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on the AMS property of the BYY harmony function on
the finite mixtures. In Section II, we introduce the BYY
harmony learning theory and the harmony function on the
finite mixtures. We then make an asymptotic analysis on the
harmony function and prove that the global maximization
of the harmony function leads to the AMS property if the
average overlap measure between the actual components in
the sample data is zero or becomes weak in Section III. We
further analyze the deviation error of the maximum harmony
estimates to the true parameters in Section IV. Finally, we
conclude briefly in Section V.

II. BYY HARMONY LEARNING AND THE HARMONY

FUNCTION

A BYY system describes each observation x ∈ X ⊂ Rn

and its corresponding inner representation y ∈ Y ⊂ Rm via
the two types of Bayesian decomposition of the joint density
p(x, y) = p(x)p(y|x) and q(x, y) = q(x|y)q(y), called Yang
machine and Ying machine, respectively. Here, y is limited
to an integer variable, i.e., y ∈ Y = {1, 2, · · · , k} ⊂ R with
m = 1. Given a data set Dx = {xt}N

t=1, the task of learning
on a BYY system consists of specifying all the aspects of
p(y|x), p(x), q(x|y), q(y) with a harmony learning principle
implemented by maximizing the functional

H(p||q) =
∫

p(y|x)p(x) ln [q(x|y)q(y)]dxdy − ln zq, (1)

where zq is a regularization term. Refer to [14] for details.
If both p(y|x) and q(x|y) are parametric, i.e., from a

family of probability densities with a parameter θ, the BYY
system is called to have a Bi-directional Architecture ( or
BI-Architecture for short). For the finite mixture modeling,
we utilize the following specific BI-architecture of the BYY
system: q(j) = αj with αj ≥ 0 and

∑k
j=1 αj = 1. Also, we

ignore the regularization term zq (i.e., set zq = 1) and let
p(x) be the empirical density p0(x) = 1

N

∑N
t=1 δ(x − xt),

where x ∈ X = Rn and δ(·) is a kind of kernel function
(e.g., Gaussian function). Moreover, the BI-architecture is
constructed with the following parametric form:

p(j|x) = p(y = j|x) =
αjq(x|θj)
q(x|Θk)

, (2)

q(x|Θk) =
k∑

j=1

αjq(x|θj), (3)

where q(x|θj) = q(x|y = j) with θj consisting of all its
parameters and Θk = {αj, θj}k

j=1. Substituting these com-
ponent densities into Eq.(1) and letting the kernel functions
tend to the delta functions, we have

H(p||q) = J(Θk)

=
1
N

N∑
t=1

k∑
j=1

αjq(xt|θj)∑k
i=1 αiq(xt|θi)

ln [αjq(xt|θj)]. (4)

That is, H(p||q) becomes a harmony function J(Θk) on
the parameters Θk, i.e., the parameters of the finite mixture
model q(x, Θk) =

∑k
j=1 αjq(x|θj) for the observation x.

Thus, the harmony learning on this BI-architecture of the
BYY system reduces to the finite mixture modeling on a
sample data set Dx.

Typically, we can let q(x|θj) be a Gaussian probability
density function (pdf) given by

q(x|θj) = q(x|mj , Σj)

=
1

(2π)
n
2 |Σj | 12

e−
1
2 (x−mj)

T Σ−1
j (x−mj), (5)

where mj is the mean vector and Σj is the covariance matrix
which is assumed to be positive definite. In this case, the
BI-architecture of the BYY system contains the Gaussian
mixture model q(x, Θk) =

∑k
j=1 αjq(x|mj , Σj) which tries

to model the underlying or true Gaussian mixture pdf of the
sample data in Dx.

Under the BYY harmony learning principle [14], the
maximization of J(Θk) should have the ability of AMS on
the finite mixtures since it requires the least complexity of
model structure. Indeed, the AMS property was demonstrated
well via the gradient-type and iterative BYY learning algo-
rithms [16]-[18] in the Gaussian mixture setting. However,
this AMS property has not been proved mathematically.
In the following, we try to analyze the harmony function
asymptotically and prove this outstanding property.

III. ASYMPTOTIC PROPERTIES OF THE HARMONY

FUNCTION FOR AUTOMATED MODEL SECTION

A. Decomposition of the Harmony Function

We revisit the harmony function given in Eq.(4). In fact,
it can be easily decomposed into two terms as follows.

J(Θk) =
1
N

N∑
t=1

k∑
j=1

p(j|xt) ln [αjq(xt|θj)]

=
1
N

N∑
t=1

k∑
j=1

p(j|xt) ln p(j|xt)

+
1
N

N∑
t=1

ln q(xt|Θk)

=
1
N

N∑
t=1

ln q(xt|Θk) − 1
N

N∑
t=1

I(xt|Θk), (6)

where

I(xt|Θk) = −
k∑

j=1

p(j|xt) ln p(j|xt). (7)

Clearly, the first term, i.e., 1
N

∑N
t=1 ln q(xt|Θk), is just

the log likelihood function on the finite mixture model with
the sample data set Dx. The second term is a sum of the
entropies of the posterior probabilities of the samples to k
components.

As for the first term, i.e., the log likelihood function,
there have been many investigations on its maximization
that leads to the well-known maximum likelihood (ML)
estimates of the parameters in the finite mixture. The EM

8256



algorithm [2] is recognized as an efficient way to get the
ML estimates, especially in the case of Gaussian mixture.
However, the maximization of the log likelihood function,
i.e., the maximum likelihood criterion, is incapable of model
selection on the finite mixture. In fact, if we let Mk denote
the class of all possible k-component mixtures built from a
certain type of probability density functions (pdf’s) (e.g., the
pdf’s of Gaussian mixtures):

q(x|Θk) =
k∑

j=1

q(x|θj), (8)

it can be easily found that Mk ⊂ Mk+1. Thus, the
maximized (log) likelihood is a nondecreasing function of
k and the maximum likelihood criterion cannot detect the
number of the components for a sample data set. That is, it
has no ability to make model selection on the finite mixture.

In contrast, the second term of the harmony function must
has the ability of model selection on the finite mixture if
the harmony function really does. In fact, Roberts et al.
[20] showed that the maximization of this part leads to the
maximum certainty data partitioning that can allocate an
appropriate number of clusters in the sample data. If each
component in the mixture corresponds to a cluster in the
sample data, this maximum certainty criterion can allocate
an appropriate number k of components for the sample
data. That is, it has the ability of model selection for the
finite mixture model and we can use it as a model selection
criterion on the finite mixture modeling. But its maximization
may not lead to a result of AMS. As an illustration, it
can always reach the maximum value 0 when we set one
mixing proportion to be one and the others zeros. Therefore,
its maximization cannot make model selection on the finite
mixture.

However, since the harmony function combines these two
terms together, the maximization of the harmony function
may be able to make model selection on the finite mixture,
which will be proved in the following subsections.

B. The AMS Property of the Harmony Function in the Well-
Separated Case

To get rid of the randomness of the sample data, we
consider the harmony function asymptotically. That is, we
let N → ∞. According to probability theory, we have

H(Θk) = lim
N→∞

J(Θk) = H1(Θk) + H2(Θk), (9)

where

H1(Θk) =
∫

q(x|Θ∗
k∗) ln q(x|Θk)dµ; (10)

H2(Θk) = −
∫

I(x|Θk)q(x|Θ∗
k∗ )dµ, (11)

where µ is the appropriate underlying measure on Rn, and
Θ∗

k∗ = {α∗
j , θ

∗
j }k∗

j=1 denotes the set of the parameters in
the finite mixture pdf where the sample data come from.
Specifically, k∗ is the number of the actual components and
Θ∗

k∗ is the set of true parameters of the actual finite mixture

pdf for the sample data. Here, we always assume that these
actual components are different.

For convenience of analysis, we assume that all the com-
ponents in the finite mixture have the same functional form
(like Gaussian mixture). Moreover, the finite mixtures we
consider are discriminant. That is, in the cases that all the
components are different, q(x|Θk) = q(x|Θ′

k′) if and only
if Θk = Θ′

k′ with k′ = k or Θk ⊂ Θ′
k′ with k < k′ and the

mixing proportions of the other k′ − k extra components in
Θ′

k′ being zero (i.e., these components have no contribution
to the finite mixture pdf.).

In the finite mixture model, the components may be
well-separated in some special cases, i.e., each posterior
probability p(j|x) at a sample x is either 1 or 0. That is,
each sample x is clearly belongs to one component. In this
case, it is clear that p(j|x) ln p(j|x) = 0 for all x ∈ Rn. We
now investigate the AMS property of the harmony function
with the components in the true (or actual) finite mixture
being well-separated and have the following theorem.

Theorem 1. Suppose that the finite mixtures q(x|Θk) are
discriminant. If the components in the true finite mixture
q(x|Θ∗

k∗) are well-separated, the asymptotic harmony func-
tion H(Θk) is globally maximized if and only if Θk = Θ∗

k∗

with k = k∗ or Θ∗
k∗ ⊂ Θk with k > k∗ and the mixing

proportions of the other k−k∗ extra components in Θk being
zeros.

Proof: According to the information theory, we have

H1(Θk) ≤ H1(Θ∗
k∗); (12)

H2(Θk) ≤ 0. (13)

Because the components in the true finite mixture q(x|Θ∗
k∗)

are well-separated, i.e., the posterior probability p(j|x) at
the parameters Θ∗

k∗ are either 1 or 0, we thus have that
H2(Θ∗

k∗) = 0. Therefore, H(Θk) is really globally maxi-
mized at Θ∗

k∗ .
On the other hand, suppose that H(Θk) is globally max-

imized. According to Eqs.(12)&(13), we must have that
H1(Θk) = H1(Θ∗

k∗) and H2(Θk) = 0. From H1(Θk) =
H1(Θ∗

k∗), we further have q(x|Θk) = q(x|Θ∗
k∗). Based

on the discrimination of the finite mixtures, we consider
the possible expressions for the parameters set Θk in the
following three cases:

(i). Θk = Θ∗
k∗ with k = k∗;

(ii). Θ∗
k∗ ⊂ Θk with k > k∗ and the mixing proportions

of the other k − k∗ extra components in Θk being zeros;
(iii). k > k∗ and there appears at least one repeating

component parameter representation θj = θj′ in Θk with
αj > 0, αj′ > 0. In such a case, there are posterior
probabilities p(j|x) and p(j′|x) being neither 1 nor 0 in a
region with a positive measure. Thus, H2(Θk) < 0, which
is contrary to H2(Θk) = 0. Thus, this case cannot happen
for the global maximum of H(Θk).

Summing up the above the results, we have completed the
proof. Q. E. D.

By Theorem 1, we have actually proved that the global
maximization of the harmony function leads to the AMS
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property on the finite mixture model in the well-separated
case if we let k > k∗ and cancel the components with
negligible mixing proportions. That is, in this case, if the
model scale is actually defined by the number of positive
mixing proportions in a finite mixture model, it will be equal
to k∗ via globally maximizing the harmony function. Thus,
the true model scale can be correctly detected through the
global maximization of the harmony function in this case.
Moreover, in this special case, the global harmony maximum
estimates of the parameters in the actual finite mixture is just
those in Θ∗

k∗ , i.e., these maximum harmony estimates are
unbiased.

From the above proof, we can also see that the global
maximization of the asymptotic log likelihood function
H1(Θk) should also have the model selection property if we
neglect the repeating component parameter representations
if possible. Indeed, we can find such a phenomenon in the
EM algorithm that some mixing proportions tend to zero in
the case of k > k∗. However, it does not always happen.
The reason is that the EM algorithm is conducted on a finite
sample data set. In this situation, the complicated structure
of the finite mixture tends to give a higher value of the log
likelihood. But if we consider H2(Θk) together, the situation
may be changed considerably. Actually, it decreases greatly
if there are a larger number of positive mixing proportions
remained, even for a finite sample data set. That is, it is a
strong penalty term for the model scale of the finite mixture.
Therefore, the two terms in the harmony function play
together to make AMS in the finite mixture more efficiently.

C. The AMS Property of the Harmony Function in the Weak-
Separated Case

We further investigate the AMS property of the asymptotic
harmony function in the weak-separated case where the
average overlap among the actual components is low. That is,
the actual components are overlapped in a weak mode such
that most of the posterior probabilities are still either 1 or 0,
or near 1 or 0, while the others remain within the interval
(0,1). For mathematical analysis, we introduce the average
overlap measure of the finite mixture which was defined in
[21], [22].

We consider the posterior probabilities on the finite mix-
ture at the true parameters Θ∗

k∗ :

p(j|x) =
α∗

jq(x|θ∗j )∑k∗
i=1 α∗

i q(x|θ∗i )
, (14)

for j = 1, · · · , k∗. We let

γij(x) = (δij − p(i|x))p(j|x), (15)

for i, j = 1, · · · , k∗, where δij is the Kronecker function.
Then, we define a group of quantities on the overlap of
component densities as follows:

eij(Θ∗
k∗) =

∫
|γij(x)|q(x|Θ∗

k∗ )dµ, (16)

for i, j = 1, · · · , k∗, where eij(Θ∗
k∗) ≤ 1 since |γij(x)| ≤ 1.

We consider the worst case and define the average overlap
measure of the finite mixture by

e(Θ∗
k∗) = max

i,j
eij(Θ∗

k∗). (17)

In fact, for i �= j, eij(Θ∗
k∗) can be considered as a measure

of the average overlap between the densities of components i
and j in the finite mixture. In fact, when q(x|θ∗i ) and q(x|θ∗j )
have a high overlap at a point x, p(i|x)p(j|x) takes a large
value; otherwise, p(i|x)p(j|x) takes a small value. When
they are well separated at x, p(i|x)p(j|x) becomes zero.
Thus, the product p(i|x)p(j|x) represents a degree of overlap
between q(x|θ∗i ) and q(x|θ∗j ) at x in the mixture, and the
above eij(Θ∗

k∗) is an average overlap measure between the
densities of components i and j in the mixture. On the other
hand, eii(Θ∗

k∗) =
∑

j �=i eij(Θ∗
k∗) which can be considered

as the sum of the average overlap measures from component
i to all the other components.

It can be easily found that in the well-separated case
discussed above, each γij(x) = 0 for all x ∈ Rn. Thus, the
average overlap e(Θ∗

k∗) = 0. In the following, we try to prove
that the AMS property of the asymptotic harmony function
still holds in the weak-separated case where the average over-
lap measure is very small. Actually, for the finite mixtures
of densities from exponential families (including Gaussian
densities), the average overlap e(Θ∗

k∗) can be reduced to
zero as an infinitesimal under some regular conditions [22].
We now give the variation of H2(Θ∗

k∗) with the average
overlap measure e(Θ∗

k∗) considering as an infinitesimal by
the following theorem.

Theorem 2. Suppose that e(Θ∗
k∗) tends to zero as an

infinitesimal, we have

H2(Θ∗
k∗) ≥ −ν − O(e(Θ∗

k∗)), (18)

where ν is a small positive number and O(u) denotes the
same order infinitesimal of an infinitesimal u.

Proof: According to Eq.(11), we have

|H2(Θ∗
k∗)| =

∫
I(x|Θ∗

k∗)q(x|Θ∗
k∗)dµ

=
k∗∑

j=1

∫
|p(j|x) ln p(j|x)|q(x|Θ∗

k∗)dµ.(19)

Since p(j|x) ∈ [0, 1], we consider it in two intervals [0, ρ]
and (ρ, 1], where ρ is a small positive number. Because
limx→0+ x ln x = 0, we can select ρ to be small enough
to make |x ln x| ≤ ν/k∗. On the other hand, it can be
easily verified that there exists a positive number T such
that |x ln x| ≤ T |x(1 − x)| in the interval (ρ, 1]. If we let
R1 and R2 denote the regions of x for p(j|x) in [0, ρ] and
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(ρ, 1], respectively, we have∫
|p(j|x) ln p(j|x)|q(x|Θ∗

k∗)dµ

=
∫
R1

+
∫
R2

|p(j|x) ln p(j|x)|q(x|Θ∗
k∗)dµ

=
∫
R1

|p(j|x) ln p(j|x)|q(x|Θ∗
k∗)dµ

+
∫
R2

|p(j|x) ln p(j|x)|q(x|Θ∗
k∗)dµ

≤
∫
R1

(ν/k∗)q(x|Θ∗
k∗)dµ

+T

∫
R2

|p(j|x)(1 − p(j|x))|q(x|Θ∗
k∗ )dµ

≤
∫

ν

k∗ q(x|Θ∗
k∗)dµ

+T

∫
|p(j|x)(1 − p(j|x))|q(x|Θ∗

k∗ )dx

=
ν

k∗ + Tejj(Θ∗
k∗)

=
ν

k∗ + O(e(Θ∗
k∗)). (20)

Substituting the above inequalities for j = 1, · · · , k∗ into
Eq.(19) and via |H2(Θ∗

k∗)| = −H2(Θ∗
k∗), we finally have

H2(Θ∗
k∗) ≥ −ν − O(e(Θ∗

k∗)). (21)

The proof is completed.
Q. E. D.

According to Theorem 2, we further have

H(Θ∗
k∗) ≥ H1(Θ∗

k∗) − [ν + O(e(Θ∗
k∗))], (22)

which means that H(Θ∗
k∗) is close to the upper bound of the

asymptotic harmony function H(Θk), i.e., H1(Θ∗
k∗), when

the average overlap measure between the actual components
is very small (considering that ν is a very small number).
However, Θ∗

k∗ may not be the global maximum of the
asymptotic harmony function. Although H1(Θk) is globally
maximized at Θ∗

k∗ , H2(Θk) may be globally maximized at
some point nearby Θ∗

k∗ . As a result, the global maximum of
the asymptotic harmony function may has some deviation
from Θ∗

k∗ . Clearly, this deviation is very small and the
model scale of the finite mixture keeps k∗. Otherwise, the
asymptotic harmony function will be decreased considerably
and cannot be globally maximized. Therefore, in a similar
way, the global maximization of the asymptotic harmony
function also lead to the AMS property in the weak-separated
case.

IV. ANALYSIS OF DEVIATION ERROR OF THE MAXIMUM

HARMONY ESTIMATES

In addition to the AMS property, it is also valuable to
obtain good estimates of the parameters in the actual finite
mixture via the global maximization of the harmony function.
According to the previous analysis, the global maximum
harmony estimates are unbiased in the well-separated cases.
However, they may be biased in the overlap situation. In

this section, we further analyze the deviation error of the
maximum harmony estimates to the true parameters in the
Gaussian mixture setting with help of the iterative learning
algorithm constructed in [16].

A. The Iterative Learning Algorithm for Gaussian Mixtures
with Automated Model Selection

We begin to introduce the iterative learning algorithm for
maximizing the harmony function given in Eq.(4) where
q(x|θi) = q(x|mi(



analysis, we assume that this iterative learning algorithm is
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