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ABSTRACT

Motivation: Currently there are no curative anticancer drugs, and drug

resistance is often acquired after drug treatment. One of the reasons is

that cancers are complex diseases, regulated by multiple signaling

pathways and cross talks among the pathways. It is expected that

drug combinations can reduce drug resistance and improve patients’

outcomes. In clinical practice, the ideal and feasible drug combin-

ations are combinations of existing Food and Drug Administration-

approved drugs or bioactive compounds that are already used on

patients or have entered clinical trials and passed safety tests.

These drug combinations could directly be used on patients with

less concern of toxic effects. However, there is so far no effective

computational approach to search effective drug combinations from

the enormous number of possibilities.

Results: In this study, we propose a novel systematic computational

tool DrugComboRanker to prioritize synergistic drug combinations

and uncover their mechanisms of action. We first build a drug func-

tional network based on their genomic profiles, and partition the net-

work into numerous drug network communities by using a Bayesian

non-negative matrix factorization approach. As drugs within overlap-

ping community share common mechanisms of action, we next un-

cover potential targets of drugs by applying a recommendation

system on drug communities. We meanwhile build disease-specific

signaling networks based on patients’ genomic profiles and interac-

tome data. We then identify drug combinations by searching drugs

whose targets are enriched in the complementary signaling modules

of the disease signaling network. The novel method was evaluated on

lung adenocarcinoma and endocrine receptor positive breast cancer,

and compared with other drug combination approaches. These case

studies discovered a set of effective drug combinations top ranked in
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is, each row of WN is subject to

XK

j=1

wnij=1 ð2Þ

where wnij is the element of WN and it quantifies the membership of node

i with respect to community j. To infer the appropriate model order K,

we use a Bayesian paradigm for non-negative matrix factorization

by placing automatic relevance determination priors with scale hyper-

parameters k=f�kgK
k=1 on the variables wik and hkj. In this model, the

distribution of �k is parameterized by fixed parameters a and b, and the

fixed parameter � decides the distance measure between the observed

interactions V and the expected interactions V̂. Under these assumptions,

the posterior density function can be obtained as

p W;H; k jVð Þ=
p V jW;Hð Þp W jkð Þp H jkð ÞpðkÞ

pðVÞ
ð3Þ

Maximizing the posterior density is equivalent to minimizing the negative

log posterior, which can be regarded as a loss function CMAPðW;H; kÞ as

CMAP W;H; kð ÞX� log pðW;H; k jVÞ ð4Þ

= � log p V jW;Hð Þ � log pðWjkÞ � logðHjkÞ � log pðkÞ ð5Þ

where log pðVjW;HÞ is the log-likelihood.

The generalized �-divergence is defined by
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ð6Þ

The �-divergence can be regarded as a minus log-likelihood for the

Tweedie distribution and its probability density function is given by

f x; �; �; �ð Þ=h x; �ð Þexp
1

�
ð

1

� � 1
x���1 �

1

�
��Þ

� �
ð7Þ

where h x; �ð Þ is the base measure function, � is the mean, � is the dis-

persion parameter and � is the shape parameter. Assuming that vij is

generated from the Tweedie distribution, the log-likelihood function

can be given by

�log pðV jW;HÞ=
1

�
D� V jWHð Þ+C ð8Þ

To insure W and H are non-negative, the Half-Normal priors are as-

signed on them,

p wik j�kð Þ=HN ðwikj�kÞ ð9Þ

p hkj j�k

� �
=HN ðhkjj�kÞ ð10Þ

where HN x j�ð ÞX
2

��

� �1
2

exp �
x2

2�

� �
; x � 0 ð11Þ

and place an inverse Gamma priors on each �k,

p �k; a; bð Þ=
ba

�ðaÞ
��ða+1Þ

k expð�
b

�k
Þ ð12Þ

Then, according to Equation (5), the objective function CMAP W;H; kð Þ

can be given as

CMAP W;H;ð Þ=
1

�
D� V jWHð Þ+

XK

k=1

1

�k

1

2
w2

k+
1

2
h2

k+b

� �

+ N+a+1ð Þ log �k+C

ð13Þ

To minimize CMAP W;H; kð Þ with respect to W, H and k, we adopt the

strategy in (Tan and Fevotte, 2013) by introducing a local majorization–

minimization algorithm with efficient multiplicative updates. Finally, we

give the overlapping community detection algorithm as follows:

Step 1: Initialize wk 2 R
N�K
+ and hk 2 R

K�N
+ to random non-negative

values.

Step 2: Update W, H and �k by

H=H �
WTð WHð Þ

� ��2ð Þ
� VÞ

WT WHð Þ
� ��1ð Þ+�=repmatðk; 1;NÞ

 !��ð�Þ

W=W �
ð WHð Þ

� ��2ð Þ
� VÞHT

WHð Þ
� ��1ð ÞHT+�=repmatðk; 1;NÞ

 !��ð�Þ

Fig. 2. Snapshots of the drug functional network (top) and an example of

the reconstructed drug network community (bottom)
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(

Step 3: Repeat Step 2 until max k=1;2;...;Kj �new
k � �old

k

� �
=�old

k j � "

Step 4: Normalize W to WN, then the number of non-zero columns

k� of WN is the number of clusters. Assign each node to the k�

clusters according to WN. In the above algorithm, X � Y denotes

element-by-element multiplication of X and Y; X
Y denotes element-

by-element division of X and Y; and X�� denotes raising each element

of X to the �th power. In addition, repmatðk; 1;NÞ denotes the K � N

matrix with each column being the vectork. Using the BNMF�D

approach, we partition the drug functional network into a set of

connected network modules (Fig. 2), within which drugs share

common targets or related signaling mechanisms.

2.4 Drug combination discovery based on target network

analysis

The novel drug combination approach consists of the following three

major components.

(a) Disease specific signaling network reconstruction

Several approaches (Barren€as et al., 2012; Chuang et al., 2007; Ideker

et al., 2002) have been proposed to reconstruct signaling networks of

diseases based on transcritpome and interactome data. In this study,

the approach proposed in (Barren€as et al., 2012) is used. The integrated

protein–protein interactions from BioGRID (Stark et al., 2006) and the

manually curated human cancer signaling from (Awan et al., 2007; Cui

et al., 2007; Li et al., 2012; Newman et al., 2013) (available at http://www.

bri.nrc.ca/wang/) are clustered into functional protein–protein modules,

and each module is tested for enrichment (Fisher’s exact test, P50:01) of

the differentially expressed genes of the gene expression profile of a dis-

ease. The enriched modules are then considered as disease susceptibility

modules, from which the highly interconnected genes are identified as the

disease-specific signaling network. Figure 3 shows the reconstructed sig-

naling network of lung adenocarcinoma.

(b) Functional drug target prediction using network-based

recommendation

Drugs often have multiple targets and affect distinct signaling modules,

but only parts of them are known for given drugs. The drug communities

embed targeting signaling modules (functional targets instead of physical

targets) of drugs. To uncover the targeting signaling modules of drugs,

we propose a network-based recommendation approach as follows. Let

D= d1; d2; . . . ; dmf g denote drugs in a given community, and T=

t1; t2; . . . ; tnf g be the known drug targets. The drug–target interaction

network can be described as a bipartite graph G D;T;Eð Þ. The E indicates

the known drug and target associations. This drug–target network can be

represented by an adjacent matrix A= aji

� 	
n�m

, where aji is the weight

that quantifies the association between di and tj. Then the novel network-

based algorithm is designed based on a bipartite network projection tech-

nique (Zhou et al., 2010) as follows.

R=F � A ð14Þ

where R= rij

� 	
n�m

is the recommendation score (the functional associ-

ation possibility between drug i and target j). The F= fij

� 	
n�m

indicates

the transition matrix from drug i to drug j and is defined as:

fij=
1

� i; jð Þ

Xm

l=1

ailajl

k xlð Þ
ð15Þ

where � i; jð Þ=k tið Þ
1��k tj

� ��
and k xð Þ is the degree of the x node in the

bipartite network. Targets with recommendation scores greater than

given threshold, 0.1, are kept as the active functional targets of given

drugs.

(c) Disease-specific drug combination discovery

With the constructed disease signaling network and the predicted

drug targets, drug combinations are then prioritized by combining the

following synergistic scores. Given two candidate drugs, di and dj,

from different clusters, suppose di 2 Ck and dj 2 Ch, and Tk=

tk1; tk2; . . . ; tkmf g denote the targets of di in Ck, and Th=

th1; th2; . . . ; thnf g denote the targets of dj in Ch. The first synergistic

score is defined as follows.

S1 i; jð Þ=

X
i
CSðtkiÞexp �D tki;Th

� 	
=n2

� �
X

i
CSðtkiÞ

+

X
j
CSðthjÞexp �D thj;Tk

� 	
=m2

� �
X

j
CSðthjÞ

ð16Þ

where CS tkið Þ is the centrality score of target tki in the reconstructed

disease signaling network, and it is an additive of betweenness ðBnÞ,

closeness Cnð Þ (Brandes and Fleischer, 2005) and PageRank (Pr) score

(Page et al., 1999) of protein tki, that is

CS tkið Þ=Bn tkið Þ+Cn tkið Þ+PrðtkiÞ ð17Þ

These are three different but correlated centrality measurements, and the

reason of combing them is to get a robust centrality score. The min D

tki;Th

� 	
is the minimum shortest path from tki to Th. The first synergistic

score, S1 i; jð Þ, prefers drug combinations, whose targets are in the center

(hubs) of disease signaling network and closely connected.

The second synergistic score is defined as

S2 i; jð Þ=

X
i;j

Sim tki;thj

� �
m+nð Þ m+n � 1ð Þ

ð18Þ

Fig. 3. The reconstructed signaling network of lung adenocarcinoma.

Different node colors indicate different modules, and the node size indi-

cates the degree of nodes
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where Sim tki;thj

� �
is the semantic similarity of gene ontology (GO) anno-

tations of tki and thj (Couto et al., 2007), which is computed based on

the overlap of the GO terms that are associated with tki and thj, and is

defined as

Sim tki;thj

� �
=

2 log2max p Að Þ
� 	

log2p GOkið Þ+log2p GOhj

� �� � ð19Þ

Where GOki is the GO term that associated with tki, and A is a GO term

that is an ancestor of both GOki and GOhj, and

p GOkið Þ=
FreqðGOkiÞ

MaxFreq
ð20Þ

FreqðGOkiÞ is the frequency of GO term GOki occurring in GO annota-

tions, which are taken from GO database. MaxFreq is the maximum

occurrences frequency of GO terms that are associated with all the targets

and the predicted drug targets in the GO annotations. The second syn-

ergistic score, S2 i; jð Þ, prefers drug combinations that block genes with

similar functions, e.g. cell proliferation.

Finally, the synergistic score of drug di and dj is given by

Sy i; jð Þ= S1 i; jð Þ+S2 i; jð Þð Þ � dEði; jÞ ð21Þ

where

dEði; jÞ=max SG i; jð Þ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SG i; jð Þ � Ss i; jð Þ

p
;SG i; jð Þ+Ss i; jð Þ

n o
ð22Þ

where SGði; jÞ reflects the distance of their expression pattern. In sum-

mary, drug combinations targeting on the disease-specific signaling

network, with similar functions, through alternative targets are

prioritized.

3 RESULTS

We have applied the BNMF�D algorithm to cluster the drug–

drug network into overlapping drug communities. Table 1 lists

the parameters in the analysis. We set a as one of

{10,50,100,150,200,250,300,350,400,450}, and b to be equal to

a. When a and b are set to be 450, the BNMF�D algorithm

gene ontology (
)
:
gene ontology
,
-
-
-
)
)
and 
,
:
,
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predicted for ER-positive BRCA based on the reconstructed ER-

positive breast cancer signaling network.

To validate the prediction results, we searched the literature

evidence of the top 50 ranked combinations. Tables 2–4 show the

literature evidence of the effective drug combinations in our top

50 lists for lung adenocarcinoma. Surprisingly, 19 different drug

combinations have been reported to be synergistic combining

with Gefitinib, Paclitaxel and LY-294002 in non–small-cell

lung cancer. Tables 5 and 6 show the literature evidence of ef-

fective drug combinations in the top 50 lists for ER-positive

breast cancer. Also 14 different drug combinations have been

reported to be synergistic combining with Tamoxifen and

Letrozole. These results show the strong drug combination pre-

diction capacity of DrugComboRanker.

To make the evaluation fair and sound, we further compared

the predicted results with CDA, and a random combination

method (RCM), which randomly picks up 50 drugs from the

available drug lists to combine with the designated drugs. As

for CDA, we picked the top 50 drug combinations with the

designated drugs. Figures 5 and 6 show the comparison results

on the lung adenocarcinoma and ER-positive breast cancer in

terms of literature supports of those top-ranked 50 drug com-

binations, respectively (The numbers on the bars of RCM are

standard deviations). For RCM, we repeated the random selec-

tion 100 times; for each simulation, we checked the literature

evidence (In total, we checked all the 5000 random combin-

ations). As can be seen, the proposed approach outperforms

the CDA and random selection significantly.
The predicted drug targets in the disease-specific network

could indicate the molecular mechanism of synergistic drug com-

binations. Here, we map the responsive genes of Gefitinib,

Paclitaxel, Vorinostat, LY-294002 and Quercetin to the lung

adenocarcinoma-specific signaling network to capture the dis-

tinct synergistic responses induced by three agent combinations,

Gefitinib and Paclitaxel, LY-294002 and Quercetin, Gefitinib

and Vorinostat. As shown in Figure 7, Gefitinib and Paclitaxel

combinations can affect the EGFR signaling pathway (endothe-

lial cell proliferation), TP53 signaling pathways, as well as

Table 2. Synergistic alternative drugs combining with Gefitinib

Drug combination

(Community number)

Synergistic

score

Rank Literature

evidence

Gefitinib/Paclitaxel (63/55) 2.905 2 PMID:19596955

PMID:14990633

Gefitinib/Celecoxib (63/48) 2.804 3 PMID:18379355

PMID:16914589

Gefitinib/Genistein (63/102) 2.765 4 PMID:22160570

Gefitinib/Fulvestrant (63/55) 2.529 9 PMID:24268810

Gefitinib/Irinotecan (63/66) 2.468 11 PMID:21915126

PMID:16713012

Gefitinib/Vorinostat (63/102) 2.464 12 PMID:21271222

Gefitinib/Lovastatin (63/34) 2.102 27 PMID:19760159

Gefitinib/Rosiglitazome (63/13) 2.023 32 PMID:168386327

Gefitinib/MS-275(63/102) 2.007 34 PMID:16424029

Table 3. Synergistic alternative drugs combining with LY-294002

Drug combination

(Community number)

Synergistic

score

Rank Literature

evidence

-
,
,
,
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Fig. 5. The comparison results of DrugComboRanker, CDA and RCM

in terms of the number of literature supports of the top-ranked 50 drug

combinations of lung adenocarcinoma with designated drugs, Gefitinib,

Paclitaxel and LY-294002
Fig. 6. The comparison results of DrugComboRanker, CDA and RCM

in terms of the number of literature supports of the top-ranked 50 drug

combinations of ER-positive breast cancer with designated drugs,

Tamoxifen and Letrozole

Fig. 7. Drug targets mapped on the disease signaling network. Red and green are the drug targets of Gefitinib and Paclitaxel, respectively
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Fig. 8. Drug targets mapped on the disease signaling network. Red and green are the drug targets of LY-294002 and Quercetin, respectively; blue nodes

are the weak effected targets of both drugs

Fig. 9. Drug targets mapped on the disease signaling network. Red and green are the drug targets of Gefitinib and Vorinostat, respectively
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biological processes, such as cell cycle, apoptosis and the hub
genes, i.e. EGFR, TP53, SRC, FOS, JUN. Distinctly the LY-
294002 and Quercetin combination affects the alternative
EGFR, PI3K-AKT and JAK-STAT3 pathways, as can be seen

in Figure 8. In addition, the drug combination, Gefitinib and
Celecoxib, targets the EGFR and COX-2 signaling pathways,
respectively. The Gefitinib and Celecoxib have distinct transcrip-

tional responses that indicate EGFR and COX-2 signaling path-
ways are complementary, and have cross talks. Another example
is Gefitinib and Vorinostat combination. Vorinostat is a Histone

deacetylases inhibitor, as shown in Figure 9, which interacts with
CTNNB1, and CTNNB1 interacts with E-cadherin, ERBB2 and
EGFR, whereas Gefitinib targets on EGFR. Thus, this combin-

ation forms a double inhibition on growth factors.

4 DISCUSSION AND CONCLUSION
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