
A Neural Network Filter For Complex Spatio-Temporal Patterns*

Jinwen Ma¹, Dezhi Huang²

- Dept of Information Science, School of Mathematical Sciences and National Laboratory on Machine Perception, Peking University, Beijing, 100871, China
- 2. Dept of Computer Science and Technology, Tsinghua University, Beijing, 100084, China

Abstract—This paper proposes a four-layer neural network filter for complex spatio-temporal pat-

temporal correlator network is proposed to solve the problem of spatio-temporal pattern learning, recogni-

temporal pattern, it can be constructed according to the order of the spatio-temporal pattern. Moreover, it is demonstrated by the simulation results.

I. INTRODUCTION

Filtering and recognition of spatio-temporal pat-

on a Kohonen's self-organizing map and a fuzzy ART network. However, the number of the processing neurons in some layer varies with the complexity of spatio-temporal patterns, which makes difficult to implement the network.

In this paper, we propose a neural network based filter for any given complex spatio-temporal pattern

 $S^c = P_1, \dots, P_{m_0}P_1$. And m_0 is called the length of the spatio-temporal cycle.

Definition 2. When a spatio-temporal pattern S is not periodic, the order of S is defined by

$$r(S) = min\{k : P_{i}P_{i+1} \cdots P_{i+k-1} \neq P_{j}P_{j+1} \cdots P_{j+k-1} \}$$

$$for \ all \ i, j \leq m-k+1, and \ i \neq j.\}$$
 (1)

Clearly, the order of S is the minimum of the number k which enable all the possible k-step blocks in S are different. Surely, it is a positive integer in the range [1,m]. For clarity, r(S)-step blocks of S are called basic blocks of S. When the order of S is just one, it is called a simple spatio-temporal pattern. In this case, all the spatial patterns are different. When the order

The proof will be given in [11].

According to Theorem 1, we certainly have that the map from S to \mathcal{B}_S is one to one in the cases of both complex spatio-temporal pattern and cycle. That is, \mathcal{B}_S uniquely corresponds to its true spatio-temporal pattern or cycle when S is complex. Thus, a complex spatio-temporal pattern or cycle can be recognized from its basic blocks. We will use this idea to design the neural network spatio-temporal filter.

III. THE NEURAL NETWORK SPATIO-TEMPORAL FILTER

Suppose that S is a given complex spatio-temporal pattern of finite length (i.e., m is finite) or a given complex spatio-temporal cycle and its order is k(>1).

•			
}			
. Id			
<u>יייי</u>			r-
•			
-			
·			
· h	· ·		
•			
-			
		A	

a fixed n-dim binary pattern, we define

$$d_H(X,C) = \sum_{i=1}^n |x_i - c_i|$$

otherwise, the neuron is inhibited and we consider the input pattern cannot be recognized as SP_i . ε is selected according to the noise environment.

When the input pattern X and the spatial pattern

as the Hamming distance between X and U. We then second order binary neuron. called matching neuron.

define the t-neighborhood of C over the n-dim binary space $\{0,1\}^n$ as follows:

$$R_t(C) = \{X : d_H(X, C) \le t\}.$$
 (5)

The definition of the perceptive neuron is given as follows

Definition 1 If a binary neuron with a fixed weight

Actually, a second order binary neuron is defined by W which is an (n+1)-order real symmetric matrix. For an input signal pattern X, the output signal y of the second order binary neuron is computed by

$$y = Sgn(H(x)) = \begin{cases} 1 & \text{if } H(x) > 0 \\ 0 & \text{otherwise} \end{cases}$$
 (9)

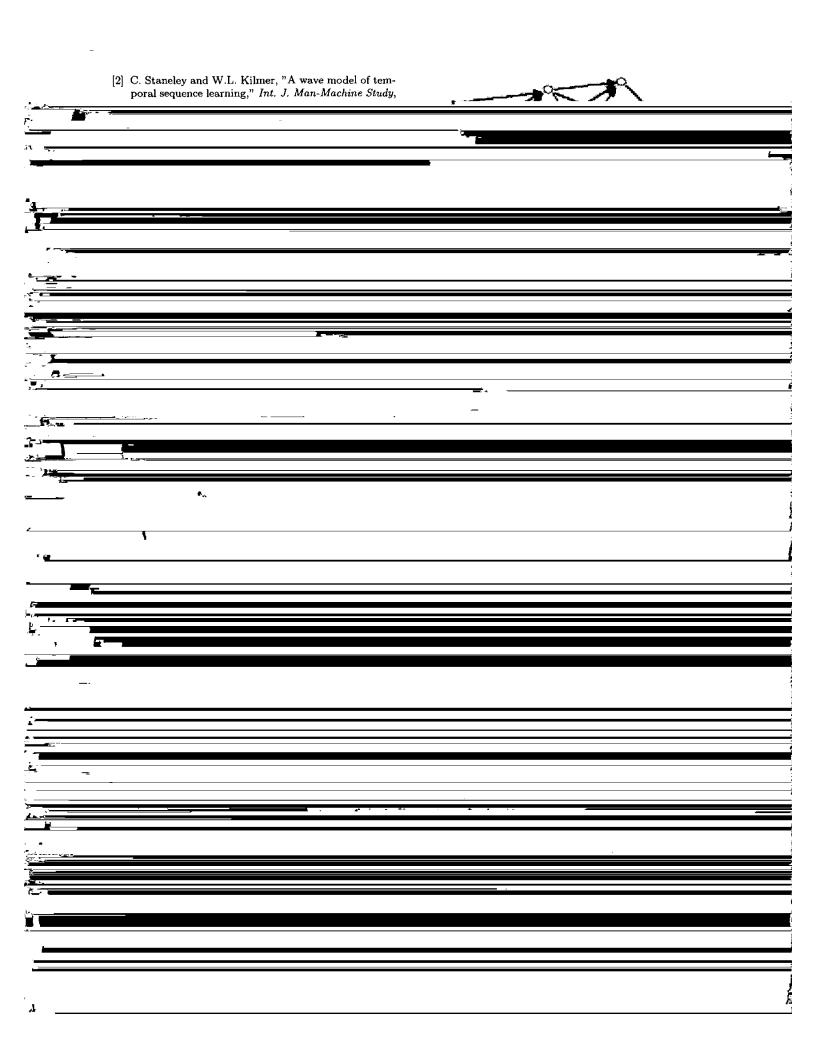
value θ , satisfies the following input-output relation:

$$y(X) = Sgn(\sum_{i=1}^{n} w_{i}x_{i} - \theta) = \int_{0}^{\infty} \frac{1}{n!} \quad \text{if } X \in R_{t}(C)$$
 (6)

$$H(X) = \sum_{i,j=0}^{n} w_{ij} x_i x_j, \qquad x_0 = 1$$

,	At each time with an input pattern, if some U_{j_l} is activated, it sends a signal to the receiving box where	i.e., it has sent one or more positive signals to the output neuron, its contribution to the output neuron is	
<u> </u>			
4.			
}			
}			
.77			
, A 📑			
Y. 1			
, <u> </u>			
1			
			4
-			
-			
	the first left block of the shift register. Otherwise, the	all the signals in the m times, the output neuron will	
€ 3 . 7.00	سماعيين عام ه بيم هيم <u>هي من آميستم ميمين بيميا بيما سينتخ</u> <u>ميو</u>	mala the final desision. What is if its author is and	
*			
1			
7			
	<u> </u>		
\			

k-step blocks. The errors can be filtered by the output neuron if the threshold value is properly selected. Therefore, the neural network filter can recognize \mathcal{S} in a noisy environment.


We further consider the case that S is a spatiotemporal cycle, i.e., $S = P_1 \cdots P_{m_0} P_1$. In this situation, we design the neural network spatiotemporal filter as for the spatio-temporal pattern S' = $P_1 \cdots P_{m_0} P_1 \cdots P_{k-1}$, i.e., $m = m_0 + k - 1$. Clearly, when the input spatio-temporal cycle enters the neural network spatio-temporal filter in such a way as S', we have the same result as above. Moreover, since the output neurons all check whether all or most of the basic of the real number x). For a filtering or recognition system, only when the radius of the error-correcting hypersphere of each S_i is just t_i^* , the error probability of recognition reaches the minimum in a noisy environment.

Based on the Hamming distances between these sample patterns, we have

$$(t_1^*, t_2^*, t_3^*, t_4^*, t_5^*, t_6^*, t_7^*, t_8^*, t_9^*, t_10^*)$$

= (3, 6, 5, 4, 9, 4, 5, 8, 3, 4).

Then, we can design the binary neuron U_i in the second layer of the neural network filter as the t_i^* -

	put neurons all check whether all or most of the basic second layer of the neural network filter as the t_i^* -	
	•	
	ć -	
	• .	<u> </u>
ž E	· <u> </u>	
,		
.,		
-		
1		
,		
1		
1		,
* . <u></u>		
124		
•		
_ :		
	period of m times and there is not any other require— Theorem 2.	
f		

