


Suppose that we have dataset D = {(xi; yi)}Ni=1 in which xi
and yi are a pair of input and output variables at sampling
time i. As a statistical learning model, Gaussian process can
be mathematically defined by

(y1; y2; : : : ; yN ) ∼ GP (m(X); C(X;X
′
) + �2I); (2)

where �2 dominates the noise golbally. For simplity, we gen-
erally set m(X) = 0. The covariance matrix with covariance
function is C(X;X

′
) = [c(xi; xj)]N×N . The most commonly

used covariance function is the squared exponential function
[15]–[17], which is defined by

c(xi; xj) = l2exp(−1

2
f2 ‖ xi − xj ‖2): (3)

We can obtain the hyperparameter � = {l; f; �2} through
the Maximum Likelihood Estimation (MLE) method. Actually,
the predictive output of Gaussian process regression is given
by

y∗|X; y; x∗ ∼ N (ŷ∗; cov(f∗)); (4)

where

ŷ∗ = E[y∗ | X; y; x∗] = C(x∗; X)[C(X;X) + �2I]−1y; (5)

cov(f∗) = C(x∗; x∗)−C(x∗; X)[C(X;X)+�2I]−1[C(x∗; X)]
′
:

(6)
Here y = [(y1; y2; : : : ; yN )]

′
is the output vector, C(X;X) =

[c(xi; xj)]N×N and C(x∗; X) = [c(x∗; xj)]1×N denotes the
covariance relationship vector of the training inputs to the test
input.

B. ML Estimation for Non-central Student-t Distribution

A p-dimensional random variable X is subject to a non-
central t distribution tp(�;�; �) with a center �, a covariance
matrix �, and a degree � ∈ (0;+∞] of freedom, if given the
weight � , X has the multivariate normal distribution:

X | �;�; � ∼ Np(�;
�

�
): (7)

Furthermore, weight � is subject to a Gamma distribution
[18], i.e.,

� | �;�; � ∼ Gamma(
�

2
;
�

2
); (8)

where the Gamma(�; �) density function is

f(� | �; �) =
�α�α−1 exp (−��)

�(�)
; � > 0; � > 0; � > 0:

By integrating � from the joint density of (X; �), we can get
the density function of the marginal distribution of X , namely,
tp(�;�; �),

�(ν+p2 |�|
− 1

2 )

(��)
p
2 �(ν2 )

[1 +
�X(�;�)

�
]−

�+p
2 ; (9)

where �X = (X − �)
′
�−1(X − �) that is the Mahalanobis

distance from X to the center � concerning �. The density
function (9) depends on X through �X(�;�). Thus, the
distribution is ellipsoidal symmetric about �.

We further derive the parameter learning function to
{�;�; �} through the ML estimation method. From the mul-
tivariance normal distribution (7), a p-dimensional random
variable X with the given indicator � being subject to Gamma
distribution is subject to a non-central student-t distribution.
Thus, given {�;�; �; �}, the random variable ��X(�;�) is
subject to �2

p distribution, that is as �(p=2; 1=2). On the
other hand, from (8), the indicator � is subject to a Gamma
distribution. So, taking X as samples are subject to (9), the
conditional posterior distribution of � , i.e., its distribution with
be given {�;�; �;X} is,

� |�;�; �;X =

� |�X(�;�); � ∼ Gamma(
� + p

2
;
� + �X(�;�)

2
);

(10)

whence
E(� |�;�; �;X) =

� + p

� + �X(�;�)
: (11)

For the input X = {X1; : : : ; XN} and the latent vari-
able � = {�1; : : : ; �N}, we comprise the complete data
{x1; : : : ; xN ; �1; : : : ; �N}. Then the log-likelihood function of
parameters �, � and �, ignoring constants, is

L(�;�; �|X; �) = LN (�;�|X; �) + LG(�|�); (12)

where

LN (�;�|X; �) =− n

2
ln |�| − 1

2
tr(�−1)

N∑
i=1

�iXiX
′

i

+ �
′
�−1

N∑
i=1

�iXi −
1

2
�

′
�−1

N∑
i=1

�i;

(13)

and

LG(�|�) = −n ln(�(
�

2
)) +

n�

2
ln(

�

2
) +

�

2

N∑
i=1

(ln(�i)− �i):

(14)
Then the ML estimation of {�;�} and the ML estimation
of � can be obtained from LN (�;�|X; �) and LG(�|�)
respectively. Finally, we get the ML estimation of � and �
from LN (�;�|X; �) are

�̂ =

∑N
i=1 �iXi∑N
i=1 �i

; (15)

and

�̂ =
1

n

N∑
i=1

�i(Xi − �̂)(Xi − �̂)
′
: (16)

Therefore, the maximum likelihood estimation of the cen-
ter �, namely �̂ is the weighted mean of the observations
{X1; : : : ; XN}, the maximum likelihood estimation of the
covariance matrix �, namely �̂ is the average weighted sum
of observations squares {X1; : : : ; XN} about �̂ with weights
{�1; : : : ; �N}. Maximum Likelihood estimation of � obtained
by maximizing LG(�|�) given by (19), that is, by solving

−�(
�

2
) + ln(

�

2
) +

1

n

N∑
i=1

(ln(�i)− �i) + 1 = 0 (17)
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for �, where �(x) = d ln(�(x))=dx is the digamma function.
Equation (9) is discussed in the reference essay [18].

III. THE TMGP MODEL AND ITS UN�-HARDCUT EM
ALGORITHM

A. The TMGP model

A single GP cannot characterize a multimodal data set along
the input regression because the structure of the GP model
is rather simple. However, there are many multimodal data
sets avaliable in practical applications. To tackle this problem,
we extend the single GP model to th TMGP model in which
different components are involved along the input region and
each component is subject to a GP model independently. The
gating network combines these predictive Gaussian processes
together along the input region and we selecte the gating
function as the non-central student-t mixture distribution.
Let non-central student-t mixture distribution be the input
distribution such that it can enhance the robustness of the
model to outliers and extend the tail of the input distribution.
For simplity, we still denote the data set of the TMGP model
by D = {(xi; yi)}Ni=1, and describe the detail of the TMGP
model as follows.

We describe the TMGP model mathematically as follows.
We assume that there are K components involved along with
the input region. Let {xi}Ni=1 be the set of p-dimensional
inputs, {yi}Ni=1 be the set of outputs, and {zi}Ni=1 be indicators
[19]. The set of indicators {zi}Ni=1 is subject to the multinomial
distribution, which can be defined by

Pr(zi = k) = �k; k = 1; : : : ;K: (18)

The input xi is subject to a non-central student-t distribution,
which can be defined by

xi|(zi = k) ∼ t(�k;�k; �k); (19)

where the center is �k, the covariance matrix is �k and the
degree is �k ∈ (0;+∞] of freedom. Finally, the predictive
output of the K-th Gaussian process regression with certain
covariance matrix by leaned hyperparameter vector �k =
{lk; fk; �2k},

yi ∼ GP(0; Ck); (20)

where Ck is the covariance matrix of k-th expert parameterized
by �k.

B. The Un�-Hardcut EM Algorithm

We further propose the un�-Hardcut EM algorithm to
learn parameters in the TMGP model. In each component
of the mixture model, there are two parameter vectors �k =
{�k;�k; �k} and �k = {lk; fk; �2

k} (fig.1). We use the EM
algorithm to get the parameter vector �k and MLE to get the
parameter vector �k.

We have discussed in Section II about the ML estimation of
the non-central student-t distribution, but it is not easy to get
the parameter vector �k = {�k;�k; �k} with the unknown
variable �i. Lange, Little and Taylor (1989) [20] suggested
how to use the EM algorithm to get parameters �, � and �

Fig. 1. The flowchart of data generation by the non-central student-t
mixture of Gaussian processes (TMGP) model. An input data xki of the k-th
component is subject to a non-central student-t distribution with a parameter
vectorαk = {µk,�k, νk}. The predictive output yki of the k-th component
is subject to a Gaussian process. Suppose that µk is the mean function and
Ck the covariance matrix with hyper-parameters θk = {lk, fk, σ2

k}. The
indicator Z is generated by the multinomial distribution with πk .

of t distribution. This method can extend to the TMGP model
directly. Let �k be a latent variable in the k-th component. We
obtain its expectation according to the formula (11)

!
(t+1)
i,k = E(�k|X;�(t)

k ) =
�
(t)
k + p

�
(t)
k + �

(t)
i,X(�

(t)
i,k;�

(t)
i,k)

: (21)

Then we maximize the likelihood function (13) to obtaine
�
(t+1)
k and �

(t+1)
k

�
(t+1)
k =

∑N
i=1 !

(t+1)
i,k Xi∑N

i=1 !
(t+1)
i,k

; (22)

and

�
(t+1)
k =

1

n

N∑
i=1

!
(t+1)
i,k (Xi − �(t+1)

k )(Xi − �(t+1)
k )

′
: (23)

According to (14) and (17), we update �k by solving the
equation below for �

−�(
�

2
) + ln(

�

2
) +

1

N

N∑
i+1

[ln(!
(t+1)
i,k )− !(t+1)

i,k ]

+ 1 + [�(
p+ �(t)

2
)− ln(

p+ �(t)

2
] = 0:

(24)

The indicator Z in the TMGP model update via Hard-cut allo-
cation. Based on the TMGP model, we obtain the probability

p(Zt = k;Xt; yt) = �k · t(Xk|�k;�k; �k) · GP(yt|0; l2k + �2
k):

(25)
We choose the most likely category as the input label.

Based on the above analysis, we can design the un�-Hardcut
EM algorithm as shown in Algorithm 1.
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Algorithm 1 The Un�-Hardcut EM algorithm for learning the
paraneters of the TMGP model.
Input: the set of data is D = {Xi; yi}Ni=1, the number of
experts K;
Indicator: the set of indicators is {Zt}Nt=1;
Output: Mixing proportions {�k}Kk=1, parameters
of the input discussion �k = {�k;�k; �k}Kk=1,
parameters of the Gaussian procession, �k =
{lk; fk; �2

k}Kk=1;
Initialization: Initialize {Zt}Nt=1 via k-means.
Iteration:

1: while not converges do
2: for k = 1; : : : ;K do
3: Update mixture parameters of k-th component

�k = p(Zt = k|Xt; yt) =

�k · t(Xk|�k;�k; �k) · GP(yt|0; l2k + �2
k)∑K

k=1 �k · t(Xk|�k;�k; �k) · GP(yt|0; l2k + �2
k)

(Update �(t)
k , �

(t)
k and �(t)k via MLE estimation)

4: while not converges do
5: (E-Step) Calculate !(t+1)

i,k for i = 1; : : : ; n in (21),
6: (M-Step) Calculate �

(t+1)
k in (22) and �

(t+1)
k in

(23),
7: Update �k by solving (24).
8: end while
9: Obtain the GP parameters �k by maximizing the

likelihood function

p(yk,1; : : : ; yk,Nk) | Xk,1; : : : ; Xk,Nk

= GP (0;K(Xk,i; Xk,j | �k) + �2
kI)

;

10: Update Zi via hard-cut allocation,

Zi = arg max
k=1,...,K

�kt(xi; �
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Fig. 2. The sketches of the synthetic data set with three and five Gaussian processes of the TMGP model (left column), and the fitting curves of the TMGP
model using unν-Hardcut EM Algorithm(right column).

TABLE I
THE RESULTS OF THE PROPOSED AND COMPARATIVE ALGORITHMS.

Method ν = 3 ∗ ones(K, 1) ν = [4, 6, 3]

K=3

LR(SVM) 0.4855 0.5579
GP(GL) 0.4783 0.3642
GP(TL) 0.459 0.3482

MGP(Hard-cut) 0.4179 0.3027
MGP(LOOCV) 0.4282 0.3302

TMGP(Unν-Hardcut) 0.3387 0.2876
Method ν = 3 ∗ ones(K, 1) ν = [4, 6, 3, 5, 2]

K=5

LR(SVM) 0.7387 2.3042
GP(GL) 0.6565 1.1196
GP(TL) 0.5363 1.0985

MGP(Hard-cut) 0.4829 1.3533
MGP(LOOCV) 0.5108 1.1301

TMGP(Unν-Hardcut) 0.441 1.0754

V. APPLICATION TO THE MODELING OF COAL GAS
CONCENTRATION DATA

In this section, we apply the TMGP model with the un�-
Hardcut EM algorithm to the modeling of the gas data set
which is recorded by coal mine detections in 2018. Actually,
this real-world dataset consists of the observations of gas
consentration per five seconds in a specific coal mine face.
We firstly calculate the means of gas concentration data every
day as our experiment samples. In this case, we use the TMGP
model with 1-4 components respectively.

In Fig.3, we set K = 1, K = 2, K = 3 and K = 4 to
illustrate the results of the TMGP model. It can be seen from
Fig.3 that the TMGP model with four components is better

than the others. It should be noted that different colors are used
to distuiguish different classification results of the components.
Fig.3(4) shows the change of coal gas consentration with
season.

VI. CONCLUSION

We have established the non-central student-t mixture of
Gaussian processes (TMGP) model with the proposed un�-
Hardcut EM algorithm for learning the time series data with
potential outliers and distribution heavy tails. It is demon-
strated by the experimental results on synthetic and coal
gas concentration datasets that this TMGP approach is less
sensitive to outliers and more robust to the heavy tails of data
distribution. However, according to our experiments, there are
still two problems. Firstly, it is still difficult to determine the
number of Gaussian processes in the mixture. Secondly, we
need to solve a non-linear equation to get the parameter �k
and the solving process is time-consuming. As a result,the
un�-Hardcut EM algorithm converges slowly. Therefore, in the
future, we will improve the TMGP approach by investigating
these two problems.
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