
Proceedings of the 28th International Conference on Computational Linguistics, pages 3257–3267
Barcelona, Spain (Online), December 8-13, 2020

3257

Transformation of Dense and Sparse Text Representations

Wenpeng Hu1;�, Mengyu Wang2;�, Bing Liu2;y,
Feng Ji3, Jinwen Ma1, Dongyan Zhao2

1 Department of Information Science, Peking University
2 Wangxuan Institute of Computer Technology, Peking University

3 Alibaba Group
{wenpeng.hu, wangmengyu, dcsliub, jwma, zhaody}@pku.edu.cn zhongxiu.jf@alibaba-inc.com

Abstract

Sparsity is regarded as a desirable property of representations, especially in terms of explanation.
However, its usage has been limited due to the gap with dense representations. Most research
progresses in NLP in recent years are based on dense representations. Thus the desirable property
of sparsity cannot be leveraged. Inspired by Fourier Transformation, in this paper, we propose a
novel Semantic Transformation method to bridge the dense and sparse spaces, which can facil-
itate the NLP research to shift from dense spaces to sparse spaces or to jointly use both spaces.
Experiments using classification tasks and natural language inference task show that the proposed
Semantic Transformation is effective.

1 Introduction

A sparse vector is a vector that has a large number of zeros or near zeros. Many studies have shown that
sparsity is a desirable property of representations, especially for explanation (Fyshe et al., 2014; Faruqui
and Dyer, 2015). In this sense, sparse representation may hold the key to solving the explainability
problem of deep neural networks. Apart from the interpretability property, sparse representations can also
improve the usability of word vectors as features. The embeddings with good sparsity, interpretability
or special meanings can also benefit downstream tasks (Guo et al., 2014; Chang et al., 2018). Several
tasks have benefited from sparse representations, e.g., part-of-speech tagging (Ganchev et al., 2009),
dependency parsing (Martins et al., 2011), and supervised classification (Yogatama and Smith, 2014).

However, much of the research advances so far for NLP tasks are based on dense representations,
e.g., text classification (Kim, 2014; Tang et al., 2015; Wu et al., 2017; Wang et al., 2018), natural
language inference (Liu et al., 2019; Kim et al., 2019), machine translation (Cheng, 2019; He et al.,
2016) and generation (Serban et al., 2017; Zhang et al., 2019; Du and Cardie, 2017). The study of sparse
representations is still limited.

There are two key limitations in the study of sparse representations. First, little work has been done to
well connect dense and sparse spaces. The two types of representation are rather independent and cannot
help each other to achieve synergy. Second, limited work has been done to generate representations of
sentences or phrases in the sparse space using sparse word embeddings.

Inspired by Fourier Transformation, this paper proposes a novel method called Semantic Transforma-
tion (ST) to address the problems. With the help of ST, dense and sparse spaces can connect with each
other and will not be isolated. The proposed transformation consists of two key components, namely,
Semantic Forward Transformation (SFT) and Semantic Backward Transformation (SBT) (see Section 2).
SFT is designed to transform a dense representation to a sparse representation. That is, we transform any
learned dense features to sparse representations and give the model the properties that sparsity possesses.
Sparse representations can also be transformed back to dense representations through SBT. Moreover,
we can also perform different operations in the sparse space to achieve different goals.

�Equal contribution
yCorresponding Author. His current affiliation is University of Illinois at Chicago. Email: liub@uic.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

3258

Another key innovation of this paper is that it proposes a new approach for achieving sparseness. Con-
ventionally, penalties are used to achieve sparseness (Sun et al., 2016; Ng and others, 2011; Subramanian
et al., 2018). However, they suffer from the problems of initialization sensitivity and uncontrollable op-
timization. In this paper, we propose to achieve sparseness through a novel activation function, which
gives an effective solution (see Section 2.1). Experimental results show that the proposed activation
function works very well.

In this paper, we also explore a combination method to combine words representations into sentence
representations in the sparse space directly.1 Additionally, the proposed transformations and combination
method can be paralleled to enable efficient computation.

In summary, this paper makes the following contributions:
• It proposes a semantic transformation method which effectively connects dense and sparse spaces.
• It proposes to use a new activation function to achieve sparseness, which, to the best of our knowledge,
has not been used before. The function works very well.
• It proposes a combination method that can encode sentence in the sparse space directly.
• The proposed methods have been evaluated using text classification and natural language inference
tasks with promising results. Since the proposed transformations avoid large scale matrix multiplications
in the combination procedure, it is also efficient.

2 Semantic Transformation

In this section, we first briefly describe the composition of Semantic Transformation (ST), and then
elaborate on each component. The proposed ST has three operations:
1) SFT (Semantic Forward Transformation). It takes a dense representation as input and transforms it
into a higher dimensional sparse space.
2) SBT (Semantic Backward Transformation). It is the inverse of SFT, transforming representations from
the sparse space back to the dense space.
3) SCSS (Semantic Combination in the Sparse Space). It computes the sentence representation using its
component word representations in the sparse space.2

2.1 Semantic Forward Transformation

SFT aims to discover the latent semantic aspects in a dense representation of word x and put them
in a higher dimensional sparse representation y. We assume M is the number of latent semantic as-
pects3, and each latent semantic aspect is represented by a vector, i.e. bm ∈ Rd for the mth base.
We define all the latent semantic aspects as the bases of semantemes in the real world, denoted by
B = {b1, . . . ,bM} ∈ Rd�M . Given B, the function of SFT is to estimate the semantic distribution of
the given dense representation over B.

Definition (y): We define −1 ≤ yi ≤ 1, meaning that each element of y has a value in (−1, 1).

The reasons for giving positive and negative values to elements in a sparse representation are that 1)
negative values can represent “negative semantemes”; 2) we can eliminate some meanings of elements
(positive values) through simple operations between words, i.e., adding. Note that a negative value rep-
resenting “negative semantics” of a given aspect does not mean that two words with opposite meanings
have exactly corresponding positive and negative sparse representations. In the sparse space, we use
a composition of semantemes to denote word meanings. This is in line with the human way of using
words, e.g., the meaning of ”not bad” can be obtained by adding the sparse representations of “not” and
“bad”. In this sense, the meaning of “not bad” is a composition of several semantemes.

1In addition to the combination processing, we can perform different tasks in the sparse space, e.g., filtration and transfer.
We leave these tasks to our future work.

2Note that although many operations can be done in the sparse space, the purpose of this paper is not to investigate all those
operations. This paper mainly focuses on SCSS, the most basic operation in the sparse space for NLP.

3We set a limited number of semantemes because those latent semantemes are not all the semantemes in the real world but
are the bases for composing real world semantemes.

3259

(a) (b)

Figure 1: Activation curve.

Formulation of SFT: We adopt a multilayer perceptron (MLP)4 integrated with the base B to build a
SFT to perform its function. We first use a MLP f(·) to learn deep features of the dense representation
x, and then use the features to compute the sparse distribution over the semantic bases. Formally, the ith

layer in f(·) can be written as:
pi = fi(pi�1, µ) = σ(wipi�1) (1)

where σ is the activation function, and wi is the parameter of the ith layer denoted by µ; pi�1 is the
output of (i− 1)th layer and p0 = x. We denote the output of the last layer of f(·) as p and then
integrate it with B. The distribution over semantic bases can be computed by:

y = S(p ·wfB) (2)

where wf is a trainable parameter; S(·) is a specially designed activation function used to control the
sparseness of the semantic distribution (discussed later). To sum up, SFT can be written as:

y = SFT (x) = S(f(x) ·wfB) (3)

Sparse Activation: Sparsity is enforced through penalties in most existing studies, such as `1 regular-
izer (Sun et al., 2016), average sparsity penalty (Ng and others, 2011), and partial sparsity penalty (Sub-
ramanian et al., 2018). We call those methods penalty enforcing methods which push the sparse repre-
sentation close to either 0 or 1.

However, such penalties suffer from the initialization sensitivity problem as the penalties contain an
initial interface which influences the distribution of the learned sparse representation significantly. To
overcome the problem, we propose to use an activation function instead. We first give the formulation of
the proposed activation function S(·) and then show its activation curve in Figure 1(a).

S(x) = e�(�x�)
2 − e�(�x+)2 (4)

where β and γ are two hyper-parameters controlling the sparsity of the output. We set β = 1 and γ = 2
in our experiments.

Clearly, from Figure 1(a), we can see a large range of inputs of S(·) is mapped to 0, while the positions
around±γ/β get high responses. Integrated with an objective loss function (depending on specific types
of tasks, e.g., cross entropy for classification), SFT learns to give the relevant aspects/semantemes with
predictions around ±γ/β. In the case under the action of this activation function, we can learn sparse
representations through the original objective function, not relying on enforcing penalties. Based on the
experimental results, we will see that this activation function works very well on many datasets.
S(·) is non-linear and differentiable and its derivatives can be written as:

S0(x) = (−2β2x+ 2γβ · Sign(x)) · S(x) (5)

where Sign(·) is Sign function, and Sign(0) = 0. Clearly, the derivative of S(·) is easy to compute.
4Our approach is not limited to using multilayer perceptron (MLP). Other techniques, e.g., CNN may also be used.

3260

2.2 Semantic Backward Transformation
SBT is the inverse transformation of SFT, which transforms a sparse representation back to a dense
representation. Since we hope y is interpretable enough to be related to the semantemes directly, a
straightforward way to achieve SBT is to use the sparse representation to do a weighted sum over the
base B. In this way, SBT can be seen as a combination of some specific semantemes. To increase the
fitting ability of SBT, similar to SFT, we adopt a MLP F (·) to learn a deep dense representation, i.e.,

x = SBT (y) = F (tanh(wb ·ByT)) (6)

where tanh is the Tanh activation function, and wb is a trainable parameter. F (·) is a MLP with its own
trainable parameters.

2.3 Semantic Combination in Sparse Space
This section proposes a Semantic Elimination (SE) method to complete semantic combination in the
sparse space.5 The main idea of SE is to use the negative values in the representation of one word to
eliminate another word’s semantics. That is also one of the reasons for defining negative values in the
sparse representation. In this scenario, the sparse representation has two functions: (1) using positive
values (positive semantemes) to denote which semantic meanings a word has and (2) using negative
values (negative semantemes) to eliminate the semantemes that should not be present in the word. Below,
we detail SE.

Due to the fact that a word’s semantemes usually change with the nearby words or just the preceding
word in a sentence, given a sentence, we propose to use the ith word’s negative values to eliminate the
(i + 1)th word’s positive values (semantemes). We call this elimination method Preceding Elimination
(PE). After that, a nonlinear activation function must be followed to avoid the overall operation as a
linear operation. Note, the activation function must go through the origin (0, 0) in order to ensure the
balance of positive and negative values. In this case, we specially designed an activation function, which
we will elaborate it shortly. Then we add the sparse representations of all words in the sentence together
after PE as the final sentence sparse representation.6

We designed an activation function, called ‘leaky’ (its curve is shown in Figure 1(b)) to (1) decrease the
small values of a sparse representation in order to prevent the system from producing new semantemes
that shouldn’t exist; (2) make the SE sensitive to word order (in order to consider the information of
word order) since the activation function is non-linear which enables non-commutativity of the whole
SE over linear and non-linear operations. Note that ‘leaky’ is used on sparse representations of words
after preceding elimination. SE is formulated as:

st =

t∑
i=1

leaky(−Relu(−yi�1) + Relu(yi)) (7)

where st is the sparse representation of a sub-sentence from position 1 to t produced by semantic com-
bination in the sparse space. Then, sT denotes the sparse representation of a sentence with length T .

2.4 Objective Function
Overall, given a batch of data D, our model is trained to minimize the following objective function:

min L(D) = PL(D) + ML(D) + BL(D) + RLo(D) (8)

where PL(D) denotes the prediction loss over the dataset, it depends on the task that the model is applied
to; ML(D) denotes the margin loss, it is performed to enlarge the margin of distances between sparse
representations with different meanings; BL(D) is a regularization used to constrain the norm of bases;

5A sparse representation usually has a large number of dimensions (or aspects) but only a small number of dimensions have
none zero values. Inherently, it is inappropriate to combine words’ sparse representations into sparse sentence representations
by using complex matrix transformation.

6In the sum vector, if an element is greater than 1 or less than -1, we reduce its absolute value to 1 without sign change.

3261

RLo(D) denotes the reconstruction loss, which is used to do model simulation (see below) and therefore
it is optional. Note, when applying our method only PL(D) is necessary, ML(D) and BL(D) can be used
to improve the model’s performance. Next, we discuss these loss functions.

Prediction Loss (PL): PL(D) is the training loss of the application task. For example, in our case, this
loss is Cross Entropy for supervised classification.

Margin Loss (ML): ML(D) is designed to enlarge the margin of distances between sparse representa-
tions with different meanings. We need ML to help training because we found that the margin of the
learned sparse representation by optimizing PL is not clear or significant for separating positive and neg-
ative semantemes, which is undesirable for explanation. We then explore a new method for clear sparse
representation learning, called Margin Loss, which makes the sparse representations having different
meanings far from each other.

In the scenario of classification, we leverage the class labels as supervising information to group the
samples in a batch into each class, and then average the sparse representations of the instances in each
class to represent the class. Formally, we assume yci is the averaged representation of the ith class. Then,
based on the cosine similarity7, we define ML(D) as follows:

min ML(D) = sum(W � (YT
c ∗Yc)) (9)

where Yc = {y1, . . . ,yN}, N is the number of classes. � denotes Hadamard product. W ∈ RN�N
is hyper-parameter used to control the updating direction and degree. Wij is set to -1 if i = j, or 1
otherwise. This ensures a large margin between different classes by minimizing their inner product. Note
that in some scenarios, especially sentiment classification, the distance of different classes belonging to
the same positive (or negative) sentiment (e.g., strong and weak positive/negative classes) should not be
enlarged much. In this case, we develop an exponential decay function to intuitively set W:

Wij =

(
1
2

(N�1�ji�jj)=�
, if i 6= j

−1, otherwise
(10)

where τ is half-life, we set it to (N − 1)/2.

Base Regularization: (BL): Recall in the proposed semantic forward transformation method, base col-
lection B is the key for obtaining the semantic distribution (semantic representation) of the given dense
representation. Clearly, it is a projection procedure. Here, we argue that a larger projection will not en-
sure a better prediction. That is because representations with a large norm usually get a large projection,
which is a point that conventional prediction methods ignore. The proposed Sparse Activation method
eliminates this problem by giving large projections small responses. Similarly, inconsistent length of
bases in B will cause different output (response) priors. To tackle this problem, we propose a base
regularization to constrain the length of bases in B to equal to 1. Formally, BL is formulated as:

min BL =

MX
m=1

(||bm|| − 1)2 (11)

where bm is the mth base in B.

Reconstruction Loss (RLo): The proposed ST can easily do transformations among dense and sparse
spaces, and learn sentence representation in the sparse space. In this case, ST could provide a sentence
with both dense and sparse representations. One question that may be asked is whether the dense repre-
sentations produced by ST through back transform can be used in place of dense representations directly
learned by models in the dense space, e.g., LSTM? In this case, we propose reconstruction loss to min-
imize the construction error between the outputs of ST and LSTM. Another purpose of RLo(D) is to

7Note that yci is not a sparse representation as it is the average of many sparse representations. Cosine similarity is
appropriate for Margin Loss.

3262

control the meanings of the same word or sentence/phrase in different spaces to maintain consistency
with the representations of a sentence and its phrases produced by LSTM as X, then

RL(D) =
X
D

TX
i=1

(||xi − x0i||22 + ||si − s0i||22 + ||Xi −X0i||22) (12)

where x0i = SBT (yi),X
0
i = SBT (si), s

0
i = SFT (Xi); T is the length of the sentence. x,y, si have

the same meanings as we defined before. X0i denotes the dense representation constructed from sparse
representation si. This loss helps transform the representations in one space to another while maintaining
the semantic information consistency. The last term helps learn similar representations with LSTM.

Table 1: Average accuracy over all tasks. Y and X’ are representations for making predictions (X’ is the
back transformation of Y; Y is the sparse representation). Traditional penalty means the partial sparsity
loss in (Subramanian et al., 2018). Helper loss refers to ML or BL. Note that only the experiments using
X’ as the representations for prediction has RLo. RLo is not used when using Y as the prediction feature.

Model SNLI MR SST1 SST2 TREC
CNN (Kim, 2014) 59.71 76.10 36.80 80.60 90.20

Transformer (Vaswani et al., 2017) 55.32 75.23 34.80 78.30 81.56
Capsule (Zhao et al., 2018) 54.53 72.57 36.44 77.02 82.31

LSTM (Hochreiter and Schmidhuber, 1997) 66.66 71.04 36.96 75.11 87.60
ST{[X’] (without sparse activation or helper loss) 32.90 61.07 29.97 68.04 63.40

STz[X’] (with sparse activation, without helper loss) 63.34 70.38 35.79 75.11 80.00
STy[X’] (using the traditional penalty, without sparse activation or helper loss) 59.89 65.51 33.97 65.25 73.40

ST[X’] (full model) 66.58 71.16 38.69 76.03 87.06
ST{[Y] (without sparse activation or helper loss) 62.46 68.32 35.60 71.33 79.60

STz[Y] (with sparse activation, without helper loss) 63.53 76.38 38.24 78.33 86.20
STy[Y] (using the traditional penalty, without sparse activation or helper loss) 62.62 69.17 35.42 71.33 81.60

ST[Y] (full model) 66.85 77.15 41.78 80.70 87.80

3 Experiments

We evaluate the proposed method using one natural language inference dataset and four text classification
datasets. The tasks act as good quality checks for the learned representations. The five datasets are SNLI,
MR, SST1, SST2 and TREC, detailed training/dev/test splits are shown on Table 2:

Table 2: Summary statistics for the
datasets after tokenization. c de-
notes the number of target classes.

Data c Train Dev Test
SNLI 3 549367 9842 9842
MR 2 8529 1067 1066

SST1 5 8544 1101 2210
SST2 2 6920 872 1821
TREC 6 5452 500 500

• SNLI (Bowman et al., 2015): a collection of human-written
English sentence pairs manually labeled for balanced classifica-
tion with labels: entailment, contradiction, and neutral. This is
the natural language inference dataset, which is also solved via
classification.
• MR v1.08: Movie reviews with one sentence per review la-

beled positive or negative for sentiment classification.
• SST19: an extension of MR but with fine-grained labels: very

positive, positive, neutral, negative, very negative.
• SST210: same as SST1 but with neutral reviews removed and

only using positive and negative labels.
• TREC11: question samples that classify each question into one of 6 question types: about person,

location, numeric information, etc.

Baseline: Four widely used methods are employed as the baselines:
(1) a 1-layer LSTM (Hochreiter and Schmidhuber, 1997) with 300 hidden units;
8https://www.cs.cornell.edu/people/pabo/movie-review-data/
9http://nlp.stanford.edu/sentiment/

10http://nlp.stanford.edu/sentiment/
11https://cogcomp.seas.upenn.edu/Data/QA/QC/

3263

(2) a 3-layer Transformer (Vaswani et al., 2017) with 300 hidden units;
(3) CNN (Kim, 2014): We use exactly the same settings as the paper;
(4) Capsule Network (Zhao et al., 2018). We adopted the code released by the authors and used

trainable embeddings.
For our model, we adopt a MLP with 1 hidden layer (300 units) for forward transform and a MLP with

2 hidden layers (300 units) for backward transform. We set the length of semantic base to 1000.

Training details: We adopt uniform settings for all baselines and our model: 1) Adam optimizer for
parameter updating with learning rate of 1e-4; trainable embeddings with size 300. 2) A MLP with 1
hidden layer as the classifier. For a fair comparison, the hidden unit size is set to 300 for LSTM, CNN,
Transformer and Capsule. For our model, it is set to 64 when we use sparse representation to do the
prediction and still 300 when we use back transformation representations as the prediction features.12 3)
SNLI is the task of identifying the relationships between two given sentences. For each model, we first
use it to encode the two sentences into the resulting representations respectively, and then concatenate
the two sentence representations for the final prediction. 4) We report the average accuracy over 10 runs
of the experiment on the test data. For each run, the maximum accuracy before early stopping is selected
as the result of the current run.

3.1 Results and Analysis

Table 1 shows the prediction accuracy of our model and the baselines. Table 3 gives the prediction run
time. From Tables 1 and 3, we can make the following observations:

• The proposed Semantic Transform (ST) approach significantly outperforms LSTM on three datasets:
SST1, SST2 and MR, and obtain comparable results with LSTM on SNLI and TREC. ST also markedly
outperforms Transformer and Capsule on all five datasets, and outperforms CNN on four out of five
datasets. Therefore, we can draw the conclusion that ST is an effective method to learn sentence repre-
sentations in both dense and sparse spaces.

• STy (including STy[X’] and STy[Y]) performs much worse than the proposed sparse activation method,
which indicates the effectiveness of the proposed method. STz (including STz[X’] and STz[Y]) shows
the proposed sparse activation plays an important role in our system, and it’s very effective. And we
will show that the proposed sparse activation method can ensure good sparseness of the representation
through the analysis below. The relatively worse results of STz (including STz[X’] and STz[Y]) also
confirmed the effectiveness of helper losses. This part can be seen as our ablation study. Our activation
function, margin loss, and base regularization are all shown to play important roles in our method.

Table 3: Average running time over all test sets (Minute)
Model SNLI MR SST1 SST2 TREC
CNN 1.190 0.108 0.083 0.079 0.035

Transformer 1.810 0.151 0.140 0.137 0.041
Capsule 3.590 0.303 0.220 0.206 0.057
LSTM 2.096 0.186 0.168 0.142 0.049

ST 1.404 0.093 0.088 0.071 0.025

• In terms of efficiency, Table 3 shows
that ST is 2-3 times faster than LSTM.
ST is also markedly faster than Capsule
and Transformer on all datasets. CNN is
known as the fastest model and our method
achieves comparable speeds with CNN.

In summary, considering that our work
is only the first attempt, it performs quite
well compared with highly researched and optimized LSTM, CNN, Capsule and Transformer models.
We foresee that future work will significantly optimize our method.

Table 4: Distribution of values in the sparse repre-
sentations (%). V > 0.6 (V < 0.05) shows the
frequency of the values greater (less) than 0.6 (0.05)

Metrics SNLI MR SST1 SST2 TREC
V > 0.6 0.14 1.38 1.31 1.71 1.38
V < 0.05 99.68 97.39 97.21 96.36 97.16

Sparsity Analysis: Figure 2(a) shows the spar-
sity of the word sparse representations of all
datasets. Sparsity is evaluated using the Sparse
Evaluation (SE) function. We proposed this
method because previous methods were not de-
signed for sparse representations with both pos-

12In detail, the number of parameter of the classifiers for baselines and our model using back transformation representations
is 300*300=90,000; while the number for our model using sparse representation is 1000*64=64,000.

3264

(a) (b)

Figure 2: a) Sparsity evaluation of sparse word representations (the legend is explained below);b) Eval-
uation of the construction of X .

itive and negative values:

SE(D) =
1

|D|

jDjX
i=1

(sin(πyi))
2 (13)

As function (sin(πy))2 has only three minimum points, -1, 0, 1, it is suitable for measuring the concen-
tration degree of the components of sparse representations. Figure 2(a) shows a clear decline of SPLoss,
which indicates a high concentration degree. Table 4 also gives the statistics about the distributions
of the sparse representations. We can see that ‘zero’ (V < 0.05) takes a large portion of the sparse
representations, which is desirable. We can conclude that the learned sparse representations are indeed
sparse.

Figure 3: Visualization of learned sparse representations.

Accuracy of Transformation: We asked a question about the ability of ST to construct LSTM when
we introduced the RLo. Here, we analyze the transformation accuracy of the proposed method and give
a positive answer to that question. From Table 1, we can see that ST[X’] achieves very similar results
to those of LSTM. From the results, we can draw the conclusion that the dense representation generated
by ST through backward transformation can achieve very similar results to those of LSTM. Further, we
propose a measure to gauge the construction accuracy, named Construction Accuracy Metric (CAM), to
evaluate the accuracy of transformation. CAM is formulated as the following function (results are shown
in Figure 2(b)):

CAM(C) = 1

J |C|

jCj∑
i=1

J∑
j=1

|Xij −X 0ij |22
0.5 ∗ |Xij |22 + 0.5 ∗ |X 0ij |22

(14)

where Xij is the original dense representation of a sub-sentence (generated by LSTM) and X 0ij is the

3265

backward transformation result of its sparse representation; C denotes the test set, and J is the length of
the sentence. Clearly, this function can evaluate the similarity betweenX andX 0 as CAM will raise with
the increasing of distance between X and X 0. Figure 2(b) shows that the difference between X and X 0

is only about 5%. Therefore, we can conclude that our model can construct the outputs of LSTM well.

Interpretability Analysis: Interpretability is one of the most desirable properties of sparse representa-
tions. Figure 3 shows the average sparse representation of five classes (tested on the test set of SST1) with
different sentiment polarities (-2, -1, 0, 1, 2). Positive numbers refer to positive sentiment, and negative
numbers refer to negative sentiment. In order to clearly visualize the differences in the learned represen-
tations over the five classes, we sort the bases based on the ascending order of the sparse representation
values of +2 (very positive) class.

From Figure 3, we can see that there is a clear color difference for sentiment polarity class +2 and class
-2. We can also see a similar phenomenon for sentiment polarity class +1 and class -1 but less pronounced
as the their polarities are more similar. These observations demonstrate that the same bases obtain
opposite values for classes of opposite sentiments. The bases generating distinct responses for classes
with different sentiment polarities can be regarded as primary sentiment bases as they clearly indicate
the semantic differences of the classes. In other words, the primary sentiment bases can be explained as
sentiment bases. For example, the bases give positive response to positive classes but negative responses
to negative classes are the positive sentiment bases, which directly indicate the sentiment polarities.

Comparing with positive and negative classes, neutral class shows relative mixed responses. That
means neutral class has similar semantemes to those of both positive and negative classes. This demon-
strates that the neutral class is more difficult to identify.

4 Related Work

Sparse embeddings have been used in image (Ji et al., 2019; Zhou et al., 2016; Zhang and Patel, 2016),
signal (Caiafa and Cichocki, 2013; Huang and Aviyente, 2007), and NLP (Subramanian et al., 2018;
Kober et al., 2016) applications.

Several sparse models have been proposed to produce sparse embeddings. For example, some previous
works trained word embeddings with sparse or non-negative constraints (Murphy et al., 2012; Luo et al.,
2015). Linguistically inspired dimensions (Faruqui et al., 2015) is another way to increase sparsity and
interpretability. SPINE (SParse Interpretable Neural Embeddings) (Subramanian et al., 2018), a variant
of denoising k-sparse autoencoder, can generate efficient and interpretable distributed word represen-
tations. Our method is different from these approaches. We not only construct sparse representations
but also transform between dense and sparse spaces. We also combine word sparse representations to
produce sentence representations. Some recent studies tried to achieve sparsity in novel ways (Park et
al., 2017). We also proposed a novel method in this paper and experimentally verified its effectiveness.

5 Conclusion and Future Works

This paper proposed a novel method to transform representations between dense and sparse spaces, and
a technique to combine semantics in the sparse space. It also proposed and experimentally verified a
new activation function that can be used to achieve sparseness. Natural language inference and text
classification tasks were used to evaluate the proposed transformations with promising results. Based on
this study, many other interesting directions can be pursued in the future, e.g.,
(1) As we discussed in the paper, the proposed method can construct the output of LSTM well. One
future work is to apply ST to language modeling. In this case, the results can be used in many down
stream tasks such as machine translation and dialogue systems.
(2) With the help of ST, we can investigate the style transfer on similar tasks in the sparse space by direct
semantic reversing. Also, we can use ST to filter out noises or undesirable information.
(3) Based on sparse representations, we can also explore semantic pattern recognition and transformation.

3266

Acknowledgement

This work was partially supported by the National Key Research and Development Program of China
under grant 2018AAA0100205.

References
Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. 2015. A large annotated

corpus for learning natural language inference. arXiv preprint arXiv:1508.05326.

Cesar F Caiafa and Andrzej Cichocki. 2013. Computing sparse representations of multidimensional signals using
kronecker bases. Neural computation, 25(1):186–220.

Ting-Yun Chang, Ta-Chung Chi, Shang-Chi Tsai, and Yun-Nung Chen. 2018. xsense: Learning sense-
separated sparse representations and textual definitions for explainable word sense networks. arXiv preprint
arXiv:1809.03348.

Yong Cheng. 2019. Semi-supervised learning for neural machine translation. In Joint Training for Neural Ma-
chine Translation, pages 25–40. Springer.

Xinya Du and Claire Cardie. 2017. Identifying where to focus in reading comprehension for neural question
generation. In EMNLP, pages 2067–2073.

Manaal Faruqui and Chris Dyer. 2015. Non-distributional word vector representations. arXiv preprint
arXiv:1506.05230.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris Dyer, and Noah Smith. 2015. Sparse overcomplete word
vector representations. arXiv preprint arXiv:1506.02004.

Alona Fyshe, Partha P Talukdar, Brian Murphy, and Tom M Mitchell. 2014. Interpretable semantic vectors from
a joint model of brain-and text-based meaning. In ACL, volume 2014, page 489. NIH Public Access.

Kuzman Ganchev, Ben Taskar, Fernando Pereira, and Joao Gama. 2009. Posterior vs parameter sparsity in latent
variable models. In Advances in Neural Information Processing Systems.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting Liu. 2014. Revisiting embedding features for simple semi-
supervised learning. In EMNLP, pages 110–120.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual learning for
machine translation. In Advances in Neural Information Processing Systems.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Ke Huang and Selin Aviyente. 2007. Sparse representation for signal classification. In Advances in neural
information processing systems, pages 609–616.

MingShu Ji, Hong Rao, ZhiXun Li, Jian Zhu, and Ning Wang. 2019. Partial multi-view clustering based on sparse
embedding framework. IEEE Access.

Seonhoon Kim, Inho Kang, and Nojun Kwak. 2019. Semantic sentence matching with densely-connected recur-
rent and co-attentive information. In AAAI, volume 33, pages 6586–6593.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.

Thomas Kober, Julie Weeds, Jeremy Reffin, and David Weir. 2016. Improving sparse word representations with
distributional inference for semantic composition. arXiv preprint arXiv:1608.06794.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-task deep neural networks for natural
language understanding. arXiv preprint arXiv:1901.11504.

Hongyin Luo, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. 2015. Online learning of interpretable word
embeddings. In EMNLP.

André FT Martins, Noah A Smith, Pedro MQ Aguiar, and Mário AT Figueiredo. 2011. Structured sparsity in
structured prediction. In EMNLP, pages 1500–1511. Association for Computational Linguistics.

3267

Brian Murphy, Partha Talukdar, and Tom Mitchell. 2012. Learning effective and interpretable semantic models
using non-negative sparse embedding. Proceedings of COLING 2012, pages 1933–1950.

Andrew Ng et al. 2011. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19.

Sungjoon Park, JinYeong Bak, and Alice Oh. 2017. Rotated word vector representations and their interpretability.
In EMNLP.

Iulian Vlad Serban, Tim Klinger, Gerald Tesauro, Kartik Talamadupula, Bowen Zhou, Yoshua Bengio, and Aaron
Courville. 2017. Multiresolution recurrent neural networks: An application to dialogue response generation. In
AAAI.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani, Taylor Berg-Kirkpatrick, and Eduard Hovy. 2018. Spine:
Sparse interpretable neural embeddings. In AAAI.

Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi Cheng. 2016. Sparse word embeddings using l1 regularized
online learning. In IJCAI.

Duyu Tang, Bing Qin, Furu Wei, Li Dong, Ting Liu, and Ming Zhou. 2015. A joint segmentation and classification
framework for sentence level sentiment classification. TASLP, 23(11).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems, pages
5998–6008.

Yequan Wang, Aixin Sun, Jialong Han, Ying Liu, and Xiaoyan Zhu. 2018. Sentiment analysis by capsules. In
WWW, pages 1165–1174.

Fangzhao Wu, Jia Zhang, Zhigang Yuan, Sixing Wu, Yongfeng Huang, and Jun Yan. 2017. Sentence-level
sentiment classification with weak supervision. In SIGIR, pages 973–976.

Dani Yogatama and Noah A Smith. 2014. Linguistic structured sparsity in text categorization. In ACL, volume 1,
pages 786–796.

He Zhang and Vishal M Patel. 2016. Sparse representation-based open set recognition. IEEE transactions on
pattern analysis and machine intelligence, 39(8):1690–1696.

Yizhe Zhang, Xiang Gao, Sungjin Lee, Chris Brockett, Michel Galley, Jianfeng Gao, and Bill Dolan. 2019.
Consistent dialogue generation with self-supervised feature learning. arXiv preprint arXiv:1903.05759.

Wei Zhao, Jianbo Ye, Min Yang, Zeyang Lei, Suofei Zhang, and Zhou Zhao. 2018. Investigating capsule networks
with dynamic routing for text classification. arXiv preprint arXiv:1804.00538.

Xiaowei Zhou, Menglong Zhu, Spyridon Leonardos, and Kostas Daniilidis. 2016. Sparse representation for 3d
shape estimation: A convex relaxation approach. IEEE transactions on pattern analysis and machine intelli-
gence, 39(8):1648–1661.

