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Fig. 2. Snapshots of the drug functional network (top) and an example of
the reconstructed drug network community (bottom)

is, each row of Wy is subject to
K
> wni=1 a2p
j=1

where wnj; is the element of Wy and it quantifies the membership of node
i with respect to community j. To infer the appropriate model order K,
we use a Bayesian paradigm for non-negative matrix factorization
by placing automatic relevance determination priors with scale hyper-
parameters A=fA,gi_, on the variables wi, and hyj. In this model, the
distribution of Ay is parameterized by fixed parameters a and b, and the
fixed parameter 8 decides the distance measure between the observed
interactions V and the expected interactions V. Under these assumptions,
the posterior density function can be obtained as

pdV jW HppdW jibpdH jibpdip
pive

P H A jVh= 33p

Maximizing the posterior density is equivalent to minimizing the negative
log posterior, which can be regarded as a loss function CyapdW H b as

CmapdW H b2 log pdW H i Wb 34p

= log pdV jW Hp log pdWjib logdHjib log pdib a5p

where log pdVjW Hp is the log-likelihood.
The generalized g-divergence is defined by

xP xt xyf !
555 1D+F ﬁy 7 B2RnfO 1g
Dgdxjyp £ xlog§ x+y p=1 d6b
X X
— log= 1 B8=0
y gy P

The g-divergence can be regarded as a minus log-likelihood for the
Tweedie distribution and its probability density function is given by

B!

where hix @b is the base measure function, L is the mean, # is the dis-
persion parameter and g is the shape parameter. Assuming that v; is
generated from the Tweedie distribution, the log-likelihood function
can be given by

fox L  pb=hdx ¢Dexp{$6ﬂ—x fl 1 L’*D} §7p

log pdV jWw HbZ;DﬂéVjWHb+C 08p

To insure W and H are non-negative, the Half-Normal priors are as-
signed on them,

péwik jAkDZHN GWin)»kD a9p
p(hig ja) =HN Bhigjap 510p
. 2\? x?
where HNX jap2(—) exp( =—) x 0 11p
A 2\
and place an inverse Gamma priors on each iy,
pii; @ bb= LAY B Pexps b, 12b

I"dab Ak

Then, according to Equation (5), the objective function CyapdW H b
can be given as

CMApéWHD—fD,ganWHb+Z <1 We+ h2 b)

2 13p

+0N-+a-+1blog Ax+C

To minimize CpapdW H b with respect to W, H and 4, we adopt the
strategy in (Tan and Fevotte, 2013) by introducing a local majorization—
minimization algorithm with efficient multiplicative updates. Finally, we
give the overlapping community detection algorithm as follows:

Step 1: Initialize w, 2 RY ¥ and h, 2 R¥ N to random non-negative
values.

Step 2: Update W, H and ix by

0P
WTRWHY 2 0
H=H T B 1p
WToWH Y P49 repmatdi 1 Nb

SWHY ? VoHT e
w=w
SWHp® PH™+% repmatid 1 Np
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1 1
A= (ZZwizk+ZZ hﬁj+b> IN-+a—+1p
i j

{1 i3 pp 2
y0pb=
198 10 p>2

Step 3: Repeat Step 2 until max x=12.. ki(A&"  A29) 229 ¢

Step 4: Normalize W to Wy, then the number of non-zero columns
k of Wy is the number of clusters. Assign each node to the k
clusters according to Wy. In the above algorithm, X Y denotes
element-by-element multiplication of X and Y; iy( denotes element-
by-element division of X and ¥; and X7 denotes raising each element
of X to the y™ power. In addition, repmatdi 1 Nbdenotesthe K N
matrix with each column being the vectorid. Using the BNMFSD
approach, we partition the drug functional network into a set of
connected network modules (Fig. 2), within which drugs share
common targets or related signaling mechanisms.

2.4 Drug combination discovery based on target network
analysis

The novel drug combination approach consists of the following three
major components.

(a) Disease specific signaling network reconstruction

Several approaches (Barrenas et al., 2012; Chuang et al., 2007; Ideker
et al., 2002) have been proposed to reconstruct signaling networks of
diseases based on transcritpome and interactome data. In this study,
the approach proposed in (Barrends et al., 2012) is used. The integrated
protein—protein interactions from BioGRID (Stark et al., 2006) and the
manually curated human cancer signaling from (Awan et al., 2007; Cui
etal., 2007; Li et al., 2012; Newman et al., 2013) (available at http://mwww.
bri.nrc.ca/wang/) are clustered into functional protein—protein modules,
and each module is tested for enrichment (Fisher’s exact test, P <0 01) of
the differentially expressed genes of the gene expression profile of a dis-
ease. The enriched modules are then considered as disease susceptibility
modules, from which the highly interconnected genes are identified as the
disease-specific signaling network. Figure 3 shows the reconstructed sig-
naling network of lung adenocarcinoma.

(b) Functional drug target prediction wusing network-based
recommendation

Drugs often have multiple targets and affect distinct signaling modules,
but only parts of them are known for given drugs. The drug communities
embed targeting signaling modules (functional targets instead of physical
targets) of drugs. To uncover the targeting signaling modules of drugs,
we propose a network-based recommendation approach as follows. Let
D=fdy ds ... dng denote drugs in a given community, and T=
fty t» ... t,g be the known drug targets. The drug-target interaction
network can be described as a bipartite graph GiD T EP. The E indicates
the known drug and target associations. This drug-target network can be
represented by an adjacent matrix A={a;} ., where a; is the weight
that quantifies the association between d; and tj. Then the novel network-
based algorithm is designed based on a bipartite network projection tech-
nique (Zhou et al., 2010) as follows.

R=F A 014p

where R={r;}

m 18 the recommendation score (the functional associ-

ation possibility between drug i and target j). The F=({f;}  indicates
the transition matrix from drug i to drug j and is defined as:
1 u aj aj|
fi= e Y 15p
YT jbékéxw 015

Fig. 3. The reconstructed signaling network of lung adenocarcinoma.
Different node colors indicate different modules, and the node size indi-
cates the degree of nodes

where T8 jp=Kkat;b* Ak(tj)A and kixp is the degree of the x node in the
bipartite network. Targets with recommendation scores greater than
given threshold, 0.1, are kept as the active functional targets of given
drugs.

(¢c) Disease-specific drug combination discovery

With the constructed disease signaling network and the predicted
drug targets, drug combinations are then prioritized by combining the
following synergistic scores. Given two candidate drugs, d; and dj,
from different clusters, suppose di2Cyx and d;2Cp, and Tx=
ftey tee ..s tkmg denote the targets of di in Cy, and Th=
ftny the ... thag denote the targets of d; in Cy. The first synergistic
score is defined as follows.

ZicsatkipeXp( D{ti Tn} n%)
ZiCSGtkib
+ZjCSéthjbexp( D{ty Tk} m?)

Zj CSbtyP

where CSdtyip is the centrality score of target ty in the reconstructed
disease signaling network, and it is an additive of betweenness dBnp,
closeness dCnb (Brandes and Fleischer, 2005) and PageRank (Pr) score
(Page et al., 1999) of protein ty;, that is

CSétyiP=Bnoty;p+Cnoty;p+Prdt,;p 017p

d16p

These are three different but correlated centrality measurements, and the
reason of combing them is to get a robust centrality score. The min D
{tk‘- Th} is the minimum shortest path from ty; to Ty. The first synergistic
score, S;8i jp, prefers drug combinations, whose targets are in the center
(hubs) of disease signaling network and closely connected.

The second synergistic score is defined as

ijSim(tkj thj)

So8 Jp= om-+npdm-+n  1p

018p
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where Sim(ti thj) is the semantic similarity of gene ontology (GO) anno-
tations of t; and ty; (Couto et al., 2007), which is computed based on
the overlap of the GO terms that are associated with t,; and ty;, and is
defined as

2 log,max {piAb}

019p
(log,p8GOyib+log,p(GOy;))

Sim(tkj thj)=

Where GOy is the GO term that associated with tyj, and A is a GO term
that is an ancestor of both GOy; and GOy, and

FreqdGOyp

20p
MaxFreq 620

péGOkibz
FreqdGOyb is the frequency of GO term GOy; occurring in GO annota-
tions, which are taken from GO database. MaxFreq is the maximum
occurrences frequency of GO terms that are associated with all the targets
and the predicted drug targets in the GO annotations. The second syn-
ergistic score, S,d jp, prefers drug combinations that block genes with
similar functions, e.g. cell proliferation.

Finally, the synergistic score of drug d; and d; is given by

Sydi p=0S;8 jp+Sydi job dedi o 821
where
dedi jb:max{sea,i i /Scdi b Ssdi p Sl jp+Sidi jp] §22p

where Sgdi jp reflects the distance of their expression pattern. In sum-
mary, drug combinations targeting on the disease-specific signaling
network, with similar functions, through alternative targets are
prioritized.

3 RESULTS

We have applied the BNMFBD algorithm to cluster the drug-
drug network into overlapping drug communities. Table 1 lists
the parameters in the analysis. We set a as one of
{10,50,100,150,200,250,300,350,400,450}, and b to be equal to
a. When a and b are set to be 450, the BNMFBD algorithm
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Table 2. Synergistic alternative drugs combining with Gefitinib

Drug combination Synergistic Rank Literature

(Community number) score evidence
Gefitinib/Paclitaxel (63/55) 2.905 2 PMID:19596955
PMID:14990633
Gefitinib/Celecoxib (63/48) 2.804 3 PMID:18379355
PMID:16914589
Gefitinib/Genistein (63/102) 2.765 4 PMID:22160570
Gefitinib/Fulvestrant (63/55) 2.529 9 PMID:24268810
Gefitinib/Irinotecan (63/66) 2.468 11 PMID:21915126
PMID:16713012
Gefitinib/Vorinostat (63/102) 2.464 12 PMID:21271222
Gefitinib/Lovastatin (63/34) 2.102 27 PMID:19760159
Gefitinib/Rosiglitazome (63/13) 2.023 32 PMID:168386327
Gefitinib/MS-275(63/102) 2.007 34 PMID:16424029

Table 3. Synergistic alternative drugs combining with LY-294002

Rank Literature
evidence

Drug combination Synergistic
(Community number) score

predicted for ER-positive BRCA based on the reconstructed ER-
positive breast cancer signaling network.

To validate the prediction results, we searched the literature
evidence of the top 50 ranked combinations. Tables 2—4 show the
literature evidence of the effective drug combinations in our top
50 lists for lung adenocarcinoma. Surprisingly, 19 different drug
combinations have been reported to be synergistic combining
with Gefitinib, Paclitaxel and LY-294002 in non-small-cell
lung cancer. Tables 5 and 6 show the literature evidence of ef-
fective drug combinations in the top 50 lists for ER-positive
breast cancer. Also 14 different drug combinations have been

reported to be synergistic combining with Tamoxifen and
Letrozole. These results show the strong drug combination pre-
diction capacity of DrugComboRanker.

To make the evaluation fair and sound, we further compared
the predicted results with CDA, and a random combination
method (RCM), which randomly picks up 50 drugs from the
available drug lists to combine with the designated drugs. As
for CDA, we picked the top 50 drug combinations with the
designated drugs. Figures 5 and 6 show the comparison results
on the lung adenocarcinoma and ER-positive breast cancer in
terms of literature supports of those top-ranked 50 drug com-
binations, respectively (The numbers on the bars of RCM are
standard deviations). For RCM, we repeated the random selec-
tion 100 times; for each simulation, we checked the literature
evidence (In total, we checked all the 5000 random combin-
ations). As can be seen, the proposed approach outperforms
the CDA and random selection significantly.

The predicted drug targets in the disease-specific network
could indicate the molecular mechanism of synergistic drug com-
binations. Here, we map the responsive genes of Gefitinib,
Paclitaxel, Vorinostat, LY-294002 and Quercetin to the lung
adenocarcinoma-specific signaling network to capture the dis-
tinct synergistic responses induced by three agent combinations,
Gefitinib and Paclitaxel, LY-294002 and Quercetin, Gefitinib
and Vorinostat. As shown in Figure 7, Gefitinib and Paclitaxel
combinations can affect the EGFR signaling pathway (endothe-
lial cell proliferation), TP53 signaling pathways, as well as
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Fig. 5. The comparison results of DrugComboRanker, CDA and RCM
in terms of the number of literature supports of the top-ranked 50 drug
combinations of lung adenocarcinoma with designated drugs, Gefitinib,
Paclitaxel and LY-294002

Fig. 6. The comparison results of DrugComboRanker, CDA and RCM
in terms of the number of literature supports of the top-ranked 50 drug
combinations of ER-positive breast cancer with designated drugs,
Tamoxifen and Letrozole

Fig. 7. Drug targets mapped on the disease signaling network. Red and green are the drug targets of Gefitinib and Paclitaxel, respectively
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Fig. 8. Drug targets mapped on the disease signaling network. Red and green are the drug targets of L'Y-294002 and Quercetin, respectively; blue nodes
are the weak effected targets of both drugs
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Fig. 9. Drug targets mapped on the disease signaling network. Red and green are the drug targets of Gefitinib and Vorinostat, respectively
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biological processes, such as cell cycle, apoptosis and the hub
genes, i.e. EGFR, TP53, SRC, FOS, JUN. Distinctly the LY-
294002 and Quercetin combination affects the alternative
EGFR, PI3K-AKT and JAK-STATS3 pathways, as can be seen
in Figure 8. In addition, the drug combination, Gefitinib and
Celecoxib, targets the EGFR and COX-2 signaling pathways,
respectively. The Gefitinib and Celecoxib have distinct transcrip-
tional responses that indicate EGFR and COX-2 signaling path-
ways are complementary, and have cross talks. Another example
is Gefitinib and Vorinostat combination. Vorinostat is a Histone
deacetylases inhibitor, as shown in Figure 9, which interacts with
CTNNB1, and CTNNBLI interacts with E-cadherin, ERBB2 and
EGFR, whereas Gefitinib targets on EGFR. Thus, this combin-
ation forms a double inhibition on growth factors.

4 DISCUSSION AND CONCLUSION
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