
PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions

Zhengyang Shen 1 Lingshen He 2 Zhouchen Lin 2 Jinwen Ma 1

Abstract
Recent research has shown that incorporating
equivariance into neural network architectures is
very helpful, and there have been some works
investigating the equivariance of networks under
group actions. However, as digital images and
feature maps are on the discrete meshgrid, corre-
sponding equivariance-preserving transformation
groups are very limited.

In this work, we deal with this issue from the con-
nection between convolutions and partial differen-
tial operators (PDOs). In theory, assuming inputs
to be smooth, we transform PDOs and propose a
system which is equivariant to a much more gen-
eral continuous group, the n-dimension Euclidean
group. In implementation, we discretize the sys-
tem using the numerical schemes of PDOs, deriv-
ing approximately equivariant convolutions (PDO-
eConvs). Theoretically, the approximation error
of PDO-eConvs is of the quadratic order. It is the
first time that the error analysis is provided when
the equivariance is approximate. Extensive experi-
ments on rotated MNIST and natural image classi-
fication show that PDO-eConvs perform competi-
tively yet use parameters much more efficiently.
Particularly, compared with Wide ResNets, our
methods result in better results using only 12:6%
parameters.

1. Introduction
In the past few years, convolutional neural network (CNN)
models have become the dominant machine learning meth-
ods in the field of computer vision for various tasks, such
as image recognition, objective detection and semantic seg-
mentation. Compared with fully-connected neural networks,

1School of Mathematical Sciences and LMAM, Peking Univer-
sity, Beijing 100871 2Key Lab. of Machine Perception (MoE),
School of EECS, Peking University, Beijing 100871. Corre-
spondence to: Zhouchen Lin <zlin@pku.edu.cn>, Jinwen Ma
<jwma@math.pku.edu.cn>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

a significant advantage of CNNs is that they are shift equiv-
ariant: shifting an image and then feeding it through a num-
ber of layers is the same as feeding the original image and
then shifting the resulted feature maps. In other words, the
translation symmetry is preserved by each layer. Also, the
equivariance property brings in weight sharing, with which
we can use parameters more efficiently.

Motivated by this, Cohen and Welling (2016) proposed
group equivariant CNNs (G-CNNs), showing how convolu-
tional networks can be generalized to exploit larger groups
of symmetries, including rotations and reflections. G-CNNs
are equivariant to the group p4m or p41, and work on square
lattices. In addition, Hoogeboom et al. (2018) proposed
HexaConv and showed how one can implement planar con-
volutions and group convolutions over hexagonal lattices,
instead of square ones. As a result, the equivariance is ex-
panded to p6m. However, it seems impossible to design
CNNs that are equivariant to the rotation angles other than
�=2 (p4m) and �=3 (p6m) as there does not seem to ex-
ist other rotational symmetric discrete lattices on the 2D
plane, if one considers equivariance in the ways as (Cohen
& Welling, 2016) and (Hoogeboom et al., 2018).

In order to exploit more symmetries, Weiler et al. (2018)
employed harmonics as steerable filters to achieve exact
equivariance to larger transformation groups in the continu-
ous domain. However, they are difficult to preserve strong
equivariance when operating on discrete pixel grids, for two
main reasons: (i) When a harmonic is sampled on grids with
a low rate, it could appear as a lower harmonic, which in-
troduces aliasing artifacts. (ii) With Gaussian radial profiles
as radial functions, harmonics ranged out of the sampled
kernel support, leading to a high equivariance error on im-
plementation.

From another point of view, a conventional convolutional
filter can also be viewed as a linear combination of PDOs,
which was proposed by (Ruthotto & Haber, 2018). With this
new understanding, we assume inputs are smooth functions,
and then show how to transform the PDOs and get a system
which is exactly equivariant to a much more general continu-

1Generally, the group pnm, which we will use in Section 4,
denotes the group generated by translations, reflections and rota-
tions by 2�=n. The group pn denotes the group only generated by
translations and rotations by 2�=n.

PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions

ous transformation group, the n-dimension Euclidean group.
To implement our theory on discrete digital images, we dis-
cretize the system using the numerical schemes of PDOs
and get approximately equivariant convolutions. Particu-
larly, the discretized convolutions can achieve a quadratic
order equivariance approximation, and it is the first time
that the error analysis is provided when the equivariance is
approximate. As the derived equivariant convolutions are
based on PDOs, we refer to them as PDO-eConvs.

We evaluate the performance of PDO-eConvs on rotated
MNIST and natural image classification tasks. Extensive
experiments verify that PDO-eConv produces very com-
petitive results and is significantly efficient on parameter
learning..

Our contributions are as follows:

� With the assumption that inputs are smooth, we use
PDOs to design a system that is equivariant to a much
more general continuous group, the n-dimensional Eu-
clidean group.

� The equivariance is exact in the continuous domain.
It becomes approximate only after the discretization.
Moreover, it is the first time that the error analysis is
provided when the equivariance is approximate. To be
specific, the approximation error of PDO-eConvs is of

PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions

3. Mathematical Framework
In this section we design a group equivariant system using
PDOs. To make concepts and notations more explicit, we
give a preliminary introduction of groups and equivariance
formally.

3.1. Prior Knowledge

The Isometry Group In mathematics, the isometry group
is a group consisted of isometry transformations, which
preserve the distance of any two points. Particularly, the
Euclidean group is the largest isometry group defined on
Rn, which we denote as E(n). Given y 2 Rn, the isometry
transformation is:

y :! Ay + x; (1)

where A is an orthogonal matrix, i.e., A>A = I , and x 2
Rn. When A = I , the transformations in (1) compose the
translation group hRn; +i. Without ambiguity, we use Rn

to denote the translation group in the following text. When
x = 0, E(n) degenerates to the orthogonal group, O(n),
which contains all the orthogonal transformations, including
reflections and rotations. We use A to parameterize O(n).
Rn and O(n) are both subgroups of E(n), and E(n) =
Rn o O(n) (o is a semidirect-product). We use (x;A) to
represent the element in E(n), where x and A represent a
translation and an orthogonal transformation, respectively.
Restricting the domain of A and x, we can also use this
representation to parametrize any subgroup of E(n).

Actions on Functions Inputs and intermediate feature
maps can be naturally modeled as functions defined in the
continuous domain. To be specific, we model the input r
as a smooth function defined on Rn and the intermediate
feature map e as a smooth function defined on E(n), where
the smoothness of e means that if we use the representation
(x;A) mentioned above, the feature map e(x;A) is smooth
w.r.t. x when A is fixed. So e can also be viewed as a
function defined on Rn with infinite channels indexed by A.
We use C∞(Rn) and C∞(E(n))2 to denote the function
spaces of r and e, respectively .

In this way, transformations like rotations and reflections on
inputs and feature maps can be mathematically formulated.
Here, we introduce two transformations used in our theory.

� Suppose that r 2 C∞(Rn) and Ã 2 O(n), then the
transfomation Ã acts on r in the following way3:

8x 2 Rn; �ReA [r](x) = r(Ã−1x): (2)
2For the simplicity of our theory, we require that r 2 C∞(Rn).

However, in implementation, we only require that r 2 C4(Rn).
The requirement on e is the same.

3We use [�] to denote that an operator acts on a function.

Figure 1. The transformation g can be preserved by the mapping
	.

� Suppose that e 2 C∞(E(n)) and Ã 2 O(n), then Ã
acts on e in the following way:

8a 2 E(n); �EeA [e](a) = e(Ã−1a); (3)

where Ã−1a is group product on E(n). Using the
representation of E(n), it is of the following more
detailed form:

�EeA [e](x;A) = e(Ã−1x; Ã−1A); (4)

where (x;A) is the representation of a.

Equivariance Equivariance measures how the outputs of
a mapping transform in a predictable way with the transfor-
mation of the inputs. Here, we formulate it in detail. Let 	
be a mapping from the input feature space to the output fea-
ture space and G is a group. A group equivariant 	 satisfies
that

8g 2 G; 	[�g[f]] = �′g[[f]];

where f can be any input feature map in the input feature
space, and �g and �′g denote how the transformation g acts
on input features and output features, respectively.

That is, transforming an input f by a transformation g (form-
ing �g[f]) and then passing it through the mapping 	 should
give the same result as first mapping f through 	 and then
transforming the representation. The schema of equivari-
ance is shown in Figure 1. It is easy to see that if each
layer of a network is equivariant, the equivariance can be
preserved by the network.

3.2. Group Equivariant Differential Operators

We refer to H(u1; u2; � � � ; un;�) as a polynomial of n vari-
ables parameterized by �. ∂

∂xi
denotes the derivative with

respect to the ith coordinate of x. Obviously, as a polyno-

mial of PDOs
{

∂
∂xi

}n

i=1
, H(∂

∂x1
; ∂
∂x2

; : : : ; ∂
∂xn

;�) is a lin-
ear combination of PDOs parameterized by �. For example,

PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions

!"

!#

!$
!"(&)

!#(&)

!$(&)

∇ ∇(&))*"

Figure 2. Transformation over coordinate frame.

if H(u1; u2;�) = �1u1 +�2u1u2, then H(∂
∂x1

; ∂
∂x2

;�) =

�1
∂

∂x1
+ �2

∂2

∂x1∂x2
.

3.2.1. UNDER ORTHOGONAL TRANSFORMATION

We transform these PDOs with orthogonal matrices, and
define the following differential operator:

�(A) = H

(
@

@x
(A)
1

;
@

@x
(A)
2

: : : ;
@

@x
(A)
n

;�

)
; (5)

where
∂

∂x
(A)
1
∂

∂x
(A)
2

...
∂

∂x
(A)
n

 = A−1

∂

∂x1
∂

∂x2

...
∂

∂xn

 ; (6)

and A is an orthogonal matrix. As a compact format, we
can also rewrite (6) as

r(A) = A−1r; (7)

where r = [∂
∂x1

; ∂
∂x2

; � � � ; ∂
∂xn

]T , which is a gradient
operator. Particularly, the canonical operator �(I) =
H(∂

∂x1
; ∂
∂x2

; � � � ; ∂
∂xn

;�). From another point of view, the
transformation on PDOs can also be viewed as that we trans-
form the coordinate frame according to A, and then conduct
differential operators on the new coordinate frame (see Fig-
ure 2). Particularly, PDOs can be viewed as steerable filters
in the sense of (Helor & Teo, 1996), because the transformed
versions of PDOs can be expressed as linear combinations
of PDOs.

Next, we employ �(A)’s to define two differential operators
	 and �. To be specific, we use 	 to deal with inputs, which
maps an input r 2 C∞(Rn) to a feature map defined on
E(n): 8(x;A) 2 E(n),

8(x;A) 2 E(n); 	[r](x;A) = �(A)[r](x): (8)

Then we use � to deal with the resulting feature maps, which
maps one feature map e 2 C∞(E(n)) to another feature
map defined on E(n):

8(x;A) 2 E(n),

�[e](x;A) =

∫
O(n)

�
(A)
B [e](x;AB)d�(B); (9)

where B is an orthogonal matrix and � is a measure on
O(n). As for �(A)

B , we use the subscript B to distinguish
the differential operators parameterized by different �B’s.
The e on the right hand side should be viewed as a function
defined on Rn indexed by AB when the operator �(A)

B acts
on it.

We now show that the above two operators are equivari-
ant under orthogonal transformations and describe how the
outputs transform w.r.t. the transformations of inputs.

Theorem 1 If r 2 C∞(Rn); e 2 C∞(E(n)) and Ã 2
O(n), the following rules are satisfied:

	
[
�ReA [r]

]
=�EeA [[r]] ; (10)

�
[
�EeA [e]

]
=�EeA [�[e]] ; (11)

where �ReA ; �EeA ;	 and � are defined in (2), (4), (8) and (9),
respectively.

Proof 1 To prove (10), we need to prove that 8x 2 Rn; A 2
O(n),

�(A)
[
�ReA [r]

]
(x) = �EeA

[
�(A)[r](x)

]
= �(~A−1A)[r](Ã−1x): (12)

We first show that

r(A)
[
�ReA [r]

]
(x) = (A−1r)

[
�ReA [r]

]
(x)

= (A−1r)
[
r(Ã−1x)

]
= A−1Ãr[r](Ã−1x)

= (Ã−1A)−1r[r](Ã−1x)

= r(eA−1A)[r](Ã−1x):

The derivation from the third line to the fourth line is due to the
orthogonality of Ã. Thus for any element xi in x, we have

@

@x
(A)
i

[
�ReA [r]

]
(x) =

@

@x
(Ã−1A)
i

[r](~A−1x):

Furthermore,

r(A)

[
@

@x
(A)
i

[
�ReA [r]

]]
(x)

=A−1r

[
@

@x
(eA−1A)
i

[r](Ã−1x)

]

=(Ã−1A)−1r

[
@

@x
(eA−1A)
i

[r]

]
(Ã−1x)

=r(eA−1A)

[
@

@x
(eA−1A)
i

[r]

]
(Ã−1x):

PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions

Then we have that for any elements xi and xj in x,

@

@x
(A)
i

@

@x
(A)
j

[
�ReA [r]

]
(x) =

@

@x
(Ã−1A)
i

@

@x
(Ã−1A)
j

[r](~A−1x):

In this way, it is easy to prove that (12) is satisfied for all the
differential operator terms in �(·). Finally, as �(·) is a linear com-
bination of above terms, (12) is satisfied. Easily, (10) is satisfied.

As for (11), similarly, 8x 2 Rn; A 2 O(n),

�
[
�EeA [e]

]
(x;A) = �

[
e(Ã−1x; Ã−1A)

]
=

∫
O(n)

�
(A)
B

[
e(Ã−1x; Ã−1AB)

]
d�(B)

=

∫
O(n)

�
(A)
B

[
�ReA [e](x; Ã−1AB)

]
d�(B)

=

∫
O(n)

�
(eA−1A)
B [e](Ã−1x; Ã−1AB)d�(B)

= �EeA
[∫

O(n)

�
(A)
B [e](x;AB)d�(B)

]
= �EeA [[e]](x;A):

The derivation from the third line to the fourth line is due to (12).
So (11) is satisfied. �

Furthermore, as differential operators are naturally
translation-equivariant, it is easy to verify that 	 and �
are also equivariant over E(n). Consequently, according to
the working spaces, we set a 	 as the first layer, followed
by multiple �’s, inserted by pointwise nonlinearities, e.g.,
ReLUs, that do not disturb the equivariance. Finally, we can
get a system where equivariance can be preserved across
multiple layers.

3.2.2. UNDER SUBGROUP OF ORTHOGONAL
TRANSFORMATION

The above theorem can be easily extended to subgroups of
E(n). Here we consider a subgroup ~E(n) with the form
Rn o S, where S is a subgroup of O(n). Similarly, we
denote the smooth feature map defined on ~E(n) as ~e and
the function space as C∞(~E(n)).

The definition of the differential operator 	S is the similar
with (8):

8(x;A) 2 ~E(n); 	S [r](x;A) = �(A)[r](x); (13)

where the only difference is that A 2 S. If S is a discrete
group, the differential operator �S is:

8(x;A) 2 ~E(n); �S [~e](x;A) =
∑
B∈S

�
(A)
B [~e](x;AB);

(14)

where A 2 S. Following (2) and (4), we can define �ReA and

�
~EeA , where ~A 2 S. We can get the similar result:

	S
[
�ReA [r]

]
=�

~EeA [S [r]
]
; (15)

�S
[
�

~EeA [~e]
]

=�
~EeA [�S [~e]

]
: (16)

Easily, they are also equivariant w.r.t. ~E(n).

4. PDO-eConvs
In this section, we apply our theory to 2D digital images,
and derive approximately equivariant convolutions in the
discrete domain. As they are designed using PDOs, we
refer to them as PDO-eConvs. To begin with, we show how
to apply PDOs on discrete images and feature maps with
convolutional filters, respectively.

4.1. Differential Operators Acting on Discrete Features

We can view discrete digital images as samples from smooth
functions defined on the 2D plane. Formally, we assume
that an image data I 2 Rn×n represents a two-dimensional
grid function obtained by discretizing a smooth function
r : [0; 1] � [0; 1] :! R at the cell-centers of a regular
grid with n � n cells and a mesh size h = 1=n, i.e., for
i; j = 1; 2; : : : ; n;

Ii,j = r(xi; yj);

where xi = (i� 1
2)h and yj = (j � 1

2)h.

Accordingly, intermediate feature maps in CNNs are multi-
channel matrices. Similarly, it can be seen as the dis-
cretizations of continuous functions defined on ~E, where
~E = R2 o S and S is a subgroup of O(2). Formally, a
feature map F represents a three-dimensional grid function
sampled from a smooth function e : [0; 1]2 � S :! R. For
i; j = 1; 2; : : : n,

F k
i,j = e(xi; yj ; k); (17)

where xi = (i � 1
2)h; yj = (j � 1

2)h and k 2 S which
represents its channel index. Here, for ease of presentation,
we only consider that inputs and intermediate feature maps
are all single-valued functions, and the theory can be easily
extended to multi-valued functions.

With the understanding that features are sampled from con-
tinuous functions, we can implement differential operations
on features. Particularly, we use convolutions to approxi-
mate differential operations, which have been widely used
in image processing. For example, the operator ∂

∂x acting
on images and feature maps can be approximated by the

PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions

following 3�3 convolutional filter with quadratic precision:

@

@x
[r](xi; yj) =

 1

2h

 0 0 0
�1 0 1
0 0 0

 � I

i,j

+O(h2);

@

@x
[e](xi; yj ; k) =

 1

2h

 0 0 0
�1 0 1
0 0 0

 � F k

i,j

+O(h2);

where � denotes the convolution operation.

4.2. From Group Equivariant Differential Operators to
PDO-eConvs

Firstly, we choose the polynomial H from the connection
between differential operators and convolutions. Ruthotto
& Haber (2018) showed that we can relate a 3 � 3 convo-
lutional filter to a differential operator, D, which is a linear
combination of 9 linearly independent PDOs4.

D =�1@0 + �2@x + �3@y + �4@xx + �5@xy (18)
+ �6@yy + �7@xxy + �8@xyy + �9@xxyy:

In addition, we observe that all differential operators in (19)
can be approximated using 3� 3 convolutional filters (see
Supplementary Material 1.1) with quadratic precision. It
is to say that we can always approximate the differential
operators defined in (19) using a 3� 3 filter with quadratic
precision. For this reason, we choose

H(u; v;�) =�1 + �2u+ �3v + �4u
2 + �5uv (19)

+ �6v
2 + �7u

2v + �8uv
2 + �9u

2v2:

In this way, D equals �(I), which is also the canonical dif-
ferential operator of �(A)’s, indexed by the identity matrix.
Using the transformation in (6), we can calculate all the
expressions of �(A)’s easily. Particularly, these transformed
differential operators share the same parameters �

PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions

in this way. By definition, the differential operator �(A)

is transformed from �(I). Intuitively, we can also view
the convolutional filter ~�(A) as a transformed version of
~�(I). We assume the transformation to be the rotation. As
shown in Figure 3, ~�(A) is a rotated version of ~�(I), which
overflows the original 3� 3 area. So it makes sense to use a
larger filter to represent some transformed filters. That 5�5
is sufficient is because the rotated 3 � 3 mask can always
be covered by a 5� 5 square, noting that 5 � 3

p
2.

4.3. Approximation Error of Equivariance

When we discretize the differential operators 	 and �, er-
rors occur, leading to equivariance disturbance. Nonetheless,
we can still achieve approximate equivariance. Here, we
analyze the approximation error of our PDO-eConvs.

Theorem 2 8 ~A 2 S,

~	 � �ReA [I] = �
~EeA
[

~	 � I
]

+O(h2); (23)

~� � � ~EeA [F] = �
~EeA
[

~� � F
]

+O(h2); (24)

where transformations such as rotations or mirror re-
flections acting on images are defined as (�ReA [I])i,j =

(�ReA [r])(xi; yj) and transformations acting on feature maps

are (�
~EeA [F])ki,j = (�

~EeA [e])(xi; yj ; k).

Proof 2 8A 2 S, the operator �(A) is a linear combination
of differential operators and ~�(A) is a combination of cor-
responding convolution operators. Hence if r is a smooth
function,

�(A)[r](xi; yj) =
(

~�(A) � I
)
i,j

+O(h2);

�(A)
[
�ReA [r]

]
(xi; yj) =

(
~�(A) � �ReA [I]

)
i,j

+O(h2);

i.e.,

	[r](xi; yj ; A) =
(

~	 � I
)A
i,j

+O(h2);

	
[
�ReA [r]

]
(xi; yj ; A) =

(
~	 � �ReA [I]

)A
i,j

+O(h2): (25)

Easily, we have

�
~EeA [[r]] (xi; yj ; A) =

(
�

~EeA
[

~	 � I
])A

i,j
+O(h2): (26)

From (10) we know that the left hand sides of (25) and
(26) equal, hence the right hand sides of the two equation
are the same, which results in (23). We can prove (24)
analogously. �

4.4. Weight Initialization Scheme

An important practical issue in the training phase is an ap-
propriate initialization of weights. When the variances of
weights are chosen too high or too low, the signals prop-
agating through the network are amplified or suppressed
exponentially with depth. Glorot & Bengio (2010) and He
et al. (2015) investigated this problem and proposed widely
used initialization schemes. However, our filters are not
parameterized in a pixel basis but as linear combinations
of several PDOs, thus the above-mentioned initialization
schemes cannot directly be adopted for our PDO-eConvs.

To be specific, we consider the canonical filter ~�(I) in each
PDO-eConv, and initialize it with He’s initialization scheme
(He et al., 2015). Then we initialize the parameters � of the
PDO-eConv by solving the linear equation

~�(I) =�1~u0 + �2~ux + �3~uy + �4~uxx + �5~uxy (27)
+ �6~uyy + �7~uxxy + �8~uxyy + �9~uxxyy:

with the initialized ~�(I). In this way, the canonical filter
is initialized with He’s initialization scheme. Since other
filters are obtained by transforming the canonical filters,
they also have appropriate variances. We initialize each ~	k

in (22) in the same way. We use this method to initialize all
the PDO-eConvs in experiments and all the experiments are
implemented using Tensorflow.

5. Experiments
5.1. Rotated MNIST

The most commonly used dataset for validating rotation-
equivariant algorithms is MNIST-rot-12k (Larochelle et al.,
2007). It contains the handwritten digits of the classical
MNIST, rotated by a random angle from 0 to 2� (full angle).
This dataset contains 12,000 training images and 50,000
test images, respectively. We randomly select 2,000 train-
ing images as a validation set. We choose the model with
the lowest validation error during training. For preprocess-
ing, we normalize the images using the channel means and
standard deviations.

Without Data Augmentation Firstly, we evaluate the per-
formance of PDO-eConvs on MNIST-rot-12k without data
augmentation via the CNN architecture used in (Cohen &
Welling, 2016). It contains 6 layers of 3� 3 convolutions,
20 channels in each layer, ReLU functions, batch normaliza-
tion (Ioffe & Szegedy, 2015), and max pooling after layer
2.

We consider the group p8 and replace each convolution by a
p8-convolution, divided the number of filters by

p
8, in order

to keep the numbers of parameters nearly the same. Thus we
use 7 filters on each layer. Particularly, batch normalization
should be implemented with a single scale and a single bias

PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions

Table 1. Error rates on MNIST-rot-12k without data augmentation.
Network Test Error (%) params
ScatNet-2 (Bruna & Mallat, 2013) 7.48 -
PCANet-2 (Chan et al., 2015) 7.37 -
TIRBM (Sohn & Lee, 2012) 4.2 -
ORN-8 (ORNAlign) (Zhou et al., 2017) 2.25 0.53M
TI-Pooling (Laptev et al., 2016) 2.2 13.3M
CNN 5.03 22k
G-CNN (Cohen & Welling, 2016) 2.28 25k
PDO-eConv (ours) 1.87 26k

per PDO-eConv map to preserve equivariance.

The model is trained using the Adam algorithm (Kingma &
Ba, 2015) with a weight decay of 0:01. We use the weight
initialization method introduced in Section 4.4 for PDO-
eConvs and Xavier initialization (Glorot & Bengio, 2010)
for the fully connected layer. We train using batch size 128
for 200 epochs. The initial learning rate is set to 0:001 and
is divided by 10 at 50% and 75% of the total number of
training epochs. We set the dropout rate as 0:2.

As shown in Table 1, with comparable numbers of param-
eters, our proposed PDO-eConv achieves 1:87% test er-
ror, outperforming conventional CNN (5:03%) and G-CNN
(2:28%), which is equivariant on group p4. This is mainly
because that our model is rotation-equivariant w.r.t. smaller
rotation angles, which brings in better generalization. ORN-
8 also deals with an 8-fold rotational symmetry and adopts
an extra strategy, ORNAlign, to refine feature maps. Com-
pared with ORN-8 (ORNAlign), our method still results
in lower test error, using far fewer numbers of parameters
(26k vs. 0.53M). TI-Pooling is a representative model of
transformation-invariant CNNs, which use parallel siamese
architectures. Compared with it, PDO-eConv performs bet-
ter (1:87% vs. 2:2%) using far fewer parameters (26k vs.
13.3M) and has much lower computational complexity.

Competitive Result with Data Augmentation We com-
pare the performance of our PDO-eConv with some more
competitive models, using data augmentation and a larger
model with 7 layers. These layers have 16, 16, 32, 32, 32,
64 and 64 output channels, respectively. We use spatial
pooling and orientation pooling after the final PDO-eConv

Table 2. Competitive results on MNIST-rot-12k.

Method Test Error (%)
H-Net (Worrall et al., 2017) 1.69
OR-TIPooling (Zhou et al., 2017) 1.54
RotEqNet (Marcos et al., 2017) 1.09
PTN-CNN (Esteves et al., 2018) 0.89
E2CNN (Weiler & Cesa, 2019) 0.716
SFCNN (Weiler et al., 2018) 0.714
PDO-eConv (ours) 0.709

layer, in order to get rotation-invariant features. Following
(Weiler et al., 2018), we augment the dataset with contin-
uous rotations during training time. This model is trained
using stochastic gradient descent (SGD) and a Nesterov mo-
mentum (Sutskever et al., 2013) of 0:9 without dampening.
We train this model for 300 epochs, starting with a learning
rate of 10−2 and reducing it gradually to 10−5.

As shown in Table 2, E2CNN and SFCNN achieve 0:716%
and 0:714% test error on rotated MNIST, respectively. Com-
pared with SFCNN, our method achieves a comparable re-
sult, 0:709% test error, using only 10% parameters. To be
specific, our method uses 0.65M parameters, while SFCNN
needs 6.5M parameters. Also, SFCNN used a much larger
architecture and larger kernel sizes (7� 7 and 9� 9), which
relate to a much larger computational cost. E2CNN repli-
cates the architecture used in SFCNN, so it also relates to a
huge computational cost.

5.2. Natural Image Classfication

Although most objects in natural scene images are up-right,
rotations could exist in small scales. Besides, equivariance
to a transformation group brings in more parameter sharing,
which may improve the parameter efficiency. Here we eval-
uate the performance of our PDO-eConvs on two common
natural image datasets, CIFAR-10 (C10) and CIFAR-100
(C100) (Krizhevsky & Hinton, 2009), respectively.

The two CIFAR datasets consist of colored natural images
with 32 � 32 pixels. C10 consists of images drawn from
10 classes and C100 from 100. The training and the test
sets contain 50,000 and 10,000 images, respectively. We
randomly select 5,000 training images as a validation set.
We choose the model with the lowest validation error during
training. We adopt a standard data augmentation scheme
(mirroring/shifting) (Lee et al., 2015) that is widely used
for these two datasets. For preprocessing, we normalize the
images using the channel means and standard deviations.

To evaluate our method, we take ResNet (He et al., 2016)
as the basic model, which consists of an initial convolution
layer, followed by three stages of 2n convolution layers
using ki filters at stage i, followed by a final classification
layer (6n + 2 layers in total). We replace all convolution
layers of ResNets by our PDO-eConvs and implement batch
normalization with a single scale and a single bias per PDO-
eConv map. Also, we scale the number of filters to keep
the numbers of parameters approximately the same. All the
models are trained using SGD and a Nesterov momentum
(Sutskever et al., 2013) of 0:9 without dampening. We train
using batch size 128 for 300 epochs, weight decay of 0:001.
The initial learning rate is set to 0:1 and is divided by 10 at
50% and 75% of the total number of training epochs. Simi-
larly, we use the weight initialization method introduced in
Section 4.4 for our PDO-eConvs and Xavier initialization

PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions

Table 3. Results on the natural image classification benchmark. In
the second column, G is the group where equivariance can be
preserved.

Method G Depth C10 C100 params

ResNet (He et al., 2016) Z2 26 11.5 31.66 0.37M

HexaConv (Hoogeboom et al., 2018) p6 26 9.98 - 0.34M

p6m 26 8.64 - 0.34M

PDO-eConv (ours) p6 26 5.65 27.13 0.36M

p6m 26 5.38 27.00 0.37M

ResNet Z2 44 5.61 24.08 2.64M

G-CNN (Cohen & Welling, 2016) p4m 44 4.94 23.19 2.62M

PDO-eConv (ours) p8 44 3.68 20.01 2.62M

ResNet Z2 1001 4.92 22.71 10.3M

Wide ResNet (Zagoruyko & Komodakis, 2016) Z2 26 4.00 19.25 36.5M

G-CNN (Cohen & Welling, 2016) p4m 26 4.17 - 7.2M

PDO-eConv (ours) p8 26 3.50 18.40 4.6M

for the fully connected layer. We report the results of our
methods in Table 3.

Following HexaConv, we use our PDO-eConvs to estab-
lish models that are equivariant to group p6 (p6m), where
n = 4 and ki = 6; 13; 26 (ki = 6; 9; 18). Using comparable
numbers of parameters, our methods perform significantly
better than HexaConv (5:38% vs. 8:64% on C10). In addi-
tion, HexaConvs require extra memory to store hexagonal
images while our PDO-eConvs do not need so.

We evaluate PDO-eConvs using ResNet-44, where n = 7
and ki = 11; 23; 45. Compared with G-CNNs, our PDO-
eConvs achieve significantly better performance using com-
parable numbers of parameters (3:68% vs. 4:94% on C10,
and 20:01% vs. 23:19% on C100). When evaluated on
ResNet-26, where n = 4; ki = 20; 40; 80, PDO-eConv re-
sults in 3:50% test error, much better than 4:17% resulted
from G-CNN, yet using much fewer parameters (4.6M vs.
7.2M). This is mainly because that PDO-eConvs can deal
with an 8-fold rotational symmetry, which exploit more
rotational symmetries compared with G-CNN.

Finally, we compare our models with deeper ResNets
(ResNet-1001) and wider ResNets (Wide ResNet). As
shown in Table 3, PDO-eConvs perform betterr (3:50%
vs. 4:00% in C10 and 18:40% vs. 19:25% in C100) us-
ing only 12:6% parameters (4.6M vs. 36.5M). Particularly,
PDO-eConvs can also be viewed as introducing a weight
sharing scheme across channels, and the results indicate that
our method can not only save parameters, but also improve
the performance remarkably.

6. Conclusion
We utilize PDOs to design a system which is exactly equiv-
ariant to a much more general continuous group, the n-
dimension Euclidean group. We use numerical schemes to
implement these PDOs and derive approximately equivari-

ant convolutions, PDO-eConvs. Particularly, we provide
an error analysis and show that the approximation error is
of the quadratic order. Extensive experiments verify the
effectiveness of our method.

In this work, we only conduct experiments on 2D images.
Actually, our theory can deal with the data with any dimen-
sion. We will explore more possibilities in the future.

Acknowledgements
This work was supported by the National Key Re-
search and Development Program of China under grant
2018AAA0100205. Z. Lin is supported by NSF China
(grant no.s 61625301 and 61731018), Major Scientific Re-
search Project of Zhejiang Lab (grant no.s 2019KB0AC01
and 2019KB0AB02), Beijing Academy of Artificial Intelli-
gence, and Qualcomm.

References
Bruna, J. and Mallat, S. Invariant scattering convolution

networks. TPAMI, 35(8):1872–1886, 2013.

Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., and Ma,
Y. PCANet: A simple deep learning baseline for image
classification? TIP, 24(12):5017–5032, 2015.

Cohen, T. and Welling, M. Group equivariant convolutional
networks. In ICML, pp. 2990–2999, 2016.

Cohen, T. S. and Welling, M. Steerable CNNs. In ICLR,
2017.

Dong, B., Jiang, Q., and Shen, Z. Image restoration:
Wavelet frame shrinkage, nonlinear evolution pdes, and
beyond. Multiscale Modeling & Simulation, 15(1):606–
660, 2017.

Esteves, C., Allenblanchette, C., Zhou, X., and Daniilidis,
K. Polar transformer networks. In ICLR, 2018.

Fang, C., Zhao, Z., Zhou, P., and Lin, Z. Feature learning
via partial differential equation with applications to face
recognition. Pattern Recognition, 69:14–25, 2017.

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In AISTATS,
pp. 249–256, 2010.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In ICCV, pp. 1026–1034, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings in
deep residual networks. In ECCV, pp. 630–645. Springer,
2016.

PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions

Helor, Y. and Teo, P. C. Canonical decomposition of steer-
able functions. Journal of Mathematical Imaging and
Vision, 9(1):83–95, 1996.

Hinton, G. E., Sabour, S., and Frosst, N. Matrix capsules
with EM routing. In ICLR, 2018.

Hoogeboom, E., Peters, J. W., Cohen, T. S., and Welling, M.
HexaConv. In ICLR, 2018.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In ICML, pp. 448–456, 2015.

Jaderberg, M., Simonyan, K., Zisserman, A., and
Kavukcuoglu, K. Spatial transformer networks. In
NeurIPS, pp. 2017–2025, 2015.

Jain, A. K. and Jain, J. Partial differential equations and
finite difference methods in image processing–Part II: Im-
age restoration. IEEE Transactions on Automatic Control,
23(5):817–834, 1978.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015.

Koenderink, J. J. The structure of images. Biological Cy-
bernetics, 50(5):363–370, 1984.

Krizhevsky, A. and Hinton, G. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In NeurIPS, pp. 1097–1105, 2012.

Laptev, D., Savinov, N., Buhmann, J. M., and Pollefeys,
M. TI-POOLING: transformation-invariant pooling for
feature learning in convolutional neural networks. In
CVPR, pp. 289–297, 2016.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and
Bengio, Y. An empirical evaluation of deep architectures
on problems with many factors of variation. In ICML, pp.
473–480, 2007.

Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z.
Deeply-supervised nets. In AISTATS, pp. 562–570, 2015.

Lenc, K. and Vedaldi, A. Understanding image represen-
tations by measuring their equivariance and equivalence.
In CVPR, pp. 991–999, 2015.

Liu, R., Lin, Z., Zhang, W., Tang, K., and Su, Z. Toward
designing intelligent PDEs for computer vision: An opti-
mal control approach.

