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a b s t r a c t

Gaussian mixture model has been used extensively in the fields of information processing
and data analysis. However, its model selection, i.e., the selection of number of components
or Gaussians in the mixture, is still a difficult problem. Fortunately, the new established
Bayesian Ying–Yang (BYY) harmony function provides an efficient criterion for the model
selection of Gaussian mixture with a set of sample data. In this paper, we propose a BYY
scale-incremental EM algorithm for Gaussian mixture learning via a component split rule
to increase the BYY harmony function incrementally. Particularly, starting from two com-
ponents and adding one component sequentially via the split rule after each EM procedure
until a maximum number of components, the algorithm increases the scale of the mixture
incrementally and leads to the maximization of the BYY harmony function, together with
the correct model selection and a good parameter estimation of the Gaussian mixture. It is
demonstrated well by the simulation experiments that this BYY scale-incremental EM
algorithm can make both model selection and parameter estimation efficiently for Gauss-
ian mixture modeling. Moreover, the BYY scale-incremental EM algorithm is successfully
applied to two real-life data sets, including Iris data classification and unsupervised color
image segmentation.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

As a typical statistical model, Gaussian mixture has been widely used in the fields of information processing and data
analysis. In fact, there have been several statistical methods for its learning or modeling (e.g., the expectation–maximization
(EM) algorithm [1] for maximum likelihood and the self-organizing network with hyper-ellipsoidal clustering [2]). Generally,
the parameters of Gaussian mixture can be estimated via the EM algorithm under the maximum likelihood framework.
Although the EM algorithm owns certain good convergence behaviors in certain situations (e.g., [3–7]), it generally has some
weaknesses or limitations. Clearly, the EM algorithm is a local searching approach, thus ‘‘bad” initialization can make it get
trapped in a local maxima. Moreover, it is based on the assumption that the number of Gaussians in the mixture is pre-
known and fixed, otherwise it cannot work. However, in many instances, this crucial information is not available and the
selection of an appropriate number of Gaussians must be made with the estimation of the parameters, which becomes a
rather complicated problem [8,9]. As the number of Gaussians is just a scale of the Gaussian mixture, the selection of number
of Gaussians in the mixture is generally referred to as the model selection for the mixture. Thus, as the number of Gaussians
is not known in advance, the Gaussian mixture learning is a compound problem of model selection and parameter
estimation.

The traditional approach to solving this compound problem is to choose a best number k� of Gaussians via some selection
criterion. As a matter of fact, there have been many existing selection criteria, and among them, Akaike’s information
. All rights reserved.
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criterion (AIC) [10] as well as its extensions (e.g., Bozdogan’s information criteria [11]), Bayesian inference criterion (BIC)
[12], minimum description length (MDL) criterion [13] and minimum message length (MML) criterion [14], are well-known.
However, all the existing theoretic selection criteria have their limitations and often result in a wrong result. Moreover, the
process of evaluating an information criterion or validity index incurs a large computational cost since we need to repeat the
entire parameter estimation process at a large number of different values of k.

During 1990s, there appeared some new approaches to solving this problem. One approach was to utilize a kind of sto-
chastic simulation to infer the optimal mixture model. The two typical implementations are the methods of Dirichlet pro-
cesses [15] and reversible jump Markov chain Monte Carlo (RJMCMC) [16]. However, these stochastic simulation methods
generally require a large number of samples via different sampling rules. Another approach was to implement the Bayesian
inference by maximizing the variational function, which was known as the variational Bayesian learning [17,18]. But this VB
method only maximizes a lower bound of the Bayesian inference probability and is still in lack of theoretical justifications.

Recently, a novel approach has been developed from the Bayesian Ying–Yang (BYY) harmony learning system and theory
[10–22] with a feature that model selection can be made automatically during the parameter learning. Actually, it was al-
ready shown in [23] that the Gaussian mixture modeling problem in which the number of Gaussians is unknown can be
equivalent to the maximization of a harmony function on a specific BI-directional architecture (BI-architecture) of the
BYY system for the Gaussian mixture model and a gradient learning rule for maximization of this harmony function was also
established. Later on, the conjugate, natural, adaptive gradient and fixed-point learning algorithms [24–26] were further pro-
posed to improve the efficiency of the harmony function maximization. These BYY learning algorithms have the same behav-
ior that an appropriate number of Gaussians can be automatically allocated for the sample data set, with the mixing
proportions of the extra Gaussians attenuating to zero. That is, they can learn the parameters of the Gaussian mixture with
automated model selection. In fact, this BYY harmony function and its model selection property were theoretically analyzed
and proved under some wild conditions in [27]. Moreover, an annealing BYY learning algorithm [28] was also established on
a backward architecture of the BYY system for the Gaussian mixture to search the global maximum of the harmony function,
being expressed as a kind of deterministic annealing EM procedure. On the other hand, from point view of penalizing the
Shannon entropy of the mixing proportions on maximum likelihood estimation (MLE), an entropy penalized MLE iterative
algorithm was also proposed to make model selection automatically with parameter estimation on Gaussian mixture [29].

Although those automated model selection learning algorithms are quite efficient for Gaussian mixture learning in many
situations, they must satisfy an assumption that k is larger than the number of actual Gaussians in the sample data. Clearly,
we can easily overestimate the number of Gaussians in the sample data and set it to be k. But when k is much larger than the
true value, these algorithms usually converge to a wrong result. Unfortunately, it is rather difficult to get an overestimate of
the number of actual Gaussians in the sample data which is just slightly larger than the true number. In order to get rid of
this difficulty, we can construct a scale-incremental learning algorithm by increasing the number of components one by one
until it reaches the correct one with the best harmony, i.e., the maximization of the harmony function. In fact, Vlassis and
Likas have already proposed such a kind of algorithm called the greedy EM algorithm [30], which was further discussed
and strengthened in [31]. However, the stop criterion of this greedy EM algorithm is still based on the maximum likelihood
and thus cannot guarantee the correctness of the final model selection, i.e., the maximum k.

In the current paper, we propose a BYY scale-incremental EM algorithm in which each component split operation tries to
increase the harmony function and the stop criterion is based on the maximum harmony function. Since the maximization of
the harmony function just corresponds to the correct model selection [27], the BYY scale-incremental EM algorithm leads to
the correct model selection. Actually, it is demonstrated well by the simulation and practical experiments that this BYY
scale-incremental EM algorithm is efficient for Gaussian mixture learning and its applications.

The rest of the paper is organized as follows. In Section 2, we revisit the EM algorithm for Gaussian mixtures. We further
introduce the BYY learning system and the harmony function in Section 3. In Section 4, we present the BYY scale-incremental
EM algorithm. Several simulation experiments and applications to classification of the Iris data and unsupervised color im-
age segmentation are conducted in Section 5 to demonstrate the efficiency of the proposed BYY scale-incremental EM algo-
rithm. Finally, we conclude briefly in Section 6.

2. EM algorithm for Gaussian mixtures

2.1. Gaussian mixture model

We begin with a brief description of Gaussian mixture model. Let X be a d-dimensional random variable, with
x ¼ ½x1; x2; . . . ; xd�T representing a particular value of X. Mathematically, X is called to be subject to a finite mixture model
of k components in Rd if its probability density is given as follows:
UðxÞ ¼
Xk

i¼1

pi/ðxjhiÞ 8x 2 Rd; ð1Þ
where each hi is the set of parameters defining the ith component (i.e., the probability density), and pi 2 ð0;1Þ ði ¼ 1;2; . . . ; kÞ
are the mixing proportions subject to

Pk
i¼1pi ¼ 1. Then, for the Gaussian mixture model, each component density /ðxjhiÞ is a

Gaussian probability density given by
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/ðxjhiÞ ¼
1

ð2pÞ
n
2jRjj

e�
1
2ðx�mjÞTR�1

j ðx�mjÞ; ð2Þ
mj is the mean vector and Rj is the covariance matrix which is assumed positive definite. For clarity, we encapsulate all the
parameters into one vector H ¼ ðp1;p2; . . .pk; h1; h2; . . . ; hkÞ, where hi ¼ ðli;RiÞ represents the parameters of the ith Gaussian.
In this way, according to Eq. (1), the density of the Gaussian mixture can be rewritten as
UðxjHÞ ¼
Xk

i¼1

pi/ðxjhiÞ ¼
Xk

i¼1

pi/ðxjli;RiÞ: ð3Þ
For the Gaussian mixture learning or modeling, we usually only have a sample data set S ¼ fx1; x2; . . . xNg from the original
Gaussian mixture and our aim is to estimate all the parameters in the original Gaussian mixture from these sample data. The
difficulty relies on the blindness of the index of the Gaussian from which each sample was generated. In fact, if we know the
Gaussian from which each sample xt comes, the estimation of the parameters hk for each Gaussian becomes very simple.
Oppositely, as these samples are not labeled, we need to estimate these incomplete data, which makes the estimation of
the parameters in Hk more difficult. Fortunately, the EM algorithm for Gaussian mixtures can solve this difficulty with
the help of the concept of the missing data and the expectation.
2.2. The EM algorithm for Gaussian mixtures

The well-known expectation–maximization (EM) algorithm [1] is designed to solve the maximum likelihood estimation
problem for a probability model in which some random variable can be observed, while the other random variable cannot be
observed. That is, it concerns the problem of missing or unobservable data. By alternatively implementing the expectation
step to estimate the probability distribution of the unobservable random variable and the maximization step to increase the
log-likelihood function of the model, the EM algorithm can finally lead to a local maximum of the log-likelihood function of
the model on the sample data set. For the Gaussian mixture model we consider, the available sample data S ¼ fx1; x2; . . . xNg
can be considered as the observable data, while the hidden indexes of these samples can be considered as the unobservable
data. In this situation, the log-likelihood function can be expressed as follows:
log pðSjHkÞ ¼ log
YN

t¼1

/ðxtjHkÞ ¼
XN

t¼1

log
Xk

i¼1

pi/ðxt jhiÞ: ð4Þ
By applying the EM algorithm to the maximum likelihood estimation problem of the Gaussian mixture with the sample
data set S ¼ fx1; x2; . . . xNg, we can easily establish the EM algorithm for Gaussian mixtures, which enables us to update the
parameters of the Gaussian mixture with the sample data such that the above log-likelihood function increases incremen-
tally to a local maximum. Actually, the update of the parameters of the EM algorithm for Gaussian mixtures can be given by
the following iterative equations for all k components [3]:
PðjjxtÞ ¼
pj/ðxtjhjÞPk
i¼1pi/ðxtjhiÞ

; ð5Þ

pþj ¼
1
N

XN

t¼1

PðjjxtÞ; ð6Þ

lþj ¼
1PN

i¼1PðjjxtÞ

XN

t¼1

PðjjxtÞxt ; ð7Þ

Rþj ¼
PN

t¼1PðjjxtÞðxt � lþj Þðxt � lþj Þ
T

PN
t¼1PðjjxtÞ

: ð8Þ
As already pointed out in the previous section, the EM algorithm cannot guarantee to converge to the best solution, i.e.,
the consistent maximum likelihood estimate with the sample data set S. Generally, it is considered as a linearly convergent
algorithm [3]. However, recent theoretical analysis has proved that the EM algorithm for Gaussian mixtures or the mixtures
of densities from a class of exponential families tends to be asymptotically super-linear when the overlap of densities in the
mixture tends to zero [4–6]. Moreover, it was also proved that the EM algorithm for Gaussian mixtures tends to converge to
the correct solution as the overlap of densities in the mixture tends to zero [7]. Thus, the EM algorithm is better than the
gradient-type algorithms. Nevertheless, as the EM algorithm tries to maximize the likelihood function, it certainly has no
ability to make model selection for the Gaussian mixture with the sample data. In order to overcome these weaknesses,
we will utilize the BYY harmony function instead of the log-likelihood function in our scale-incremental approach to the
Gaussian mixture learning.



3. BYY learning system and harmony function

We further introduce the Bayesian Ying–Yang (BYY) learning system and the harmony function on Gaussian mixture,
which will be used to construct our scale-incremental EM algorithm. A BYY system describes each observation x 2 X � Rd

and its corresponding inner representation y 2 Y � Rm via the two types of Bayesian decomposition of the joint density
pðx; yÞ ¼ pðxÞpðyjxÞ and qðx; yÞ ¼ qðyÞqðxjyÞ, being called Yang and Ying machines, respectively. For analysis of the finite mix-
ture, y is limited to be an integer variable, i.e., y 2 Y ¼ f1;2; . . . ; kg � R with m = 1. Given a data set Dx ¼ fxtgN

t¼1, the task of
learning on a BYY system consists of specifying all the aspects of pðxÞ; pðyjxÞ; qðyÞ; qðxjyÞ with a harmony learning principle
implemented by maximizing the harmony functional
HðpjjqÞ ¼
Z

pðyjxÞpðxÞ ln½qðxjyÞqðyÞ�dxdy� ln zq; ð9Þ
where zq is a regularization term [21].
If both pðyjxÞ and qðxjyÞ are parametric, i.e, from a family of probability densities with a parameter h 2 Rd, the BYY system

is called to have a Bi-directional architecture (BI-architecture). For the Gaussian mixture modeling, we use the following spe-
cific BI-architecture of the BYY system. qðjÞ ¼ aj, aj P 0 and

Pk
j¼1aj ¼ 1. Also, we ignore the regularization term zq (i.e, set

zq ¼ 1) and let pðxÞ be the empirical density p0ðxÞ ¼ 1
N

PN
t¼1gðx� xtÞ, where x 2 X ¼ Rd and gð�Þ is a kind of kernel function

(e.g., Gaussian function). Moreover, the BI-architecture is constructed with the following parametric from:
pðy ¼ jjxÞ ¼ ajqðxjhjÞ
qðxjHkÞ

; qðxjHkÞ ¼
Xk

j¼1

ajqðxjhjÞ; ð10Þ
where qðxjhjÞ ¼ qðxjy ¼ jÞ with hj consisting of all its parameters and Hk ¼ faj; hjgk
j¼1. Substituting these component densities

into Eq. (9) and letting the kernel functions approach the delta functions dð�Þ, we have
HðpjjqÞ ¼ JðHkÞ ¼
1
N

XN

t¼1

Xk

j¼1

ajqðxtjhjÞPk
i¼1aiqðxt jhiÞ

ln½ajqðxtjhjÞ�: ð11Þ
This is, HðpjjqÞ becomes a harmony function JðHkÞ on the parameters Hk of a finite mixture model. When qðxjhjÞ is a Gauss-
ian mixture density given by Eq. (2), JðHkÞ becomes a harmony function on Gaussian mixtures with the sample data set Dx. It
has been demonstrated by the experiments in [23–26,28] and proved by the theoretical analysis in [27] that this harmony
function reaches its global maximization when the number of Gaussians is just equal to that of the actual Gaussians or clus-
ters in the sample data. Thus, we will use it as a new criterion for the model selection of the Gaussian mixture in our scale-
incremental approach for the Gaussian mixture learning.

4. BYY scale-incremental EM algorithm

With the above preparations, we now begin to present our BYY scale-incremental EM algorithm. Given a sample data set
S ¼ fx1; x2; . . . ; xNg from an original mixture with k�ð> 1Þ Gaussians and setting an initial number k ¼ 2, we can use the (con-
ventional) EM algorithm to get k estimated Gaussians with the associated parameters. When k < k�, there are some esti-
mated Gaussians, which cannot match the actual Gaussian and should be split into two or more Gaussians. Thus, the
main task of the scale-incremental algorithm is to construct a split criterion so that the split operation can be combined with
the EM algorithm dynamically and independently. Due to the BYY harmony function, we can construct the BYY harmony
split criterion as well as the scale-incremental EM algorithm in the following two subsections.

4.1. BYY harmony split criterion

After each EM procedure with a fixed k, we get the estimated parameters Hk in the Gaussian mixture. According to Eq. (9),
the harmony function JðHkÞ can be further expressed in the sum form as follows:
JðHkÞ ¼
Xk

j¼1

HjðpjjjqjÞ; ð12Þ
where
HðpjjjqjÞ ¼
1
N

XN

t¼1

ajqðxtjhjÞPk
i¼1aiqðxt jhiÞ

ln½ajqðxtjhjÞ�: ð13Þ
Clearly, HjðpjjjqjÞ denotes the harmony level of the jth Gaussian with respect to the corresponding actual Gaussian implied in
the sample data. In order to improve the total harmony function, we can split the component or Gaussian with the least com-
ponent harmony value HjðpjjjqjÞ. That is, if HrðprjjqrÞ



operation on the rth component. Specifically, we divide it into two components i0; j0 with their parameters being designed as
follows (refer to [32]).

According to the covariance matrix Rr , we compute its singular value decomposition Rr ¼ USVT, where
S ¼ diag½s1; s2; . . . ; sd� is a diagonal matrix with nonnegative diagonal elements in a descent order, U and V are two (standard)
orthogonal matrices. Then, we further set A ¼ U

ffiffiffi
S
p
¼ Udiag½ ffiffiffiffiffis1

p
;
ffiffiffiffiffi
s2
p

; . . . ;
ffiffiffiffi
sd
p � and get the first column A1 of A. Finally, we

have the parameters for the two split Gaussians as follows:
ai0 ¼ car;aj0 ¼ ð1� cÞar ; ð14Þ
mi0 ¼ mr � ðaj0=ai0 Þ

1=2lA1; ð15Þ
mj0 ¼ mr þ ðai0=aj0 Þ

1=2lA1; ð16Þ
Ri0 ¼ ðaj0=ai0 ÞRr þ ððb� bl2 � 1Þðar=ai0 Þ þ 1ÞA1AT

1; ð17Þ
Rj0 ¼ ðai0=aj0 ÞRr þ ððbl2 � b� l2Þðar=aj0 Þ þ 1ÞA1AT

1; ð18Þ
where c;l; b are all equal to 0.5.

4.2. Procedure of BYY scale-incremental EM algorithm

According to the above BYY harmony split criterion, the procedure of the BYY scale-incremental EM algorithm can be
summarized as follows:

1. Set k = 2 and the initial values of the parameters H2.
2. At each k and with the parameters Hk, split the least harmony Gaussian /ðxjhrÞ into two new Gaussians /ðxjh0jÞ and /ðxjh00j Þ

according to Eqs. (14)–(18).
3. Perform the EM algorithm from the parameters of the remainder and split Gaussians and their mixing proportions to

update the parameters Hkþ1 for the mixture of k + 1 Gaussians.
4. If JðHkþ1Þ 6 JðHkÞ, stop and get the result Hk at the Gaussian number k, otherwise, let k = k + 1 with the parameters Hkþ1

and return to Step 2.

It can easily found from the above procedure that the split operation tries to increase the total harmony function and the
stopping criterion tries to prevent from splitting too many Gaussians. Therefore, the BYY scale-incremental EM algorithm can
find correct number of Gaussians in the sample data.

5. Experimental results

In this section, several simulation experiments are carried out to demonstrate the BYY scale-incremental EM algorithm
for Gaussian mixture learning on two data sets. Moreover, the BYY scale-incremental EM algorithm is applied to classifica-
tion of the Iris data and unsupervised color image segmentation.

5.1. Simulation experiments

We conducted simulation experiments on two sets of samples drawn from a mixture of five or seven bivariate Gaussians
densities (i.e., d ¼ 2). As shown in Fig. 1a, the first data set consists of five Gaussians with certain degree of overlap. At k ¼ 2,
the initial values, shown in Fig. 1b, were set by conducting a procedure of k-means algorithm. We implemented the BYY
scale-incremental EM algorithm on the data set from k ¼ 2 and the algorithm always stopped as long as JðHkþ1Þ 6 JðHkÞ.

The experimental results of the BYY scale-incremental EM algorithm on this data set are given in Fig. 1c–e at the three
different steps. It can be clearly observed that after the scale-incremental learning, five Gaussians were finally located accu-



Table 1
The cost times of the two algorithms on the both data sets

The data sets The number of actual Gaussians or classes The BYY scale-incremental EM algorithm The Greedy EM algorithm

Set 1 5 5.891251 s 7.017382 s
Set 2 7 7.559194 s 8.012473 s

Fig. 1. (a) The first set of sample data with five Gaussians; (b)–(e) the experimental results at the three steps of the BYY scale-incremental EM algorithm on
the first sample data set; (f) the experimental result of the greedy EM algorithm on the first sample data set; (g) the second set of sample data with seven
Gaussians; (h) the experimental result of the BYY scale-incremental EM algorithm on the second sample data set and (i) the experimental result of the
greedy EM algorithm data set.
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5.2. Classification of the Iris data

We further applied the BYY scale-incremental EM learning algorithm to the classification of the Iris data, which is a typ-
ical real data set for testing a classification algorithm. Actually, it consists of 150 samples of three classes where each class
contains 50 samples and each sample or datum is four-dimensional and consists of measures of the plant morphology. Since
our BYY scale-incremental EM algorithm is a kind of unsupervised learning algorithm, we would not use the class indexes of
these samples. However, these pre-known class indexes would be used to check the classification accuracy of the BYY incre-
mental EM learning algorithm on the Iris data.



Table 2
The component splitting numbers of the two algorithms on the both data sets

The data sets The number of actual Gaussians or classes The BYY scale-incremental EM algorithm The Greedy EM algorithm

Set 1 5 5 10
Set 2 7 7 9

Fig. 2. (a) The experimental results on the color image segmentation; (b) The original color images; (c) the segmentation results of the BYY scale-
incremental EM algorithm and the segmentation results of the greedy EM algorithm.
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We started the BYY scale-incremental EM algorithm by setting k ¼ 2 and the other initial parameters were obtained from
the convergent result of the k-means algorithm on the Iris data. The algorithm was also stopped when JðHkþ1Þ 6 JðHkÞ. For
quick convergence of the algorithm, we set a low threshold value T ¼ 0:033. When the mixing proportion of some Gaussian
was less than T, we cancel this Gaussian in the mixture for the following learning iterations. It was shown by the experiments
that the BYY scale-incremental EM learning algorithm could detect the three classes in the Iris data with an optimal classi-
fication accuracy of 97.4% (there are only four errors in the second class), which is considerably better than the classification
accuracy 93.3% (there are ten errors) of the Greedy EM method [31], but slightly less than the optimal classification accuracy
98% (there are only three errors) of the maximum certainty partitioning method with a large number of linear mixing Gauss-
ian kernels [33].

5.3. Applications to color image segmentation

We finally applied the BYY scale-incremental EM algorithm to the unsupervised color image segmentation which has
been recognized as a promising and challenging topic in image processing [34]. In our experiments, we first transformed
the original color images, as shown in the column (a) of Fig. 2, from the RGB coordinate into the YUV coordinate in the same
way as did in [34]. Each pixel in the color image was then represented by a three dimensional real vector. The experimental
results of the BYY scale-incremental EM algorithm on these color images are given in the column (b) of Fig. 2. For compar-
ison, the experimental results of the greedy EM algorithm [31] are also given in the column (c) of Fig. 2. From these seg-
mented images of the BYY scale-incremental EM algorithm, we can find that two or three objects (including the
background) can be located accurately at the actual objects, respectively. Moreover, in comparison with the segmented
images of the greedy EM algorithm, we can find that our proposed scale-incremental EM algorithm can get a more accurate
segmentation on the contours of the objects in each image.

6. Conclusions

We have investigated the Gaussian mixture learning for both the parameter estimation and model selection from the
pointview of component splitting in the EM algorithm and established a scale-incremental learning algorithm with the help
of the Bayesian Ying–Yang (BYY) harmony function and the EM algorithm. This BYY scale-incremental EM algorithm begins
with two components and adds one component at each step via the BYY harmony split rule after each EM procedure until a
maximum number k is reached at the maximization of the BYY harmony function. It is demonstrated well by the simulation
experiments and the practical applications that the BYY scale-incremental EM algorithm achieves a good parameter estima-
tion of the Gaussian mixture with correct model selection on a sample data set, and is always better than the greedy EM
algorithm.
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