${m y}$, and the second of the second of

Keywords: ${}^{\bullet}$ o ${}^{\bullet}$ o ${}^{\bullet}$ () ${}^{\bullet}$ for ${}^{\flat}$, ${}^{\bullet}$ ss ${}^{\bullet}$ or ${}^{\bullet}$ or ${}^{\bullet}$ s or ${}^{\bullet}$

b

k

k

b

b

b

b

b

orr sport of bor.

D.-S. Huang et al. (Eds.): ICIC 2008, LNCS 5226, pp. 552–560, 2008. © Springer-Verlag Berlin Heidelberg 2008

, b

and the second s

$$p \ x | \Theta_k \qquad \sum_{i=1}^k \alpha_i p \ x | \theta_i \qquad \sum_{i=1}^k \alpha_i p \ x | \mu_i, \Sigma_i ,$$

k , b , $\sum_{i=1}^k \alpha_i$, $p \ x | \theta_i$

$$p \ x | \theta_i \qquad p \ x | \mu_i, \Sigma_i \qquad \frac{1}{|\pi|^{\frac{1}{2}} |\Sigma_i|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu) |\Sigma|^{\frac{1}{2}}(x-\mu)},$$

 Σ_i Θ_k b Θ_k ... Θ_k Θ_i , ... Θ_k ...

N $\mathcal{X} = \{x_t\}_{t=1}^N$, and b are the second of Θ_k and C $\alpha_i^+ = \frac{1}{n} \sum_{i=1}^N P_i |x_t - \mu_i^+| = \sum_{i=1}^N x_t P_i |x_t| / \sum_{i=1}^N P_i |x_t|$ $\Sigma_i^+ = \sum_{t=0}^{N} P_t i | x_t - \mu_i^+ | x_t - \mu_i^+ |^T / \sum_{t=0}^{N} P_t i | x_t ,$. $P i|x_t = \alpha_i p x_t |\theta_i| / \sum_{i=1}^k \alpha_i p x_t |\theta_i|$. b b b b b уу ... $y \in Y \subset \mathcal{R}^m \qquad x \in X \subset \mathcal{R}^d \qquad \dots$ $y \in Y \subset \mathcal{R}^m$. D p(x,y) = p(x)p(y)x . q(x,y) = q(y)q(x)y y = y . $D_x = \{x_1, \cdots, x_n\}$ y = yp y | x p x q x | y q y $H p \parallel q \qquad \int p y |x p x \dots q x| y q y dxdy.$ $y \quad \{ \quad , \cdots, k \} \subset R \quad \dots \quad y \quad b \quad \qquad b \quad \qquad y \quad b \quad \qquad y \quad y \quad y \quad \qquad y \quad y \quad \qquad y \quad \qquad$

and the second

 $b \quad \bullet \quad o \quad p \quad A \quad for \quad ss \quad p \quad rs \quad 555$

b op

n en			· · · · · · · · · · · · · · · · · · ·		
	уу			/ v v = v	
	b	l			
Step 3: !	$\Theta_k \ l$. $\Theta_{k-1}' \ l$.		Θ_k l	, , , , b , , , ,	
Step 4:	Acc M	$J \Theta'_{k-1}$	$l - J \Theta_k l$	$ \begin{array}{ccc} I & Acc & M & > \\ & b & \Theta'_{k-} \end{array} $	> 1 l
Step 5:	Acc S	$J \Theta'_{k+1} l$	$-J\Theta_k l$	$ \begin{array}{ccc} I & Acc & S & > \\ & b & \Theta'_{k+1} \end{array} $	> 1
					k

, b, ..., b, ..., b, ..., b, ..., b, ..., b, ..., b

b b b k

- $r_{\rm S} 24(1), 19 40 (2006)$