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ABSTRACT

The Gaussian mixture model is widely applied in the field-

s of data analysis and information processing. Recently,

its parameter learning with adaptive model selection, i.e.,

the adaptive selection of number of Gaussian distribution-

s in the mixture for a given sample dataset, has become

an attracting and interesting topic. In this paper, we pro-

pose a dynamically regularized maximum likelihood learn-

ing (DRMLL) algorithm for Gaussian mixtures with adap-

tive model selection. The basic idea is that the Bayesian

Ying-Yang (BYY) harmony learning is interpreted as the

maximum likelihood learning regularized by the average

Shannon entropy of the posterior probability per sample s-

caled by a positive parameter. As this scale parameter dy-



Based on the analysis of BYY harmony function on Gaus-

sian mixtures under the BI-architecture [14]-[15], the BYY

harmony learning can be regarded as a kind of regulariza-

tion version of the maximum likelihood (ML) learning. The

regularization term is just the average Shannon entropy of

the posterior probabilities per sample. In fact, the entropy

regularization methods could date back to the 1980s and

have been widely used in the ill-posed problems involv-

ing in model selection. In the view of model selection and

ML parameter estimation, the BYY harmony function can

be decomposed into the likelihood function and the entropy

regularized term. However, if the regularization scale keeps

constant in the way of the existing regularized ML learning

approaches [16]-[18], the regularized ML learning leads to

a certain deviation between its estimation and the ML or

true solution. In order to overcome this problem, we can

adjust the regularization scale from 1 to 0, the learning pro-

cess can transform from the BYY harmony learning into the

ML learning. If we further maintain the increase of the reg-

ularization scale dynamically and properly, the regularized

learning process can lead to the ML estimates of the param-

eters with adaptive model selection on Gaussian mixtures.

Oppositely, the ML learning can be regarded as a kind of

regularization version of the BYY harmony learning and the

dynamically regularized BYY harmony learning algorithm

can be established for Gaussian mixtures [20].

In the current paper, we propose a Dynamically Regu-

larized Maximum Likelihood Learning (DRMLL) algorith-

m for Gaussian mixtures with adaptive model selection. By

controlling the regularization scale to dynamically decrease

from 1 to 0, the DRMLL algorithm transforms from the

BYY harmony learning with adaptive model selection to the

conventional maximum likelihood learning. It is demon-

strated by the experiments that the DRMLL algorithm can

not only select the correct number of actual Gaussian distri-

butions in a given dataset, but also obtain ML estimates of

the parameters in the original mixture.

2. DRMLL ALGORITHM

In this section, we firstly present the dynamic regularization

mechanism to be used. Then, we introduce the fixed-point

algorithm for the dynamic learning process. We further dis-

cuss the dynamic evolution of the regularization scale factor.

Finally, we give the complete DRMLL algorithm.

2.1. Dynamic Regularization Mechanism

According to [15], for the Gaussian mixture modelP (x|Θk) =
∑k

j=1 πjq(xt|mj ,Σj), the correspondingBYY harmony func-

tion J(Θk) can be divided into two parts,

J(Θk) = L(Θk)−ON (p(y|x)), (1)

where the first part is just the log-likelihood function, i.e.,

L(Θk) =
1

N

N
∑

t=1

ln(
k

∑

j=1

(πjq(xt|mj ,Σj))), (2)

while the second is the average Shannon entropy of the pos-

terior probability p(y|x) over the sample datasetD = {xt}
N
t=1,

ON (p(y|x)) = −
1

N

N
∑

t=1

k
∑

j=1

p(j|xt) ln p(j|xt). (3)

According to Eq.(1), if −ON (p(y|x)) is viewed as a reg-

ularization term, the BYY harmony learning, i.e., maximiz-

ing J(Θk), is a regularized ML learning which has already

been investigated in [17, 18] by scaling the regularization

term with a small positive number. However, since they

keep the regularization scale constant just as in the case of

the BYY harmony learning, these approaches must suffer

from inconsistent parameter estimation.

To dynamically control the regularization, we use a dy-

namic regularization scale factor λ(≥ 0) and have

Jλ(Θk) = L(Θk)− λON (p(y|x)). (4)

If λ = 1, Jλ(Θk) = J(Θk) is just BYY harmony func-

tion on the Bi-architecture for Gaussian mixtures. If λ = 0,

Lλ(Θk) is the log-likelihood function of the Gaussian mix-

ture model. That is, with λ decreasing from 1 to 0, maxi-

mizing Jλ(Θk) changes from the BYY harmony learning to

the ML learning. Here we try to control the decreasing of λ
dynamically and appropriately to realize adaptive model se-

lection at the previous learning stage and the ML estimation

at the final learning stage.

2.2. Fixed-point Learning Algorithm

At each phase of the dynamically regularized maximum like-

lihood learning with a particular λ, we construct a fixed-

point algorithm to maximize Jλ(Θk) as follows.
For convenience, we utilize the softmax representation

for πj , i.e., πj = eβj/
∑K

i=1 e
βi , j = 1, · · · , k, where

βj ∈ (−∞,+∞), j = 1, · · · , k. Letting the derivatives
of Jλ(Θk) with respect to βj , mj and Σj , respectively, be
zero, we get the following fixed-point (iterative) learning
algorithm:

π̂j =

∑N

t=1
p(j|xt)γj(t)

N
; (5)

m̂j =

∑N

t=1
p(j|xt)γj(t)xt∑N

t=1
p(j|xt)γj(t)

; (6)

Σ̂j =

∑N

t=1
p(j|xt)γj(t)(xt − m̂j)(xt − m̂j)

T

∑N

t=1
p(j|xt)γj(t)

, (7)

where

γj(t) = 1 + λ ln p(j|xt)− λ

k∑

i=1

p(i|xt) ln p(i|xt). (8)
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In comparison with the conventional EM algorithm [1],

this fixed-point learning algorithm differs only at the aug-

menting term γj(t). It can be easily verified that when

λ = 0, γj(t) = 1 , the fixed-point learning algorithm is

just the EM algorithm and when λ = 1, the fixed-point

learning algorithm returns to the original fixed-point BYY

learning algorithm [15] for maximizing the harmony func-

tion J(Θk).
Actually, γj(t) implements a rival penalized competi-

tive learning (RPCL) mechanism [19] so that model selec-

tion can be made adaptively during parameter learning. At

the early learning stage, γj(t) < 0 may happen. According

to Eq.(8), the mean vectors of the j-th Gaussian will move

away from xt. Otherwise, if γj(t) > 0, the mean vectors of

the j-th Gaussian will be attracted to xt. So, for xt, Gaus-

sians with γj(t) > 0 are winners while these Gausians with

γj(t) < 0 are losers.

However, the fixed-point learning algorithm cannot guar-

antee the positive definiteness of each covariance matrix

during the iteration since γj(t) may be negative. In order

to overcome this problem, we use the EM update rule of the

covariance matrixes, i.e., forcing all γj(t) = 1 in Eq.(7), in

this degenerated case. In fact, this simplification is appli-

cable and efficient since the competition for adaptive model

selection is mainly among mean vectors and controlled by

the mixing proportions.

2.3. Dynamic Evolution of λ

We further discuss the dynamic evolution of λ with time T
during the learning process. According to our regularization

mechanism, λ should start around 1 and decrease slowly at

the early learning stage to realize adaptive model selection.

Then, at the sequent stage, λ can attenuate to 0 at a high-

er speed so that the algorithm will finally converge to a ML

solution. So, it is crucial to check whether the adaptive mod-

el selection has accomplished and when to change learning

stage.

In order to detect the turning point, we introduce the

Shannon entropy of mixing proportions in the Gaussian mix-

ture model, Hπ = −
∑k

j=1 πj lnπj . It is obvious that Hπ

is sensitive to the structure of the Gaussian mixture model.

If model selection is not completed, the difference of Hπ

between two iterations is considerable. Otherwise, the dif-

ference should be very small. This motivates us to adopt the

absolute change rate of Hπ between two iterations, defined

by

hπ(T ) = |
Hπ(T )−Hπ(T − 1)

Hπ(T )
|, (9)

as an indicator of model selection. Here, T is the time, i.e.,

the number of iterations. The whole learning process is di-

vided into two learning stages according to a given thresh-

old ε1(> 0) of this indicator. That is, if hπ(T ) > ε1, λ(T )
increases at a low speed; otherwise, it increases at a high

speed. Since λ(T ) is assumed to increase exponentially, its

dynamic evolution process can be given as follow:

λ(T ) =

{

1− λ0 ∗ η
T
1 , if hπ(T ) > ε1;

1− λ0 ∗ (
η1

η2

)T
∗

ηT2 , if hπ(T ) ≤ ε1,
(10)

where λ0 is a very small positive constant, η1, η2 are two

positive constants with the constraint that 1 < η1 < η2,

and T ∗ is the turning point such that hπ(T
∗) > h0 and

hπ(T
∗ + 1) ≤ h0. When λ becomes 0, we fix it until the

algorithm stops.

2.4. Complete DRMLL Algorithm

We finally summary our proposed DRMLL algorithm. First-

ly, we should choose the parameters of the algorithm prop-

erly. As mentioned previously, λ0, η1, η2 and ε1 must be

carefully selected to make the evolution of λ(T ) dynamic.

θ0 is a threshold value to filter out Gaussians with very smal-

l mixing proportions during the parameter learning process,

while ε2(> 0) is a threshold value to terminate the iteration.

If λ = 0 and the absolute increment of the log likelihood is

smaller than ε2, we affirm the convergence of the algorithm.

In our learning paradigm, k is flexible. However, it should

be larger than the number k∗ of actual Gaussians or clus-

ters in the dataset. As for the initial setting of the param-

eters Θk, i.e., Θ
(0)
k = {π0

i ,m
0
i ,Σ

0
i }|

k
i=1, some competitive

learning mechanism may be helpful. For example, m0
i can

be selected through a DSRPCL procedure [19] and then π0
i

and Σ0
i can be estimated accordingly.

After initializing all the parameters, Θk will be updated

in each phase of λ(T ) via the fixed-point learning algorithm

given by Eqs (12)-(14). At the end of each learning phase,

the Gaussians with the mixing proportions less than θ0 are

annihilated immediately. After λ(T ) becomes 0, the algo-

rithm goes on until the log likelihood function reaches its

maximum value or its absolute increment is less than ε2.

3. EXPERIMENTAL RESULTS

In this section, various experiments are carried out to demon-

strate the performance of the DRMLL algorithm for Gaus-

sian mixtures. Moreover, it is compared with some typical

existing learning algorithms. In these experiments, we al-

ways select ε1 = 1e − 5, ε2 = 1e − 5, η1 = 1.005,λ0 =
1e− 5 η2 = 2 and θ0 = 0.05. The other parameters will be

specified in the particular experiments.

We begin to generate four typical synthetic datatsets from

mixtures of four or three bivariate Gaussian distributions on

the plane coordinate system (i.e., d = 2). Clearly, these

1434

Authorized licensed use limited to: Peking University. Downloaded on June 03,2022 at 14:40:01 UTC from IEEE Xplore.  Restrictions apply. 



−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

400•(2.5,0)400•(0,2.5)400•(•2.5,0)400•(0,•2.5)(a)•6•4•20246•6•4•20246544•(2.5,0)448•(0,2.5)352•(•2.5,0)256•(0,•2.5)(b
)

�4�3�2�101234�4�3�2�101234600
−

(2
.5

,0
)

3
6

0
−

(0
,2

.5
)

2
4

0
−

(−
1

,−
1

)

(c)−
6
−

4
−

2
0246−

6
−

4
−

2
02466

8
−

(2
.5

,0
)

5
6

−
(0

,2
.5

)

4
4

−
(−

2
.5

,0
)

3
2

−
(0

,−
2

.5
)





rithm is established for Gaussian mixtures. By controlling

the scale factor of the regularization term to dynamically


