PDO-eS²CNNs: Partial Differential Operator Based Equivariant Spherical CNNs

Zhengyang Shen, Tiancheng Shen, Zhouchen Lin, Jinwen Ma

4 K

U
H
U
K

Abstract

fi fi

Introduction

 \mathbb{R}^2

fi fi

fi

S^2	1	SO(2), SO(3)	
$lpha,eta,\gamma$	1	$Z(\alpha), Y(\beta)$	z = z
R	$R \in SO(3)$ $R = Z(\alpha_R)Y(\beta_R)Z(\gamma_R)$	$n = (0, 0, 1)^T$	i .
P	$P \in \mathcal{S}^2$, $P(\alpha, \beta) = Z(\alpha)Y(\beta)n$	\bar{P}	P
$\bar{P} \cdot SO(2)$	$\{\bar{P}Z(\gamma) \gamma\in[0,2\pi)\},$ $SO(2)$	$E \simeq F$	$\mid E \mid$ F
A_R		$C^{1}(\mathcal{S}^{2})$	\mathcal{S}^2
$C^{7}(SO(3))$	SO(3)	s, so	$s \in C^{\uparrow}(\mathcal{S}^2)$ $so \in C^{\uparrow}(SO(3))$
$\pi_{\widetilde{R}}^{S}[s], \pi_{\widetilde{R}}^{SO}[so]$	\widetilde{R} s so	U_P	\mathcal{S}^2
\widetilde{U}_p	$U_p = \varphi_P(U_P) \subset \mathbb{R}^2$	φ_P	U_P \widetilde{U}_P
$ar{s}$	\mathbb{R}^3 . s	$H(\cdot,\cdot;\boldsymbol{w})$	$m{w}$
$\partial/\partial x_i^{(A)}$	$A \in SO(2)$	$\nabla_x[f], \nabla_x^2[f]$	H f
$\nabla_x^{(A)}, (\nabla_x^{(A)})^2$	fi ,	$\chi^{(A)}$	fi 4
Ψ,Φ	i fi	$oldsymbol{I}, oldsymbol{F}$	
f_P	$f_P = \bar{s} \cdot \varphi_P^{-1}$	$O(\cdot)$	fi .
D_P, \hat{D}_P	and the state of t	$\hat{\nabla}_x[f], \hat{\nabla}_x^2[f]$	$\nabla_x[f]$ $\nabla_x^2[f]$
$\widetilde{\chi}^{(A)},\widetilde{\Psi},\widetilde{\Phi}$	$\chi^{(A)},\Psi$ Φ	C_N	<i>N</i>

10.00

SO()

Related Work

H

K

fi

fi fi fi

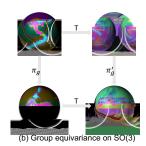
Prior Knowledge

Parameterization of \mathcal{S}^2 and $SO(\)$

. \mathcal{S}^2 , $SO(\)$

$$S^{2} = \{(\ _{1},\ _{2},\ _{3}) | \| \ \|_{2} = \},$$

$$SO(\) = \{R \in \mathbb{R}^{3} | R^{T}R = I, \ \mathbf{I} \ (R) = \}.$$



$$\mathcal{S}^2 \simeq SO(\)/SO(\)\ SO(\)$$

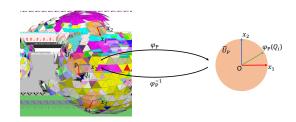
$$ed\ SO(\)\ f$$

$$g \in SO(\)$$

$$fi \qquad ... \qquad T$$

 $R \in SO(\)$

 $R = Z(\alpha_R)Y(\beta_R)Z(\gamma_R),$



 $P \in \mathcal{S}^2$, $\widetilde{U}_P \subset \mathbb{R}^2$

$$\begin{aligned}
U_P & \widetilde{U}_P & = \varphi_P(U_P) \subset \mathbb{R}^2 \\
\varphi_P & & \varphi_P
\end{aligned}$$

$$\varphi_P^{-1}(\ _1,\ _2) = \overline{P}\left(\ _1,\ _2,\sqrt{\ -|\ |^2}\right)^T . \\
P \in \mathcal{S}^2$$

$$\in C^{\infty}(\mathcal{S}^2)$$
 $\widehat{\mathrm{fi}}$ \mathbb{R}^3 ,

 $\partial^2/\partial_i\partial_j(\ ,\ =\ ,\)$ $-\cdot \varphi_P^{-1} \in C^\infty(\mathbb{R}^2)$, $\forall P \in \mathcal{S}^2$

$$\frac{\partial}{\partial_{i}} (P) = \frac{\partial}{\partial_{i}} \left[-\cdot \varphi_{P}^{-1} \right] (),$$

$$\frac{\partial^{2}}{\partial_{i} \partial_{j}} (P) = \frac{\partial^{2}}{\partial_{i} \partial_{j}} \left[-\cdot \varphi_{P}^{-1} \right] ().$$

Rotated Parameterized Differential Operators

 $m{w}$ = ∂/∂ ₁ = ∂/∂ ₂ $H(\partial/\partial$ ₁, ∂/∂ ₂ $m{w}$)

$$\chi^{(A)} = H\left(\frac{\partial}{\partial \frac{(A)}{1}}, \frac{\partial}{\partial \frac{(A)}{2}} w\right),$$

$$\left(\frac{\partial}{\partial_{1}^{(A)}}, \frac{\partial}{\partial_{2}^{(A)}}\right)^{T} = A^{-1} \left(\frac{\partial}{\partial_{1}}, \frac{\partial}{\partial_{2}}\right)^{T}.$$

$$\nabla_{X}^{(A)} = A^{-1} \nabla_{X},$$

$$\nabla_{X} = (\partial/\partial_{-1}, \partial/\partial_{-2})^{T}$$
if
$$Z$$

$$\left(\nabla_{X}^{(A)}\right)^{2} = \begin{bmatrix} \frac{@}{@X_{1}^{(A)}} \frac{@}{@X_{1}^{(A)}} & \frac{@}{@X_{1}^{(A)}} \frac{@}{@X_{2}^{(A)}} \\ \frac{@}{@X_{1}^{(A)}} \frac{@}{@X_{2}^{(A)}} & \frac{@}{@X_{2}^{(A)}} \frac{@}{@X_{2}^{(A)}} \end{bmatrix}$$

$$= A^{-1} \begin{bmatrix} \frac{@^{2}}{@X_{1}^{2}} & \frac{@^{2}}{@X_{1}^{2}} \frac{@^{2}}{@X_{1}^{2}} \\ \frac{@^{2}}{@X_{1}^{2}} & \frac{@^{2}}{@X_{2}^{2}} \end{bmatrix} A = A^{-1} \nabla_{X}^{2} A.$$

$$(A) = W_{1} + (W_{2}, W_{3}) \nabla_{x}^{(A)} + \left\langle \begin{bmatrix} W_{4} & \frac{w_{5}}{2} \\ \frac{w_{5}}{2} & W_{6} \end{bmatrix}, (\nabla_{x}^{(A)})^{2} \right\rangle$$

$$= W_{1} + (W_{2}, W_{3}) A^{-1} \nabla_{x} + \left\langle \begin{bmatrix} W_{4} & \frac{w_{5}}{2} \\ \frac{w_{5}}{2} & W_{6} \end{bmatrix}, A^{-1} \nabla_{x}^{2} A \right\rangle$$

$$= W_{1} + (W_{2}, W_{3}) A^{-1} \nabla_{x} + \left\langle A \begin{bmatrix} W_{4} & \frac{w_{5}}{2} \\ \frac{w_{5}}{2} & W_{6} \end{bmatrix}, A^{-1} \nabla_{x}^{2} \right\rangle$$

$$\left\langle \cdot, \cdot \right\rangle$$

Equivariant Differential Operators

Theorem 1 If $\in C^{\infty}(S^2)$ and $\in C^{\infty}(SO(\)), \, \forall \widetilde{R} \in SO(\),$ we have

$$\begin{split} \Psi \left[\pi_{\widetilde{R}}^{S} \quad \right] &= \!\! \pi_{\widetilde{R}}^{SO} \; \Psi \quad , \\ \Phi \left[\pi_{\widetilde{R}}^{SO} \quad \right] &= \!\! \pi_{\widetilde{R}}^{SO} \; \Phi \quad . \end{split}$$

Equivariant Network Architectures

Theorem 2 If
$$\in C^{\infty}(S^2)$$
, $\forall \widetilde{R} \in SO(\)$, we have
$$T\left[\pi_{\widetilde{R}}^S\ \right] = \pi_{\widetilde{R}}^{SO}\ T \quad .$$

 $SO(\)$

 $m{w}$

Implementation

Icosahedral Spherical Mesh

fi ..., ... fi

Estimation of Partial Derivatives

 $\left(\begin{array}{ccc} {}_{i1}, & {}_{i2}, \sqrt{ & - & \frac{2}{i_1} - & \frac{2}{i_2}} \end{array} \right)^T = \bar{P}^{-1}Q_i.$ $f_{P} = \varphi_{P}^{-1} f_{P}() = (P) = \mathbf{I}(P)$ $f_{P}(i_{1}, i_{2}) = (Q_{i}) = \mathbf{I}(Q_{i})$ $f_P(x_{i1}, x_{i2}) = f_P(0, 0) + x_{i1} \frac{\partial f_P}{\partial x_1} + x_{i2} \frac{\partial f_P}{\partial x_2} + \frac{1}{2} x_{i1}^2 \frac{\partial^2 f_P}{\partial x_1^2}$ $+x_{i1}x_{i2}\frac{\partial^2 f_P}{\partial x_1 \partial x_2} + \frac{1}{2}x_{i2}^2 \frac{\partial^2 f_P}{\partial x_2^2} + O(\rho_i^3)$ $\left[\begin{array}{c}
f_P(x_{i1}, x_{i2}) - f_P(0) \\
\vdots \\
\vdots \\
x_{i1} x_{i2} \frac{x_{i1}^2}{2} x_{i1} x_{i2} \frac{x_{i2}^2}{2}
\end{array}\right] D_P,$ D_P $D_P = \left(\frac{\partial f_P}{\partial_{-1}}, \frac{\partial f_P}{\partial_{-2}}, \frac{\partial^2 f_P}{\partial_{-\frac{1}{2}}^2}, \frac{\partial^2 f_P}{\partial_{-1-2}}, \frac{\partial^2 f_P}{\partial_{-\frac{2}{2}}^2}\right)^T \bigg|_{x_1 = x_2 = 0}.$ 3 imes 3

$$V_P D_P$$
, $D_P \approx D_P$

$$D_P = \frac{1}{2} \|V_P D - F_P\|_2 = (V_P^T V_P)^{-1} V_P^T F_P.$$

Discretization of SO()

$$A \in SO(\)$$

$$SO(\) \qquad \qquad \text{fi}$$

$$SO(\) \qquad \qquad \text{fi}$$

$$C_{N} = \{e = A_{0}, A_{1}, \cdots, A_{N-1}\},$$

$$A_{i} = \left[\begin{array}{cc} \frac{2}{N} & -\frac{1}{N} \\ \frac{2}{N} & N \end{array}\right].$$

$$\forall P \in$$

$$\forall P \in \Omega$$

$$\begin{split} &\widetilde{\Psi}[I](P;I) = {}^{\sim(A_i)}[I](P) \\ &= \left(w_1 + (w_2; w_3) A_i^{-1} \widehat{\nabla}_x + \left\langle A_i \begin{bmatrix} w_4 & \frac{w_5}{2} \\ \frac{w_5}{2} & w_6 \end{bmatrix} A_i^{-1}; \widehat{\nabla}_x^2 \right\rangle \right) [f_P](0) \\ &= w_1 f_P(0) + (w_2; w_3) A_i^{-1} \widehat{\nabla}_x [f_P](0) \\ &+ \left\langle A_i \begin{bmatrix} w_4 & \frac{w_5}{2} \\ \frac{w_5}{2} & w_6 \end{bmatrix} A_i^{-1}; \widehat{\nabla}_x^2 [f_P](0) \right\rangle; \end{split}$$

 $A \in SO(\)$ fi $\forall P \in \Omega$

$$\widetilde{\Phi} \mathbf{F}(P,) = \frac{\nu(SO())}{N} \sum_{j=0}^{N-1} \widetilde{\chi}_{Z_j}^{(Z_i)} \mathbf{F}(P, \bigcirc),$$

 $C^{\infty}(SO(\)), \qquad F(P,\) = (P,A_i), \qquad \bigcirc$

Equivariance Error Analysis

 Ψ Φ $O(
ho_1) = O(
ho_2) = \cdots = O(
ho_m)$ fi $O(
ho_i) = O(
ho)$

Theorem 3 $\forall \widetilde{R} \in SO()$,

$$\begin{split} \widetilde{\Psi} \left[\pi_{\widetilde{R}}^{\mathcal{S}} \, \boldsymbol{I} \, \right] &= \! \pi_{\widetilde{R}}^{\mathcal{S}O} \left[\widetilde{\Psi} \, \boldsymbol{I} \, \right] + O(\rho), \\ \widetilde{\Phi} \left[\pi_{\widetilde{R}}^{\mathcal{S}O} \, \boldsymbol{F} \, \right] &= \! \pi_{\widetilde{R}}^{\mathcal{S}O} \left[\widetilde{\Phi} \, \boldsymbol{F} \, \right] + O(\rho) + O\left(\frac{N^2}{N^2} \right), \end{split}$$

where transformations acting on discrete inputs and feature maps are defined as $\pi_{\widetilde{R}}^{S} \mathbf{I}(P) = \pi_{\widetilde{R}}^{S}(P)$ and $\pi_{\widetilde{R}}^{SO} \mathbf{F}(P,) = \pi_{\widetilde{R}}^{SO}(P, A_i)$, respectively.

 \mathbf{H}

Experiments

Spherical MNIST Classification

					#
1.5	/				
- -	X		•	•	1.
H	X		•		
PDO-eS ² CNN	1	. ± .	. ± .	. ± .	
	X				
K ,- , ,	✓		96	•	1 .
	✓		•		Ι.
PDO-eS ² CNN	1	99.60 ± 0.04	. ± .	99.45 ± 0.05	

rent la companya de la co

		4 ℃	#
$^{ ext{-}}$ U	-		
4 ()		. 4	
1 -		-	
- †]	4	-	- '
ЙU	-	4.	/
PDO-eS ² CNN	60.4 ± 1.0	44.6 ± 0.4	- /

Omnidirectional Image Segmentation

fi
fi
fi
H
-U
fi
H
-U

	. 1	#
! = · · · · !	. ± .	_
	-4	-4
		- /
PDO-eS ² CNN	3.78 ± 0.07	.4

(i) (ii) (ii) (iii) (iii

Atomization Energy Prediction

Conclusions

Acknowledgements	, i.e. , i.e. , e.i , e.i , e.i .
K	Ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 4 4 4
\mathbf{K}	K ECCV, 4
References	fi JJCAI,
ArXiv e-prints.	K H K H H H The
SIAM Journal on Numerical Analysis	Astrophysical Journal
Journal of the American Chemical Society	ICML 44 4 K ICLR
NeurIPS 4 44	K NeurIPS
IEEE Signal Processing Magazine	Mathematical Monthly The American 4
	K NeurIPS 44 44
NeurIPS 4 4 4 4 4	fi H Astronomy and Computing
والمناف وأنان المحاود المحاود المام وأرادا	Astronomy and Computing K
International Conference on 3D Vision (3DV)	
K ICLR	1 1 -
ICML,	K
ICML . 4	
fi ECCV,	
I I ICLR	
ICRA 4 4	

K. K		0		NeurIPS,
. , , , , , , , , , , , , , , , , , , ,	-, '	÷.	٠,	~. ·
,			- 1 -	NeurIPS
ICCV,	,	4.	· · · · · · · · · · · · · · · · · · ·	,
CAI, 4			, =. ! !- <u>.</u> !	