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Multiple Nuclei Tracking Using Integer Programming
for Quantitative Cancer Cell Cycle Analysis

Fuhai Li, Xiaobo Zhou, Jinwen Ma, and Stephen T. C. Wong*

Abstract—Automated cell segmentation and tracking are crit-
ical for quantitative analysis of cell cycle behavior using time-lapse
fluorescence microscopy. However, the complex, dynamic cell
cycle behavior poses new challenges to the existing image seg-
mentation and tracking methods. This paper presents a fully
automated tracking method for quantitative cell cycle analysis. In
the proposed tracking method, we introduce a neighboring graph
to characterize the spatial distribution of neighboring nuclei, and
a novel dissimilarity measure is designed based on the spatial
distribution, nuclei morphological appearance, migration, and
intensity information. Then, we employ the integer programming
and division matching strategy, together with the novel dissimi-
larity measure, to track cell nuclei. We applied this new tracking
method for the tracking of HeLa cancer cells over several cell
cycles, and the validation results showed that the high accuracy for
segmentation and tracking at 99.5% and 90.0%, respectively. The
tracking method has been implemented in the cell–cycle analysis
software package, DCELLIQ, which is freely available.

Index Terms—Anti-cancer drug screening, cell cycle analysis,
segmentation and tracking, time-lapse fluorescence microscopy.

I. INTRODUCTION

T AXANES are a group of drugs used in cancer treatment,
which includes paclitaxel and docetaxel. This group of

small molecule drugs prevents the growth of cancer cells by
affecting microtubules. In normal cell growth, microtubules are
formed when a cell starts dividing, and are broken down when
the cell ceases dividing. Taxanes could stop the division of cancer
cells by preventing the microtubules from breaking down [1], [2].
However, the subsequent molecular events that lead to apoptosis
remain unknown. It is thus essential to dissect cellular processes
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using small molecule drugs to study the effectors and proteins
downstream in the mitotic pathways effectively [1], [2].

However, identifying effective small molecules or anti-mi-
totic drugs such as Taxanes from a large number of compounds
available today is a daunting task [3], [4]. High content
screening (HCS) using automated fluorescence microscopy and
multiplate bioassays can be used to observe and quantitatively
analyze the cell cycle behavior of individual cells treated by
small molecules, and has become an important tool to help
researchers and scientists better understand the complex cel-
lular processes in disease pathogenesis, drug target validation,
and drug lead identification [3], [5]. High content time-lapse
cellular images capture abundant spatial and temporal mor-
phological information of a population of cells, which enables
the investigation of cell cycle behavior with strong statistical
power. However, a large number of cellular images make the
conventional manual analysis impractical. Automated quanti-
tative analysis of time-lapse cellular images is critical to the
success of such dynamic cell cycle studies [3].

Nuclei segmentation and tracking are the essential parts to
quantify the cell cycle behavior. Although a number of seg-
mentation and tracking methods have been reported in the lit-
erature, there remain many open problems, mostly due to com-
plex cell cycle behavior including cell migration, morphological
changes, cell division, and death. Broadly speaking, current cell
tracking approaches can be classified into two categories: 1) the
detection and segmentation based tracking and 2) the evolving
model based tracking [6], [7].

In the first category, given an image sequence,
, the tracking problem is divided into

matching problems: , where
is a tracking solution of , and denotes the matching

solution of [6], [8]. The tracking accuracy closely
depends on the accurate detection and segmentation, dissimi-
larity measurement, and sophisticated matching strategies. In
the second category, the boundaries or positions of cell nuclei
are initialized in the first frame, and then their boundaries and
positions evolve frame by frame [7]. Mean-shift [9], [10], para-
metric active contour [11]–[13], and level set [14], [15] are the
widely used tracking approaches from this category. However,
both mean-shift and parametric active contour cannot cope with
cell division, and nuclei clusters may cause matching errors and
inaccurate boundaries when nuclei move fast. While the level set
method enables the topological changing for cell division, it also
permits the fusion of overlapping cells. Extending these methods
in the second category to cope with these challenges, e.g., the cell
clustering, division, and fast migration, is nontrivial and will
rapidly increase computation time [11], [16].

In this paper, we present a fully automated tracking algorithm
using methods of the first tracking category for quantitatively
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Fig. 1. Overview flowchart of the proposed system.

analyzing the cell cycle progress of a population of cancer cells
treated by small molecule drugs such as Taxanes. There are two
reasons why we choose methods in the first category. First, we
developed a new nuclei segmentation method that can achieve
higher accuracy. Secondly, the change in morphological appear-
ance, long distance migration, and overlapping nuclei make the
existing methods in the second category prone to errors.

In the proposed method, we defined an accurate dissimilarity
measure and designing a sophisticated matching strategy.
Fig. 1 provides a flowchart of the proposed system. The system
consists of four major components: 1) nuclei segmentation, 2)
neighboring graph construction, 3) nuclei division and integer
programming based optimal matching, and 4) cell division,
death, and segmentation error after postprocessing. In the
segmentation component, nuclei are detected and segmented
accurately. Then, a neighboring graph is generated to connect
all segmented nuclei. In the matching component nuclei mor-
phological appearance, migration and neighboring relationships
are integrated into an accurate dissimilarity measure. In this
sense, we use the cell phase information and then nuclei are as-
sociated by an optimal matching strategy. Finally, cell division,
death, and segmentation errors are identified and corrected.

II. MATERIALS AND METHODOLOGY

A. Materials

HeLa H2B-GFP cells were thawed six days before plating
for each experiment and cultured in Dulbecco’s Modified Eagle
Medium (DMEM) with 10% fetal bovine serum (FBS). All cells
were plated in eight well #1 German borosilicate sterile bottomed
plates (Nalge Nunc International) and incubated at 37 in 5%
CO2 for 18 h before imaging at 25 000 cells per well (50 000 cells
per mL). Untreated cells were received medium while treated
cells were received 300 nm nocodazole. Images were acquired
on an automated epifluorescence TE2000-E Eclipse microscope
(Nikon Instruments, Inc.) with a motorized XYZ-plane stage.
Light was generated from a mercury arc lamp with two neutral
density filters. Auto-focusing was performed on the first pass and
for every subsequent 10 passes to compensate for motor drift.
Images were acquired using a 0.2 s exposure time, every 15 min
for 50 h, yielding a total of 200 images for each position.

B. Methodology

1) Nuclei Segmentation: In this study, the nuclei detection
and segmentation method proposed in [17] is employed. Essen-
tially, this method consists of three components: binarization, nu-
clei center detection, and nuclei boundary delineating. We imple-
mented the binarization process using an adaptive thresholding
method [18]–[22]. Nuclei center detection is important because
it determines the segmentation results by providing seed points
for the seeded-watershed algorithm [17], [23]. To detect the cen-
ters of nuclei, we first utilize both intensity and shape informa-
tion by combining the original intensity with the distance image
as: , where is the new image, is the orig-
inal image, and is the distance image. The parameter af-
fects the nuclei center detection results by changing the relative
weights of the intensity information (intensity image) and shape
information (distance image). A high value increases the influ-
ence of the distance image and a low value decreases its influ-
ence. We empirically set after testing a number of values
on a training data set. The validation of how sensitive the param-
eter affects the performance of the detection algorithm is pro-
vided in Section III-A. We detect the nuclei center using the gra-
dientvectorfield (GVF) followedbyGaussianfiltering [17], [24].
The pseudo-code for nuclei detection with GVF is as follows.

Algorithm (Nuclei Detection in GVF)

; / Nuclei pixel matrix. The background and nuclei
pixels are set as 0 and 1 respectively /

; / GVF matrix storing the gradient vectors of each
pixel. /

; / Particle convergence matrix,
whose values are the number of virtual particles stopping at
each pixel. /

while

; /
Get coordinates of one nonzero element (nuclei pixel)
in /

;

while

;
/ Move the virtual particle from along
the gradient vector to the point . If pixel

is a local maximum, the gradient vector
will point to itself, then the and

are the same point. /

end

; / Number of
virtual particles at increases one. /

; / Set the visited point as 0. /

end

;
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Fig. 2. Representative detection and segmentation results of the proposed seg-
mentation method.

Fig. 3. Example neighboring graphs. (a) Neighboring graph built by con-
necting any two nuclei; (b) and (c) are the edges connected to the fourth and
fifth nuclei in neighboring graph (a). (d) Neighboring graph constructed by
using the Delaunay triangulation method; (e) and (f) are the edges connected
to the 4th and 5th nuclei in neighboring graph (d).

After detecting the nuclei centers, we delineate the nuclei
boundaries using the seeded watershed algorithm. Fig. 2 pro-
vides representative detection and segmentation results.
2) Neighboring Graph Construction: The similar mor-

phology of nuclei makes it difficult to accurately distinguish
adjacent nuclei using only their morphological features. There-
fore, we make use of the information of neighboring nuclei to
better distinguish the adjacent nuclei. A way to describe the
neighboring nuclei information is to connect the segmented
nuclei into a neighboring graph. In the neighboring graph, the
edges that connect nuclei with their neighbors can be used to
characterize the spatial neighboring distribution, as seen in
Fig. 3. However, this poses a critical question: how can we gen-
erate a neighboring graph that has strong ability to distinguish
the adjacent nuclei using the neighboring relationships (spatial
distribution of neighboring nuclei)? One possible solution is to
connect all the neighbors of one nucleus, as shown in Fig. 3(a).
However, it is difficult for a human observer to understand
the neighboring relationships due to the complexity of this
neighboring graph. In addition, more edges in the neighboring
graph increase the computation time. Furthermore, the adjacent
nuclei may have similar neighboring relationships and thus, it
adds to the problem of distinguishing them from each other,
as seen in Fig. 3(b) and (c). A different solution was proposed
by Delaunay in 1934 Delaunay triangulation [25]. The repre-
sentative neighboring graphs generated by using the Delaunay
triangulation are provided in Fig. 3(d) and Fig. 4. As compared
to the above neighboring graph, Delaunay neighboring graphs
have less edges and are therefore easier to be understood, as

Fig. 4. Illustration of the local variation of the neighboring graph caused by
the cell division. (a) Neighboring graph in frame �; (b) neighboring graph in
frame � � � in which there is a cell division in the green box; (c) neighboring
graph after removing the dividing cell in frame �; and (d) neighboring graph
after removing the divided cells in frame � � �.

seen in Fig. 3(d). Moreover, in such a graph the adjacent nuclei
often have very different spatial distribution of neighboring
nuclei that can be used to distinguish them easily, as seen in
Figs. 3(e) and (f). These properties indicate that Delaunay
triangulation technology is a good choice to generate the
neighboring graph.
3) Phase Controlled Optimal Matching: To match the seg-

mented nuclei in two consecutive frames, we need to: 1) define
a dissimilarity measure between two nuclei in two consecutive
frames, and 2) choose an appropriate matching strategy.

a) Dissimilarity measure: The dissimilarity measure
indicates how different two nuclei are and is critical for ac-
curate nuclei matching. To define an appropriate dissimilarity
measure, we first characterize a vertex (nucleus) in the th
neighboring graph (frame), , using an attribute vector:

, where denotes the
centroid; is a binary matrix describing the shape of a nu-
cleus, in which the nucleus and background are represented
by 1 and 0, as seen in Fig. 5; is the intensity distribu-
tion of the nucleus, and we use the intensity histogram to
represent the intensity distribution, as seen in Fig. 6; and

is a matrix that
describes the spatial distribution (length and angle) of edges
connected to the nucleus in the neighboring graph, where is
defined in radians, as shown in Fig. 7.

Based on the attribute vector, we define the dissimilarity mea-
sure between the th nucleus in frame and the th nucleus in
frame as follows:

(1)

where , , 2, 3, 4 are the weighting parameters which
satisfy , ; , , 2 are two phase control
parameters, and we will describe them in detail after defining
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Fig. 5. Illustration of measuring shape variability. (a), (b) Cropped and padded
cellular images (matrixes) of the same nucleus in two consecutive frames. The
corresponding binary matrixes have the same number of rows and columns as
the cellular images. (c) Shows the calculation of shape variability; the yellow
color indicates the intersection region; the red color indicates the complemen-
tary region of nucleus in (a); the green color indicates the complementary region
of the nucleus in (b). (d), (e), (f) show the case of two different nuclei in two
consecutive frames.

Fig. 6. Illustration of measuring variation of intensity distribution. (a), (b)
Same nuclei in two consecutive frames. (c), (d) Are their intensity histograms.
(e), (f), (g), (h) Show the case of two different nuclei in two consecutive frames.

Fig. 7. Illustration of measuring the variability of spatial distribution of neigh-
boring nuclei. The green edges in (a) indicate the spatial distribution of neigh-
boring nuclei of one nucleus in one frame, and the blue edges in (b) indicate
the distribution of neighboring nuclei of the other nucleus in the next frame. (c)
shows the difference of these two spatial distributions.

the four normalized dissimilarity measures: ,
, , and .

The first term, , measures the Euclidean distance
between the centroids of two nuclei, as show in (2) at bottom of
the page where denotes the maximum migration distance per
frame, and we set empirically.

The second term, measures the nuclei shape
variation which is defined as

(3)

Fig. 5 illustrates the calculation of nuclei the shape variation.
The procedure of measuring the nuclei shape variation is as fol-
lows. After the initial nuclei segmentation we obtain a label ma-
trix. In such a matrix, pixels within a nucleus region are labeled
with a unique integer number which is used to distinguish it
from other nuclei regions. We can obtain the binary matrix of
a nucleus by cropping a small square region that contains the
nucleus region tightly. Before comparing two binary matrices,
we pad them symmetrically with zeros (background pixels) such
that they have the same number of rows and columns. Then we
can calculate their intersect region and union region based on
(3).

The third term, , describes the variation of the
intensity distribution

(4)

where and denote the maximum and minimum
intensity values of the images. The numerator,
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In (5.1), is a collection of edges selected from ,
and it enables the comparison between the spatial distributions
with different edges. In (5.2), measures the difference of
edge number; compares the differ-
ence of the th edge length; measures the varia-
tion of the th edge angle; and the operation in (5.2) is to

find the smallest difference between two spatial distributions of
neighboring nuclei. Fig. 7 illustrates the variation of the spatial
distributions of neighboring nuclei.

The determination of the optimal weighting parameters ,
, 2, 3, 4, is nontrivial as the validation of tracking results is

time-consuming. Thus, we empirically tested a few values for
, , 2, 3, 4, and selected the values with the highest

tracking accuracy. In this study, we set them as: 0.31, 0.15,
0.23, and 0.31, with the ratio of them is roughly as 4 : 2 : 3 : 4.
In Section III-B1, we provide a sensitivity analysis of , ,
2, 3, 4. The validation results show that the tracking approach is
robust to the parameters.

However, not all the four terms in the dissimilarity measure
can be used, when the nuclei change from one phase to an-
other regarding the following facts: 1) when the nuclei enter
the prophase from the inter-phase their intensity increases dra-
matically, 2) when the nuclei enter the metaphase following the
prophase, their shape changes dramatically, and 3) when cell
divide the new generated cell nuclei will change the local struc-
ture of the neighboring graph around the dividing cells, as seen
in the green circles of Fig. 4(a) and (b). To address problems 1)
and 2), we add two phase control parameters: and , to the
shape and intensity terms. The two control parameters are de-
fined as

(6.1)

(6.2)

where is a cell phase identification function. The details
of the phase identification function can be found in [26]. The
solution to problem (3) is described in the following section.

b) Matching strategy: The matching strategy associates
(match) the nuclei in two consecutive frames based on the de-
fined dissimilarity measure. In this study, we propose a division
matching and 0-1 integer programming based optimal matching
strategy.

To avoid that nuclei of dividing cells affect the neighboring
graph, we first match the nuclei of dividing cells with the
division matching strategy first and ignore them while we
build the neighboring graph, illustrated with green circles of
Fig. 4(c) and (d). Two observable facts of cell division are:
1) parent nucleus (Metaphase) divides along the direction
perpendicular to its major axis [see Fig. 8(a) and (b)] and 2)
two daughter nuclei (Anaphase) have similar appearances; see

Fig. 8. Illustration of the nuclei division.

Fig. 8(b). Therefore, we need to find the parent nucleus of
two daughter nuclei in a local region, as shown in the green
rectangular boxes in Fig. 8(a) and (b). Specifically, this can be
achieved by 1) finding all the nuclei which are in anaphase in
frame and placing them in a list and 2) retrieving the
first element in , and checking if there is a sibling nucleus
that satisfies , where
is a dissimilarity threshold. If there is no sibling nucleus, the
program checks the next element in ; otherwise, the program
enters the next step; 3) checking if there exists a Metaphase
nucleus in the desired local region in frame . If the required
nucleus exists, we match it with the two daughter nuclei. The
steps 2 and 3 are repeated until all elements in are checked.

After matching the dividing cells’ nuclei, the remaining nu-
clei are matched by the 0-1 integer programming based optimal
matching strategy. The optimal matching problem is formu-
lated as follows: let and

denote two consecutive frames. For
each nucleus, , in frame , there are several matching candi-
dates: . Therefore, a total
of possible matches: exist. The
optimal matching strategy, under the constraint that each nu-
cleus has at most one match is to find a solution
such that

(7.1)

(7.2)

In (7.2), denotes the th element of vector , and the term

is the similarity of two nuclei. The matching con-
straints can be formulated as

(7.3)

where is a dimension “involving” matrix and
is a elements vector of ones. In matrix , the th

column corresponds to the th possible match in
, , indicating which nuclei correspond to that

particular match

;
,

(7.4)
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Fig. 9. Bi-nuclei and four cell cycle phases. (a) Bi-nuclei; (b) separated bi-nu-
clei; (c) inter-phase; (d) prophase; (e) metaphase; and (f) anaphase.

Obviously, this is a 0-1 integer programming problem. The
linear programming based branch-and-bound (LPBB) algo-
rithm is widely used to solve the 0-1 integer programming
problem [27], [28]. The optimization process of LPBB is to
build a searching tree by repeatedly discretizing (0 or 1) the
variables (branching) and pruning the tree branches based on
the optimal value of the node (bounding), computed by linear
programming. In general, in a given search tree node the op-
timal value of the LP-relaxation problem at this node is greater
than the existing best solution. The node and its branches will
not be searched and a new node will be searched. If a new
feasible 0-1 solution has a lower value, as compared with the
existing best solution, the algorithm will update the existing
best solution using the new feasible solution. If the value of
the LP-relaxation problem at this node is less than that of the
existing best solution, but it is not the 0-1 solution, two new
searching tree nodes branching from this node are added by
discretizing another variable (0 or 1), and the searching begins
at a new node. The optimal solution is obtained by repeating
the above process.
4) Cell Division, Death, Segmentation Errors Processing:

Since the above optimal matching strategy is under the con-
straint that one nucleus matches at most once, there exist some
nuclei with no match at all due to cell division, cell death (apop-
tosis), and segmentation errors (over- and under-segmentation).
Although we have employed division matching to match all di-
viding cells’ nuclei, some nuclei are still missing due to the
bias of the phase identification. We, however, can correct the
segmentation errors and identify cell division and cell death by
checking the remaining nuclei.

Cell division, over-segmentation, and bi-nucleus: A bi-nu-
cleus is two inter-phase nuclei lying closely together such that
they cannot be distinguished by the detection resolution of the
microscopy, and thus appear as one nucleus in a few contiguous
frames but eventually separate in the later frames, as seen in
Fig. 9(a) and (b). When a bi-nucleus separates, a nucleus without
match will be generated. Therefore, all the nuclei in frame
which have no match are candidates of newly divided nuclei (in
anaphase), newly separated bi-nuclei, or over-segmented nuclei,
as seen in Fig. 9. Due to the distinct morphological appearances
of the anaphase, bi-nuclei, and over-segmented nuclei, it is easy
to separate them using a support vector machine (SVM) classi-
fier based on the following six manually selected features: size,

Fig. 10. Illustration of the proposed nuclei splitting method.

average intensity, standard deviation of intensity, compactness,
long axis, and short axis. For the new divided nuclei and sepa-
rated bi-nuclei candidates, we match them by finding the nuclei
in frame that are closest to them. For the over-segmented nu-
clei candidates, we merge them by finding the ones in frame
that overlap with them and have the smallest size.

Cell death (apoptosis) and under-segmentation: All the
nuclei with no matching in frame are either the candidates for
apoptotic cells or due to the under-segmentation of some nuclei
in frame . Therefore, we need to classify the candidates
into the two groups: apoptosis and under-segmentation. Given a
candidate , we find all its possible matching nuclei in frame

and then label the candidate as an apoptosis nucleus if there
is no matching nucleus, which satisfies (under-segmenta-
tion)

(8)

where is the operator of calculating the area of a nucleus,
and we empirically set . Otherwise, we label the nu-
cleus , which satisfies (8) and has the largest size, as the
under-segmented nucleus, and split it into two nuclei: and

. We propose a splitting method to separate under-seg-
mented nuclei, as shown in Fig. 10. After splitting, we can easily
match the two split nuclei and with and .

III. VALIDATION RESULTS

A. Validation of Segmentation

Unlike cell cytoplasmic images with complex shapes and sig-
nificant intensity variations, cell nuclei have regular shape and
uniform intensity. If the cell nuclei centroids are detected cor-
rectly, the cell boundaries will be well delineated, as shown in
Fig. 2. Thus, it is reasonable to validate the segmentation by just
counting the over-segmentation errors (two or more detected
nuclei centroids are presented inside one nucleus region) and
under-segmentation errors (two or more nuclei regions share
only one detected centroid).
1) Sensitivity Analysis of Parameter in Nuclei Detection:

To validate how the sensitivity of the parameter affects
the detection performance, we uniformly selected 21 nuclei
images from each of four nuclei image sequences (frames

are selected). These 84 (21 4) nuclei im-
ages contain about 8300 nuclei. We used two error measures to
evaluate the performance of the detection approach: over-detec-
tion (the same as the over-segmentation) and under-detection
errors (the same as the under-segmentation). We varied the
value of from 0 to 1. The detailed results of the detection
algorithm are provided in Table I. As we can see, the over-de-
tection error is more sensitive to the variation of the value of
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TABLE I
SENSITIVITY VALIDATION OF PARAMETER � IN NUCLEI DETECTION

TABLE II
VALIDATION OF SEGMENTATION RESULTS

TABLE III
COMPARISON OF SEGMENTATION RESULTS USING NUCLEI IMAGE SEQUENCE 1

as compared to the under-detection error. If we increase to 1,
both over-detection and under-detection increase. From 0.2 to
0.6, the detection algorithm keeps the similar error rate. From
0 to 0.8, the error rate is confined within 1%. In conclusion, the
detection approach is robust to the parameter .
2) Comparison of Nuclei Segmentation: Two cell sequences

were selected to evaluate the proposed segmentation method
with the manual detection results were used as the ground truth.
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TABLE V
COMPARISON OF NUCLEI TRACKING RESULTS

TABLE VI
COMPARISON OF THE DIFFERENCES BETWEEN THE ERROR TRACES AND

ERROR MATCHES OCCURRED UNDER THE VARIATIONS OF PARAMETERS

�� � � � � � � � AND THAT OCCURRED UNDER THE ORIGINAL SETTING

In summary, the location and size based tracker first defines a
dissimilarity measure based on the overlapping area and the dis-
tance of the centroids of two nuclei in two consecutive frames.
Then it matches the nuclei one by one based on the defined dis-
similarity measure. We provide the detailed comparison results
in Table V. On average about 90% of nuclei traces obtained from
the proposed method are correct, and both the ETR and EMR
are restricted to 10%. Whereas both the ETR and EMR of the lo-
cation and size based tracker are 30% higher than the proposed
tracking method. Through further investigation, we found that
fast moving and cell division cause the most nuclei matching
errors for the location and size based tracker while the proposed
system deals with these challenges well. In conclusion, the pro-
posed tracking method is accurate and reliable.

C. Extracted Cell Trajectories

In Fig. 11, we illustrate the representative 2-D HeLa cell mi-
gration maps, in which different cell migration traces are rep-
resented by different colors. As we can see, some cells move
in a small region (shown inside the red square box), and some
cells migrate farther out (shown in the blue square box). In
the anti-cancer drug screening study, the analysis of cell cycle
time distribution is important. The drugs or commands that can
prolong the time of the cell cycle could be new candidates for
anti-cancer treatment. In Fig. 12, the division progression of a
nucleus is shown. There are three cell divisions at ,
27.5, and 28.5 h, respectively, as shown in Fig. 13(b). We also
can see that the cell cycle progression of daughter nuclei may

Fig. 11. Two-dimensional cell migration traces.

Fig. 12. Illustration of cell division. (a) The #28 nucleus in the first frame; (b)
the #28 nucleus divided in frame 15, and the two daughter nuclei are #30 and
#33, respectively; and (c) the daughter nuclei #30 and #33 divided in frames 110
and 114, respectively.

have different cell division rates, as seen in Fig. 13(a). In addi-
tion, three representative 3-D cell nuclei trajectories extracted
automatically are shown in Fig. 14, in which we can clearly see
both the cell migration and cell division information.

D. DCellIQ Software Package

We incorporated the proposed tracking method into a
software package: DCELLIQ (Dynamic CELLular Image
Quantitator), which is designed specifically for the analysis
of cell cycle progression and dynamics. In DCELLIQ system,
cell nuclei segmentation, tracking, and cell cycle phase iden-
tification are preformed automatically. The software can be
downloaded freely at our website.

IV. CONCLUSION

Cell cycle behavior analysis of cancer cells is important for
understanding the mechanisms of anti-cancer drugs and for the

1http://www.cbi-tmhs.org/Dcelliq/index.html
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Fig. 13. Tree structure of cell cycle progression. The red numbers in green
notes are the number of nuclei; the black numbers denote the division time (in
hours); the red numbers at bottom is the number of traces. (a) Tree structure
of a cell cycle progression in which the cell cycle progression of the daughter
nuclei are different and (b) the tree structure of cell cycle progression of the cell
in Fig. 10.

Fig. 14. Three representative 3-D cell trajectories that are extracted auto-
matically.

screening of new drugs. However, the significant challenge in
quantifying the time-lapse cellular images has been becoming
the bottleneck of cell cycle progression analysis. In this paper,
we present a fully automated segmentation and tracking method
for quantifying time-lapse cellular images. A cell detector that
combines the shape and intensity information is implemented
to separate the clustered nuclei. We view the nuclei as vertices
in the neighboring graph that is generated using the Delaunay

triangulation. We improve the tracking accuracy by defining a
new dissimilarity measure that takes into account the morpho-
logical appearance, migration distance, and neighboring rela-
tionship using phase information. Then, we develop the division
matching and optimal matching strategy to match the nuclei of
two consecutive frames. Finally, the segmentation errors, cell di-
vision, and death are further processed. The experimental results
show that the proposed segmentation and tracking method is
accurate and reliable. Therefore, we incorporated the proposed
method into a public domain software package, DCELLIQ.
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