the OPLA reduces to a certain degree. The reason is simply that the
requirement of the reasonable radius of attraction for each numeral makes it diJcult
to learn and store a simple numeral sequence in a TDRNN of one-step feedback.
It has been further found by the experiments that the OPLA is better than the

sum-of-outer product scheme on learning and storing a simple numeral sequence in
the 1rst order TDRNN of one-step feedback. First, the OPLA can learn and store a
longer simple numeral sequence than the sum-of-outer product scheme does. Actually,
the sum-of-outer product scheme can only learn and store the shorter simple numeral
sequences such as 274630 and 87160. It cannot learn and store the above two sequences
learned and stored by the OPLA. Second, when a simple numeral sequence is stored
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Fig. 4. The sample patterns of 10 Arabic numerals {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}.

by the sum-of-outer product scheme, the radiuses of attraction of some numerals may
be very small, but those of the others may be very large, which is not reasonable for
associative memory. However, the OPLA can maintain reasonable radii of attraction
of the numerals by setting a set of proper object values in advance.

6. Conclusion

We have investigated the capacity of time-delay recurrent neural network (TDRNN)
for learning and memorizing spatio-temporal sequences. By introducing the order of a
spatio-temporal sequence, we have established the match law between a TDRNN and
a spatio-temporal sequence. It has been further proved that the full order TDRNN of
l-step feedback is able to learn and memorize any bipolar (or binary) spatio-temporal
sequence of the order k when k6 l. Furthermore, we have obtained a lower bound
of the asymptotic memory capacity of the 1rst-order TDRNN of one-step feedback
showing that such kind of TDRNN of n processing neurons can learn and memorize
almost all the bipolar (or binary) random spatio-temporal sequences of the 1xed length
which is no more than n when n is large. Finally, the TDRNN has been demonstrated
by the simulation experiments on learning and storing both the simple and complex
spatio-temporal sequences of the Arabic numerals by the perceptron learning algorithm
(Fig 4).
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Appendix A. Proof of Theorem 2

(i) This is certainly equivalent to the proposition that any learning object (Ad;Ad)
is linearly separable under Wd(d), where Ad is an arbitrary subset of {−1; 1}d and Ad

is the complement set of Ad. We now prove it by induction. For the sake of clarity,
we use the notation X d = [x1; x2; : : : ; xd]T ∈ {−1; 1}d in Appendix A.
When d=1, F1

1={�; {1}}, N 1
1 =2 and W 1(1)={W (1; �); W (1; {1})}. In this case,

all the possible Boolean functions from {−1; 1} to {−1; 1} are

b(X ) = 1; b(X ) = −1; b(X ) = X; b(X ) = −X; (A.1)

corresponding to the learning objects ({−1; 1}; �); (�; {−1; 1}); ({1}; {−1}); ({−1}; {1})
respectively. Certainly, these learning objects are linearly separable. In fact, T (W 1(1); X )
can realize these learning objects (Boolean functions) by the weight vectors (1; 0);
(−1; 1); (0; 1); (0;−1), respectively. Therefore it holds when d= 1.

We assume that any learning object (Ad;Ad) is linearly separable under Wd(d).
We now need only to prove that any learning object (Ad+1;Ad+1) is linearly separable
under Wd+1(d+1) with the above inductive assumption. In order to do so, we introduce
the following notations:

Ad+1(xd+1) = {X d = [x1; x2; : : : ; xd]T : [(X d)T; xd+1]T ∈Ad+1}; (A.2)

where xd+1=±1. Since Ad+1(a) ⊂ {−1; 1}d(a=±1), by the induction assumption, the
learning object (Ad+1(a);Ad+1(a)) is linearly separable. Then there exists a dth order
spread weight vector Wd(a; d) = {w(a; d;  ) :  ∈Fd

d} by which we have

∑
 ∈Fd

d

w(a; d;  )U (X d;  )

{
¿ 0 if X d ∈Ad+1(a);

¡ 0 if X d �∈ Ad+1(a):
(A.3)

Now we de1ne the (d+ 1)th order spread weight vector Wd+1(d+ 1) as follows:
(1) For  ∈Fd

d ⊂ Fd+1
d+1,

w(d+ 1;  ) = w(1; d;  ) + w(−1; d;  ): (A.4)

(2) For the set { ; d+ 1} =  ∪ {d+ 1} ∈Fd+1
d+1,

w(d+ 1; { ; d+ 1}) = w(1; d;  ) − w(−1; d;  ): (A.5)

By Wd+1(d+ 1) so de1ned, we have for each X d+1 ∈ {−1; 1}d+1

∑
1∈Fd+1

d+1

w(d+ 1; 1)U (X d+1; 1)

=
∑
 ∈Fd

d

w(d+ 1;  )U (X d;  ) +
∑
 ∈Fd

d

w(d+ 1; { ; d+ 1})U (X d;  )xd+1
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=
∑
 ∈Fd

d

[w(1; d;  ) + w(−1; d;  ) + (w(1; d;  ) − w(−1; d;  ))xd+1]U (X d;  )

=




2
∑
 ∈Fd

d

w(1; d;  )U (X d;  ) if xd+1 = 1;

2
∑
 ∈Fd

d

w(−1; d;  )U (X d;  ) if xd+1 = −1:

Thus, we have

∑
 ∈Fd+1

d+1

w(d+ 1;  )U (X d+1;  )

{
¿ 0 if X d+1 ∈Ad+1;

¡ 0 if X d+1 �∈ Ad+1:
(A.6)

Therefore any learning object (Ad+1;Ad+1) is linearly separable under Wd+1(d + 1).
The proof of (i) is completed.
(ii) This is equivalent to the proposition that there exists a learning object (Ad;Ad)

which is not linearly separable under Wd−1(d). We again prove it by induction and
begin with d = 2. In this case, W 1(2) = {�; {1}; {2}}. Then the perceptron is of the
1rst order. We let A2

0 ={(1; 1); (−1;−1)}. Then the learning object (A2
0;A

2
0) is just the

XOR problem and it is not linearly separable. Thus it holds when d= 2.
We assume that there exists a learning object (Ad0 ;A

d
0 ) which is not linearly sepa-

rable under Wd−1(d). Then we need only to prove there also exists a learning object
(Ad+1

0 ;Ad+1
0 ) which is not linearly separable under Wd(d + 1). We now prove it by

contradiction. We assume that it does not hold in the case of d + 1, that is, for any
Ad+1 ⊂ {−1; 1}d, (Ad+1;Ad+1) is linearly separable under Wd(d+ 1). We now let

Ad+1
0 = {[(X d)T; 1]T :X d ∈Ad0} ∪ {[(X d)T;−1]T :X d ∈Ad0};

Bd+1
0 = {[(X d)T;−1]T :X d ∈Ad0} ∪ {[(X d)T; 1]T :X d ∈Ad0}

=Ad+1
0

Because (Ad+1
0 ;Ad+1

0 )=(Ad+1
0 ;Bd+1

0 ) is linearly separable under Wd(d+1), there exists
a dth order spread weight vector Wd(d+ 1) by which we have

∑
 ∈Fd

d+1

w(d+ 1;  )U (X d+1;  )

{
¿ 0 if X d+1 ∈Ad+1

0 ;

¡ 0 if X d+1 ∈Bd+1
0 :

(A.7)

In a similar way as (i), we further have∑
 ∈Fd

d+1

w(d+ 1;  )U (X d+1;  )

=
∑
1∈Fd

d

w(d+ 1; 1)U (X d; 1) +
∑

1∈Fd−1
d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1:
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When X d ∈Ad0 , since [(X d)T; 1]T ∈Ad+1
0 and [(X d)T;−1]T ∈Bd+1

0 , we have the fol-
lowing two inequalities:∑

1∈Fd
d

w(d+ 1; 1)U (X d; 1)

+
∑

1∈Fd−1
d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1¿ 0; (A.8)

∑
1∈Fd

d

w(d+ 1; 1)U (X d; 1)

−
∑

1∈Fd−1
d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1¡ 0: (A.9)

Subtracting Eq. (A.9) from Eq. (A.8), we have

2
∑

1∈Fd−1
d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1¿ 0: (A.10)

Therefore, when X d ∈Ad0 , we have∑
1∈Fd−1

d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1¿ 0: (A.11)

On the other hand, when X d �∈ Ad0 or X d ∈Ad0 , since [(X d)T;−1]T ∈Ad+1
0 and

[(X d)T; 1]T ∈Bd+1
0 , we again have the following two inequalities:∑

1∈Fd
d

w(d+ 1; 1)U (X d; 1)

+
∑

1∈Fd−1
d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1¡ 0; (A.12)

∑
1∈Fd

d

w(d+ 1; 1)U (X d; 1)

−
∑

1∈Fd−1
d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1¿ 0: (A.13)

Subtracting Eq. (A.13) from Eq. (A.12), we have

2
∑

1∈Fd−1
d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1¡ 0: (A.14)
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Therefore, when X d �∈ Ad0 , we have∑
1∈Fd−1

d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1¡ 0: (A.15)

Then we have (Ad0 ;A
d
0 ) is linearly separable under Wd−1(d). This is contradictory

to our inductive assumption. Thus it holds in the case of d + 1 and the proof is
completed.
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