
SHTUKAS FOR REDUCTIVE GROUPS AND
LANGLANDS CORRESPONDENCE FOR FUNCTIONS

FIELDS

VINCENT LAFFORGUE

This text gives an introduction to the Langlands correspondence for
function �elds and in particular to some recent works in this subject.
We begin with a short historical account (all notions used below are
recalled in the text).

The Langlands correspondence [49] is a conjecture of utmost impor-
tance, concerning global �elds, i.e. number �elds and function �elds.
Many excellent surveys are available, for example [39, 14, 13, 79, 31, 5].
The Langlands correspondence belongs to a huge system of conjectures
(Langlands functoriality, Grothendieck’s vision of motives, special val-
ues of L-functions, Ramanujan-Petersson conjecture, generalized Rie-
mann hypothesis). This system has a remarkable deepness and logical
coherence and many cases of these conjectures have already been es-
tablished. Moreover the Langlands correspondence over function �elds
admits a geometrization, the �geometric Langlands program�, which is
related to conformal �eld theory in Theoretical Physics.

Let G be a connected reductive group over a global �eld F . For the
sake of simplicity we assume G is split.

The Langlands correspondence relates two fundamental objects, of
very di�erent nature, whose de�nition will be recalled later,

� the automorphic forms for G,
� the global Langlands parameters , i.e. the conjugacy classes of

morphisms from the Galois group Gal(F=F ) to the Langlands
dual group bG(Qℓ).

For G = GL1 we have bG = GL1 and this is class �eld theory, which
describes the abelianization of Gal(F=F ) (one particular case of it for Q
is the law of quadratic reciprocity, which dates back to Euler, Legendre
and Gauss).

Now we restrict ourselves to the case of functions �elds.
In the case where G = GLr (with r � 2) the Langlands correspon-

dence (in both directions) was proven by Drinfeld [20, 23, 24, 22] for
r = 2 and by Laurent La�orgue [44] for arbitrary r. In fact they
show the �automorphic to Galois� direction by using the cohomology
of stacks of shtukas and the Arthur-Selberg trace formula, and deduce
from it the reverse direction by using the inverse theorems of Weil,
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Piatetski-Shapiro and Cogdell [16] (which are speci�c to the case of
GLr) as well as Grothendieck’s functional equation and Laumon’s prod-
uct formula [55] (which are speci�c to the case of function �elds). Other
works using the Arthur-Selberg trace formula for stacks of shtukas are,
in chronological order, Laumon [57, 59], Ngo Bao Chau [70, 71, 72], Ngo
Dac Tuan [17, 73], Lau [54, 53], Kazhdan, Varshavsky [81], Badulescu,
Roche [6].

In [47] we show the �automorphic to Galois� direction of the Lang-
lands correspondence for all reductive groups over function �elds. More
precisely we construct a canonical decomposition of the vector space
of cuspidal automorphic forms, indexed by global Langlands param-
eters. This decomposition is obtained by the spectral decomposition
associated to the action on this vector space of a commutative alge-
bra B of �excursion operators� such that each character of B deter-
mines a unique global Langlands parameter. Unlike previous works,
our method is independent on the Arthur-Selberg trace formula. We
use the following two ingredients:

� the classifying stacks of shtukas, introduced by Drinfeld for GLr
[20, 23] and generalized to all reductive groups and arbitrary
number of �legs� by Varshavsky [81] (shtukas with several legs
were also considered in [54, 71]),

� the geometric Satake equivalence, due to Lusztig, Drinfeld,
Ginzburg and Mirkovic-Vilonen [7, 69] (it is a fundamental
ingredient of the geometric Langlands program, whose idea
comes from the fusion of particles in conformal �eld theory).

In the last sections we discuss recent works related to the Langlands
program over function �elds, notably on the independence on ℓ and on
the geometric Langlands program. We cannot discuss the works about
number �elds because there are too many and it is not possible to quote
them in this short text. Let us only mention that, in his lectures at
this conference, Peter Scholze will explain local analogues of shtukas
over Qp.
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1. Preliminaries

1.1. Basic notions in algebraic geometry. Let k be a �eld. The
ring of functions on the n-dimensional a�ne space An over k is the ring
k[x1; :::; xn] of polynomials in n variables. For any ideal I, the quotient
A = k[x1; :::; xn]=I is the ring of functions on the closed subscheme of
An de�ned by the equations in I and we obtain in this way all a�ne
schemes (of �nite type) over k. An a�ne scheme over k is denoted by
Spec(A) when A is the k-algebra of functions on it. It is equipped with
the Zariski topology (generated by open subschemes of the form f ̸= 0
for f 2 A). It is called a variety when A has no non zero nilpotent
element. General schemes and varieties are obtained by gluing. The
projective space Pn over k is the quotient of An+1 n f0g by homoth-
eties and can be obtained by gluing n + 1 copies of An (which are the
quotients of f(x0; :::; xn); xi ̸= 0g, for i = 0; :::; n). Closed subschemes
(resp. varieties) of Pn are called projective schemes (resp varieties) over
k. Schemes over k have a dimension and a curve is a variety purely of
dimension 1.

1.2. Global �elds. A number �eld is a �nite extension of Q, i.e. a
�eld generated over Q by some roots of a polynomial with coe�cients
in Q.

A function �eld F is the �eld of rational functions on an irreducible
curve X over a �nite �eld Fq.

We recall that if q is a prime number, Fq = Z=qZ. In general q is a
power of a prime number and all �nite �elds of cardinal q are isomorphic
to each other (although non canonically), hence the notation Fq.

The simplest example of a function �eld is F = Fq(t), namely the
�eld of rational functions on the a�ne line X = A1. Every function
�eld is a �nite extension of such a �eld Fq(t).

Given a function �eld F there exists a unique smooth projective
and geometrically irreducible curve X over a �nite �eld Fq whose �eld
of rational functions is F : indeed for any irreducible curve over Fq
we obtain a smooth projective curve with the same �eld of rational
functions by resolving the singularities and adding the points at in�nity.
For example F = Fq(t) is the �eld of rational functions of the projective
line X = P1 over Fq (we have added to A1 the point at in�nity).

For the rest of the text we �x a smooth projective and geometrically
irreducible curve X over Fq. We denote by F the �eld of functions
of X (but F may also denote a general global �eld, as in the next
subsection).

1.3. Places of global �elds and local �elds. A place v of a global
�eld F is a non trivial multiplicative norm F ! R� 0, up to equivalence
(where the equivalence relation identi�es ∥:∥ and ∥:∥s for any s > 0).
The completion Fv of the global �eld F for this norm is called a local
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�eld. It is a locally compact �eld and the inclusion F � Fv determines
v. Therefore a place is �a way to complete a global �eld into a local
�eld�.

For any local �eld there is a canonical normalization of its norm
given by the action on its Haar measure. For any non zero element of
a global �eld the product of the normalized norms at all places is equal
to 1.

For example the places of Q are
� the archimedean place, where the completion is R (with nor-

malized norm equal to the usual absolute value),
� for every prime number p, the place p where the completion is

Qp (the normalized norm in Qp of a number r 2 Q� is equal
to p� np (r), where np(r) 2 Z is the exponent of p in the decom-
position of r as the product of a sign and powers of the prime
numbers).

Thus the local �elds obtained by completion of Q are Qp, for all prime
numbers p, and R. A place v is said to be archimedean if Fv is equal
to R or C. These places are in �nite number for number �elds and are
absent for function �elds. For each non archimedean place v we denote
by Ov the ring of integers of Fv, consisting of elements of norm � 1.
For example it is Zp if Fv = Qp.

In the case of function �elds, where we denote by F the �eld of
functions of X, the places are exactly the closed points of X (de�ned
as the maximal ideals). The closed points are in bijection with the
orbits under Gal(Fq=Fq) on X(Fq) (Galois groups are recalled below).
For every closed point v of X, we denote by nv : F � ! Z the valuation
which associates to a rational function other than 0 its vanishing order
at v. We can see Ov as the Fq-algebra of functions on the formal
neighborhood around v in X and Fv as the Fq-algebra of functions on
the punctured formal neighborhood. We denote by �(v) the residue
�eld of Ov; it is a �nite extension of Fq, whose degree is denoted by
deg(v), therefore it is a �nite �eld with qdeg(v) elements. The normalized
norm on F associated to v sends a 2 F � to q� deg(v)nv (a).

In the example where X = P1 = A1 [ 1, the unitary irreducible
polynomials in Fq[t] (which is the ring of functions on A1) play a role
analoguous to that of the prime numbers in Z: the places of P1 are

� the place 1, at which the completion is Fq((t� 1)),
� the places associated to unitary irreducible polynomials in Fq[t]

(the degree of such a place is simply the degree of the polyno-
mial). For example the unitary irreducible polynomial t corre-
sponds to the point 0 2 A1 and the completion at this place is
Fq((t)).

We recall that the local �eld Fq((t)) consists of Laurent series, i.e. sums∑
n2 Z antn with an 2 Fq and an = 0 for n negative enough.
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1.4. Galois groups. If k is a �eld, we denote by k an algebraic clo-
sure of k. It is generated over k by the roots of all polynomials with
coe�cients in k. The separable closure ksep � k consists of the ele-
ments whose minimal polynomial over k has a non zero derivative. We
denote by Gal(k=k) = Gal(ksep=k) the group of automorphisms of k
(or equivalently of ksep) which act by the identity on k. It is a pro�nite
group, i.e. a projective limit of �nite groups: an element of Gal(k=k)
is the same as a family, indexed by the �nite Galois extensions k0 � k
of k, of elements �k0 2 Gal(k0=k), so that if k00� k0, �k00

��
k0 = �k0. We

recall that k0 � k is said to be a �nite Galois extension of k if it is
a �nite dimensional k-vector subspace of ksep and is stable under the
action of Gal(k=k) = Gal(ksep=k) (and then Gal(k0=k) is a �nite group
of cardinal equal to the dimension of k0 over k).

A simple example is given by �nite �elds: Gal(Fq=Fq) is equal to the
pro�nite completion bZ of Z in such a way that 1 2 bZ is the Frobenius
generator x 7! xq (which is an automorphism of Fq equal to identity
on Fq).

We recall that for any Fq-algebra, x 7! xq is a morphism of Fq-
algebras, in particular (x + y)q = xq + yq. For any scheme S over Fq
we denote by FrobS : S ! S the morphism acting on functions by
Frob�

S(f) = f q.
We come back to the function �eld F of X. Our main object of

interest is the Galois group � = Gal(F=F ) = Gal(F sep=F ).
By the point of view of Grothendieck developed in SGA1, we have

an equivalence between

� the category of �nite sets A endowed with a continuous action
of �

� the category of �nite separable F -algebras

where the functor from the �rst category to the second one maps A to
the �nite separable F -algebra ((F sep)A)� (here (F sep)A is the direct sum
of copies of F sep indexed by A and � acts on each copy and permutes
them at the same time). We write � = Spec(F ) and � = Spec(F ).
Then, for any dense open U � X, � has a pro�nite quotient �1(U; �)
such that a continuous action of � on a �nite set A factors through
�1(U; �) if and only if Spec(((F sep)A)�) extends (uniquely) to an Øtale
covering of U . We will not explain the notion of Øtale morphism in
general and just say that a morphism between smooth varieties over a
�eld is Øtale if and only if its di�erential is everywhere invertible. Thus
we have an equivalence between

� the category of �nite sets A endowed with a continuous action
of �1(U; �)

� the category of �nite Øtale coverings of U .
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For any place v the choice of an embedding F � Fv provides an inclu-
sion Gal(Fv=Fv) � Gal(F=F ) (well de�ned up to conjugation). We de-
note by Frobv 2 Gal(F=F ) the image of any element of Gal(F v=Fv) lift-
ing the Frobenius generator Frobenius x 7! xqdeg( v ) in Gal(�(v)=�(v)) =
bZ. When U is open dense in X as above and v is a place in U , the
image of Frobv in �1(U; �) is well de�ned up to conjugation.

1.5. A lemma of Drinfeld [20]. Let U � X open dense as above.
For any i 2 I we denote by Frobi the �partial Frobenius� morphism
U I ! U I which sends (xj)j2 I to (x0

j)j2 I with x0
i = FrobU(xi) and

x0
j = xj for j ̸= i. For any scheme T and any morphism T ! U I , we

say that a morphism a : T ! T is �above� Frobi if the square

T

��

a //T

��
U I Frobi //U I

is commutative.

Lemma 1.1. We have an equivalence of categories between
� the category of �nite setsA endowed with a continuous action

of (�1(U; �))I ,
� the category of �nite Øtale coveringsT of U I , equipped with

partial Frobenius morphisms, i.e. morphismsFf ig aboveFrobi,
commuting with each other, and whose composition isFrobT .

The functor from the �rst category to the second one is the
following: if the action of (�1(U; �))I on A factorizes through∏

i2 I Gal(Ui=U) where for each i, Ui is a �nite Øtale Galois covering
of U (and Gal(Ui=U) is its automorphism group), then the image by
the functor is (

∏
i2 I Ui) �Q

i 2 I Gal(Ui =U) A, equipped with the partial
Frobenius morphisms Ff ig given by

(
FrobUi �

∏
j6=i IdUj

)
� IdA.

1.6. Split connected reductive groups and bundles. We denote
by Gm = GL1 the multiplicative group. A split torus over a �eld k is
an algebraic group T which is isomorphic to Gr

m for some r.
A connected reductive group over a �eld k is a connected, smooth,

a�ne algebraic group whose extension to k has a trivial unipotent rad-
ical (i.e. any normal, smooth, connected, unipotent subgroup scheme
of it is trivial). A connected reductive group G over k is said to be
split if it has a split maximal torus T . Then (after chosing a Borel
subgroup containing T ) the lattices Hom(Gm; T ) and Hom(T; Gm) are
called the coweight and weight lattices of G. The split connected reduc-
tive groups over a �eld k are exactly the quotients by central �nite sub-
group schemes of products of Gm, simply-connected split groups in the
four series SLn+1, Spin2n+1, Sp2n, Spin2n, and �ve simply-connected
split exceptional groups.
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Let G be a split connected reductive group over a �eld k, and X
a scheme over k. Then a G-bundle over X is a morphism Y ! X,
together which an action of G on the �bers which is simply transitive.
A GLr-bundle E gives rise to the vector bundle of rank r equal to
E �GLr Ar and the notions are equivalent.

2. Reminder on automorphic forms

For the moment we take G = GLr. When the global �eld is Q, an
automorphic form (without level at �nite places) is a function on the
quotient GLr(Z)nGLr(R) (the best known example is the particular
case of modular functions, for which r = 2). This quotient classi�es
the free Z-modules (or, equivalently, projective Z-modules) M of rank
r equipped with a trivialization M 
Z R = Rr (i.e. an embedding of
M as a lattice in Rr). Indeed if we choose a basis of M over Z its
embedding in Rr is given by a matrix in GLr(R) and the change of the
basis of M gives the quotient by GLr(Z).

Now we come back to our function �eld F . To explain the analogy
with Q we choose a place v of X (of degree 1 to simplify) playing the
role of the archimedean place of Q (but this choice is not natural and
will be forgotten in �ve lines). An analogue of a projective Z-module
M of rank r equipped with a trivialization M 
Z R = Rr is a vector
bundle of rank r over X equipped with a trivialization on the formal
neighborhood around v. Now we forget the trivialization on the formal
neighborhood around v (because we do not want to introduce a level
at v) and then we forget the choice of v.

Thus an automorphic form (without level at any place) for GLr is a
function on the set BunGLr (Fq) of isomorphism classes of vector bundles
of rank r over X.

Now we consider the case of a general group G. From now on we
denote by G a connected reductive group over F , assumed to be split
for simplicity. An automorphic form (without level) for G is a function
on the set BunG(Fq) of isomorphism classes of G-bundles over X.

Remark 2.1. This remark can be skipped. In fact the G-bundles
over X have �nite automorphism groups. Therefore it is more natural
to consider BunG(Fq) as a groupoid, i.e. a category where all arrows
are invertible. It is the groupoid of points over Fq of the Artin stack
BunG over Fq whose groupoid of S-points (with S a scheme over Fq)
classi�es the G-bundles over X � S. We refer to [60] for the notion of
Artin stack and we say only that examples of Artin stacks are given
by the quotients of algebraic varieties by algebraic groups. In Artin
stacks the automorphism groups of the points are algebraic groups (for
example in the case of a quotient they are the stabilizers of the action).
The Quot construction of Grothendieck implies that BunG is an Artin
stack (locally it is even the quotient of a smooth algebraic variety by
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a smooth algebraic group). The automorphisms groups of points in
the groupoid BunG(Fq) are �nite, in fact they are the points over Fq of
automorphisms groups of points in BunG, which are algebraic groups
of �nite type.

It is convenient to impose a condition relative to the center Z of
G. From now on we �x a subgroup � of �nite index in BunZ(Fq) (for
example the trivial subgroup if Z is �nite) and we consider functions
on BunG(Fq)=�. However, except when G is a torus, BunG(Fq)=� is
still in�nite. To obtain vector spaces of �nite dimension we now restrict
ourselves to cuspidal automorphic forms.

For any �eld E � Q, we denote by Ccusp
c (BunG(Fq)=�; E) the E-

vector space of �nite dimension consisting of cuspidal functions on
BunG(Fq)=�. It is de�ned as the intersection of the kernel of all
�constant term� morphisms Cc(BunG(Fq)=�; E) ! C(BunM(Fq)=�; E)
(which are given by the correspondence BunG(Fq)  BunP (Fq) !
BunM(Fq) and involve only �nite sums), for all proper parabolic sub-
groups P of G with associated Levi quotient M (de�ned as the quotient
of P by its unipotent radical). For readers who do not know these no-
tions, we recall that in the case of GLr a parabolic subgroup P is
conjugated to a subgroup of upper block triangular matrices and that
the associated Levi quotient M is isomorphic to the group of block
diagonal matrices. It is legitimate in the Langlands correspondence to
restrict oneself to cuspidal automorphic forms because all automorphic
forms for G can be understood from cuspidal automorphic forms for G
and for the Levi quotients of its parabolic subgroups.

Let ℓ be a prime number not dividing q. To simplify the notations
we assume that Qℓ contains a square root of q (otherwise replace Qℓ
everywhere by a �nite extension containing a square root of q). For
Galois representations we have to work with coe�cients in Qℓ and Qℓ,
and not Q; Q and even C (to which Qℓ is isomorphic algebraically but
not topologically) because the Galois representations which are contin-
uous with coe�cients in C always have a �nite image (unlike those with
coe�cients in Qℓ) and are not enough to match automorphic forms in
the Langlands correspondence. Therefore, even if the notion of cuspidal
automorphic form is (in our case of function �elds) algebraic, to study
the Langlands correspondence we will consider cuspidal automorphic
forms with coe�cients in E = Qℓ or Qℓ.

3. Class field theory for function fields

It was developped by Rosenlicht and Lang [77]. Here we consider
only the unrami�ed case.

Let Pic be the relative Picard scheme of X over Fq, whose de�nition is
that, for any scheme S over Fq, Pic(S) (the set of morphisms S ! Pic)
classi�es the isomorphism classes [E ] of line bundles E on X � S (a line
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bundle is a vector bundle of rank 1, so it is the same as a Gm-bundle).
The relation with BunGL1 is that BunGL1 can be identi�ed with the
quotient of Pic by the trivial action of Gm.

Let Pic0 be the neutral component of Pic, i.e. the kernel of the
degree morphism Pic ! Z. It is an abelian variety over Fq, also called
the jacobian of X.

Class �eld theory states (in the unrami�ed case to which we restrict
ourselves in this text) that there is a canonical isomorphism

(
�1(X; �)

)ab �bZ Z s! Pic(Fq)(3.1)

characterized by the fact that for any place v of X, it sends Frobv
to [O(v)], where O(v) is the line bundle on X whose sections are the
functions on X with a possible pole of order � 1 at v.

The isomorphism (3.1) implies that for any a 2 Pic(Fq) of non zero
degree we can associate to any (multiplicative) character � of the �nite
abelian group Pic(Fq)=aZ (with values in any �eld, e.g. Qℓ for ℓ prime to
q) a character �(�) of �1(X; �). We now give a geometric construction
of �(�), which is in fact the key step in the proof of the isomorphism
(3.1).

The Lang isogeny L : Pic ! Pic0 is such that, for any scheme S over
Fq and every line bundle E on X �S, [E ] 2 Pic(S) is sent by L to [E � 1

(FrobS � IdX)� (E)] 2 Pic0(S). We note that [(FrobS � IdX)� (E)] 2
Pic(S) is the image by FrobPic of [E ] 2 Pic(S). The Lang isogeny is
surjective and its kernel is Pic(Fq). For any �nite set I and any family
(ni)i2 I 2 ZI satisfying

∑
i2 I ni = 0, we consider the Abel-Jacobi mor-

phism AJ : XI ! Pic0 sending (xi)i2 I to the line bundle O(
∑

i2 I nixi).
We form the �ber product

ChtI;(ni )i 2 I

�p
��

//Pic

L
��

XI
AJ

//Pic0

and see that p is a Galois covering of XI with Galois group Pic(Fq).
Thus, up to an automorphism group Fq

� which we neglect, for any
scheme S over Fq, ChtI;(ni )i 2 I (S) classi�es

� morphisms xi : S ! X
� a line bundle E on X � S
� an isomorphism E � 1 
 (FrobS � IdX)� (E) ≃ O(

∑
i2 I nixi).

Moreover ChtI;(ni )i 2 I is equipped with partial Frobenius morphisms Ff ig
sending E to E
O(nixi). The morphism Ff ig is above Frobi : XI ! XI ,
because (FrobS � IdX)� (O(xi)) = O(FrobS(xi)). Taking the quotient
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by aZ we obtain a �nite Galois covering

ChtI;(ni )i 2 I =aZ

p
��

XI

with Galois group Pic(Fq)=aZ and equipped with the partial Frobe-
nius morphisms Ff ig. Then Drinfeld’s lemma gives rise to a morphism
�I;(ni )i 2 I : �1(X; �)I ! Pic(Fq)=aZ. The character �(�) of �1(X; �)
is characterized by the fact that for any I and (ni)i2 I with sum 0,
� ◦ �I;(ni )i 2 I = � i2 I�(�)ni and this gives in fact a construction of �(�).

4. The Langlands correspondence for split tori

Split tori are isomorphic to Gr
m, so there is nothing more than in

the case of Gm = GL1 explained in the previous section. Nevertheless
the isomorphism of a split torus with Gr

m is not canonical (because the
automorphism group of Gr

m is non trivial, equal to GLr(Z)). Let T be a
split torus over F . To obtain a canonical correspondence we introduce
the Langlands dual group bT , de�ned as the split torus over Qℓ whose
weights are the coweights of T and reciprocally. In other words the
lattice � = Hom( bT ; Gm) is equal to Hom(Gm; T ). Then the Langlands
correspondence gives a bijection � 7! �(�) between

� characters BunT (Fq) ! Qℓ
� with �nite image

� continuous morphisms �1(X; �) ! bT (Qℓ) with �nite image

characterized by the fact that for any place v of X and any � 2 � the
image of �(�)(Frobv) by bT (Qℓ)

��! Qℓ
� is equal to the image of O(v) by

Pic(Fq)
��! BunT (Fq)

��! Qℓ
� (this condition is the particular case for

tori of the condition of �compatibility with the Satake isomorphism�
which we will consider later for all reductive groups).

The construction of �(�) works as in the previous section, except
that aZ has to be replaced by a subgroup � of BunT (Fq) of �nite index
which is included in the kernel of �, and we now have to use schemes
of T -shtukas, de�ned using T -bundles instead of line bundles.

5. Reminder on the dual group

Let G be a split reductive group over F . We denote by bG the Lang-
lands dual group of G. It is the split reductive group over Qℓ char-
acterized by the fact that its roots and weights are the coroots and
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coweights of G, and reciprocally. Here are some examples:

G bG
GLn GLn
SLn PGLn

SO2n+1 Sp2n
Sp2n SO2n+1
SO2n SO2n

and if G is one of the �ve exceptional groups, bG is of the same type.
Also the dual of a product of groups is the product of the dual groups.

De�nition 5.1. A global Langlands parameter is a conjugacy class
of morphisms � : Gal(F=F ) ! bG(Qℓ) factorizing through �1(U; �)
for some open dense U � X, de�ned over a �nite extension of Qℓ,
continuous and semisimple.

We say that � is semisimple if for any parabolic subgroup containing
its image there exists an associated Levi subgroup containing it. Since
Qℓ has characteristic 0 this means equivalently that the Zariski closure
of its image is reductive [78].

We now de�ne the Hecke operators (the spherical ones, also called
unrami�ed, i.e. without level). They are similar to the Laplace opera-
tors on graphs.

Let v be a place of X. If G and G0 are two G-bundles over X we say
that (G0; ϕ) is a modi�cation of G at v if ϕ is an isomorphism between
the restrictions of G and G0 to X n v. Then the relative position is a
dominant coweight � of G (in the case where G = GLr it is the r-uple
of elementary divisors). Let � be a dominant coweight of G. We get
the Hecke correspondence

Hv;�

h yyt t t
t t t

t t t

h! %%JJJ
JJJ

JJJ

BunG(Fq) BunG(Fq)

where Hv;� is the groupoid classifying modi�cations (G; G0; ϕ) at v with
relative position � and h and h! send this object to G0 and G. Then
the Hecke operator acts on functions by pullback by h followed by
pushforward (i.e. sums in the �bers) by h! . In other words

T�;v : Ccusp
c (BunG(Fq)=�; Qℓ) ! Ccusp

c (BunG(Fq)=�; Qℓ)

f 7!
[
G 7!

∑

(G0;ϕ)

f(G0)
]

where the �nite sum is taken over all the modi�cations (G0; ϕ) of G at
v with relative position �.

These operators form an abstract commutative algebra Hv, the
so-called spherical (or unrami�ed) Hecke algebra at v, and this
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algebra acts on Ccusp
c
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decomposition (6.1) is uniquely determined by its compatibility with
the Satake isomorphism.

On the contrary, for some groups G other than GLr, according to
Blasius and Lapid [10, 50] it may happen that di�erent global Lang-
lands parameters correspond to the same characters of Hv for every
place v. This comes from the fact that it is possible to �nd �nite
groups � and couples of morphisms �; �0 : � ! bG(Qℓ) such that �
and �0 are not conjugated but that for any  2 �, �() and �0() are
conjugated [51, 52].

Thus for a general group G, the algebra B of excursion operators
may not be generated by the Hecke algebras Hv for all places v and the
compatibility of the decomposition (6.1) with Hecke operators may not
characterize it in a unique way. Therefore we wait for the construction
of the excursion operators (done in section 8) before we write the precise
statement of our main result, which will be theorem 8.4.

7. The stacks of shtukas and their ℓ-adic cohomology

The ℓ-adic cohomology of a variety (over any algebraically closed
�eld of characteristic ̸= ℓ) is very similar to the Betti cohomology of a
complex variety, but it has coe�cients in Qℓ (instead of Q for the Betti
cohomology). For its de�nition Grothendieck introduced the notions
of site and topos, which provide an extraordinary generalization of the
usual notions of topological space and sheaf of sets on it.

To a topological space X we can associate the category whose

� objects are the open subsets U � X
� arrows U ! V are the inclusions U � V

and we have the notion of a covering of an open subset by a family of
open subsets. A site is an abstract category with a notion of covering
of an object by a family of arrows targetting to it, with some natural
axioms. A topos is the category of sheaves of sets on a site (a sheaf of
sets F on a site is a contravariant functor of �sections of F� from the
category of the site to the category of sets, satisfying, for each covering,
a gluing axiom). Di�erent sites may give the same topos.

To de�ne the Øtale cohomology of an algebraic variety X we consider
the Øtale site

� whose objects are the Øtale morphisms

U

��
X
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� whose arrows are given by commutative triangles of Øtale mor-
phisms,

U

  @@
@@@

@@@
//V

~~~~~
~~~

~~

X
� with the obvious notion of covering.

The Øtale cohomology is de�ned with ce�cients in Z=ℓnZ, whence Zℓ
by passing to the limit, and Qℓ by inverting ℓ.

The stacks of shtukas, introduced by Drinfeld, play a role analogu-
ous to Shimura varieties over number �elds. But they exist in a much
greater generality. Indeed, while the Shimura varieties are de�ned over
the spectrum of the ring of integers of a number �eld and are associ-
ated to a minuscule coweightof the dual group, the stacks of shtukas
exist over arbitrary powers of the curve X, and can be associated to
arbitrary coweights, as we will see now. One simple reason for this dif-
ference between function �elds and number �elds is the following: in
the example of the product of two copies, the product X � X is taken
over Fq whereas nobody knows what the product Spec Z�Spec Z should
be, and over what to take it.

Let I be a �nite set and W = � i2 IWi be an irreducible Qℓ-linear
representation of bGI (in other words each Wi is an irreducible repre-
sentation of bG).

We de�ne ChtI;W as the reduced Deligne-Mumford stack over XI

whose points over a scheme S over Fq classify shtukas, i.e.
� points (xi)i2 I : S ! XI , called the legs of the shtuka (�les

pattes du chtouca� in French),
� a G-bundle G over X � S,
� an isomorphism

ϕ : G
��
(X � S)∖(

S
i 2 I �x i )

s! (IdX � FrobS)� (G)
��
(X � S)∖(

S
i 2 I �x i )

(where �xi denotes the graph of xi), such that

the relative position at xi of the modi�cation ϕ is bounded(7.1)
by the dominant coweight of G corresponding to the dominant weight of Wi:

The notion of Deligne-Mumford stack is in algebraic geometry what
corresponds to the topological notion of orbifold. Every quotient of an
algebraic variety by a �nite Øtale group scheme is a Deligne-Mumford
stack and in fact ChtI;W is locally of this form.

Remark 7.1. Compared to the notion of Artin stacks mentioned in
remark 2.1, a Deligne-Mumford stack is a particular case where the
automorphism groups of geometric points are �nite groups (instead of
algebraic groups).
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Remark 7.2. In the case of GL1, resp. split tori, we had de�ned
schemes of shtukas. With the above de�nition, the stacks of shtukas
are the quotients of these schemes by the trivial action of Fq

� , resp.
T (Fq).

We denote by HI;W the Qℓ-vector space equal to the �Hecke-�nite�
subspace of the ℓ-adic intersection cohomology with compact support,
in middle degree, of the �ber of ChtI;W =� over a generic geometric
point of XI (or, in fact equivalently, over a generic geometric point of
the diagonal X � XI). To give an idea of intersection cohomology, let
us say that for a smooth variety it is the same as the ℓ-adic cohomology
and that for (possibly singular) projective varieties it is PoincarØ self-
dual. An element of this ℓ-adic intersection cohomology is said to
be Hecke-�nite if it belongs to a sub-Zℓ-module of �nite type stable
by all Hecke operators T�;v (or equivalently by all Hecke operators
TV;v). Hecke-�niteness is a technical condition but Cong Xue has proven
[85] that HI;W can equivalently be de�ned by a cuspidality condition
(de�ned using stacks of shtukas for parabolic subgroups of G and their
Levi quotients) and that it has �nite dimension over Qℓ.

Drinfeld has constructed �partial Frobenius morphisms� between
stacks of shtukas. To de�ne them we need a small generalization of
the stacks of shtukas where we require a factorization of ϕ as a compo-
sition of several modi�cations. Let (I1; :::; Ik) be an ordered partition of
I. An example is the coarse partition (I) and in fact the stack ChtI;W

previously de�ned is equal to Cht(I)
I;W in the following de�nition.

De�nition 7.3. We de�ne Cht(I1 ;:::;Ik )
I;W as the reduced Deligne-Mumford

stack whose points over a scheme S over Fq classify
(
(xi)i2 I ; G0

ϕ1�! G1
ϕ2�! � � �

ϕk � 1���! Gk� 1
ϕk�! (IdX � FrobS)� (G0)

)
(7.2)

with
� xi 2 (X ∖ N)(S) for i 2 I,
� for i 2 f0; :::; k � 1g, Gi is a G-bundle over X � S and we write

Gk = (IdX � FrobS)� (G0) to prepare the next item,
� for j 2 f1; :::; kg

ϕj : Gj� 1
��
(X � S)∖(

S
i 2 I j

�x i )
s! Gj

��
(X � S)∖(

S
i 2 I j

�x i )

is an isomorphism such that the relative position of Gj� 1 with
respect to Gj at xi (for i 2 Ij) is bounded by the dominant
coweight of G corresponding to the dominant weight of Wi.

We can show that the obvious morphism Cht(I1 ;:::;Ik )
I;W ! ChtI;W

(which forgets the intermediate modi�cations G1; :::; Gk� 1) gives an iso-
morphism at the level of intersection cohomology. The interest of
Cht(I1 ;:::;Ik )

I;W is that we have the partial Frobenius morphism FrobI1 :
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Cht(I1 ;:::;Ik )
I;W ! Cht(I2 ;:::;Ik ;I1)

I;W which sends (7.2) to
(
(x0

i)i2 I ; G1
ϕ2�! � � �

ϕk � 1���! Gk� 1
ϕk�! (IdX � FrobS)� (G0)

(IdX � FrobS )� (ϕ1)
�����������! (IdX � FrobS)� (G1)

)

where x0
i = Frob(xi) if i 2 I1 and x0

i = xi otherwise. Taking I1 to be
a singleton we get the action on HI;W of the partial Frobenius mor-
phisms. Thanks to an extra work (using the Hecke-�niteness condition
and Eichler-Shimura relations), we are able in [47] to apply Drinfeld’s
lemma, and this endows the Qℓ-vector space HI;W with a continuous
action of Gal(F=F )I .

For I = ∅ and W = 1 (the trivial representation), we have

H; ;1 = Ccusp
c (BunG(Fq)=�; Qℓ):(7.3)

Indeed the S-points over Cht; ;1 classify the G-bundles G over X � S,
equipped with an isomorphism

ϕ : G s! (IdX � FrobS)� (G):

If we see G as a S-point of BunG, (IdX � FrobS)� (G) is its image by
FrobBunG . Therefore Cht; ;1 classi�es the �xed points of FrobBunG and
it is dicrete (i.e. of dimension 0) and equal to BunG(Fq). Therefore the
ℓ-adic cohomology of Cht; ;1 =� is equal to Cc(BunG(Fq)=�; Qℓ) and in
this particular case it is easy to see that Hecke-�niteness is equivalent
to cuspidality, so that (7.3) holds true.

Up to now we de�ned a vector space HI;W for every isomorphism
class of irreducible representation W = � i2 IWi of bGI . A construction
based on the geometric Satake equivalence enables to

a) de�ne HI;W functorialy in W
b) understand the fusion of legs

as explained in the next proposition.

Proposition 7.4. a) For every �nite set I,

W 7! HI;W ; u 7! H(u)

is a Qℓ-linear functor from the category of �nite dimensional repre-
sentations of bGI to the category of �nite dimensional and continuous
representations ofGal(F=F )I .

This means that for every morphism

u : W ! W 0

of representations ofbGI , we have a morphism

H(u) : HI;W ! HI;W 0

of representations ofGal(F=F )I .
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b) For each map� : I ! J between �nite sets, we have an isomor-
phism

�� : HI;W
s! HJ;W �

which is
� functorial in W , where W is a representation of bGI and W �

denotes the representation ofbGJ on W obtained by composition
with the diagonal morphism

bGJ ! bGI ; (gj)j2 J 7! (g�(i))i2 I

� Gal(F=F )J -equivariant, whereGal(F=F )J acts on the LHS by
the diagonal morphism

Gal(F=F )J ! Gal(F=F )I ; (j)j2 J 7! (�(i))i2 I ;

� and compatible with composition, i.e. for everyI ��! J ��! K we
have��� � = �� ◦ �� .

The statement b) is a bit complicated, here is a basic example of
it. For every �nite set I we write �I : I ! f0g the tautological map
(where f0g is an arbitrary choice of notation for a singleton). If W1

and W2 are two representations of bG, the statement of b) provides a
canonical isomorphism

��f 1;2g : Hf 1;2g;W1 � W2

s! Hf 0g;W1 
 W2(7.4)

associated to �f 1;2g : f1; 2g ! f0g. We stress the di�erence between
W1 � W2 which is a representation of ( bG)2 and W1 
 W2 which is a
representation of bG.

Another example of b) is the isomorphism on the left in

Hf 0g;1

�� 1
� ;��!� H; ;1

(7.3)= Ccusp
c (BunG(Fq)=�; Qℓ)(7.5)

which is associated to �; : ∅ ! f0g (the idea of the isomorphism ��; is
that H; ;1 resp. Hf 0g;1 is the cohomology of the stack of shtukas without
legs, resp. with a inactive leg, and that they are equal). Thanks to
(7.5) we are reduced to construct a decomposition

Hf 0g;1 
Q‘ Qℓ =
⊕

�

H�:(7.6)

Idea of the proof of proposition 7.4. We denote by ChtI the
inductive limit of Deligne-Mumford stacks over XI , de�ned as ChtI;W
above, but without the condition (7.1) on the relative position. In other
words, and with an extra letter G0 to prepare the next de�nition, the
points of ChtI over a scheme S over Fq classify

� points (xi)i2 I : S ! XI ,
� two G-bundles G and G0 over X � S,
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� a modi�cation ϕ at the xi, i.e. an isomorphism

ϕ : G
��
(X � S)∖(

S
i 2 I �x i )

s! G0
��
(X � S)∖(

S
i 2 I �x i )

� an isomorphism � : G0 s! (IdX � FrobS)� (G).
We introduce the �prestack� MI of �modi�cations on the formal neigh-
borhood of the xi�, whose points over a scheme S over Fq classify

� points (xi)i2 I : S ! XI ,
� two G-bundles G and G0 on the formal completion \X � S of

X � S in the neighborhood of the union of the graphs �xi ,
� a modi�cation ϕ at the xi, i.e. an isomorphism

ϕ : G
��
(\X � S)∖(

S
i 2 I �x i )

s! G0
��
(\X � S)∖(

S
i 2 I �x i ):

The expert reader will notice that for any morphism S ! XI , MI�X I S
is the quotient of the a�ne grassmannian of Beilinson-Drinfeld over S
by �( \X � S; G). We have a formally smooth morphism ϵI : ChtI !
MI given by restricting G and G0 to the formal neighborhood of the
graphs of the xi and forgetting �.

The geometric Satake equivalence, due to Lusztig, Drinfeld,
Ginzburg and Mirkovic-Vilonen [7, 69], is a fundamental statement
which constructs bG from G and is the cornerstone of the geometric
Langlands program. It is a canonical equivalence of tensor categories
between

� the category of perverse sheaves on the �ber of Mf 0g above any
point of X (where f0g is an arbitrary notation for a singleton)

� the tensor category of representations of bG.
For the non expert reader we recall that perverse sheaves, introduced

in [9], behave like ordinary sheaves and have, in spite of their name,
very good properties. An example is given by intersection cohomology
sheaves of closed (possibly singular) subvarieties, whose total cohomol-
ogy is the intersection cohomology of this subvarieties.

The tensor structure on the �rst category above is obtained by �fu-
sion of legs�, thanks to the fact that Mf 1;2g is equal to Mf 0g � Mf 0g
outside the diagonal of X2 and to Mf 0g on the diagonal. The �rst
category is tannakian and bG is de�ned as the group of automorphisms
of a natural �ber functor.

This equivalence gives, for every representation W of bGI , a perverse
sheave SI;W on MI , with the following properties:

� SI;W is functorial in W ,
� for every surjective map I ! J , SJ;W � is canonically isomorphic

to the restriction of SI;W to MI�X I XJ ≃ MJ , where XJ ! XI

is the diagonal morphism,
� for every irreducible representation W , SI;W is the intersection

cohomology sheaf of the closed substack of MI de�ned by the
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condition (7.1) on the relative position of the modi�cation ϕ at
the xi.

Then we de�ne HI;W as the �Hecke-�nite� subspace of the cohomology
with compact support of ϵ�

I(SI;W ) on the �ber of ChtI =� over a geo-
metric generic point of XI (or, in fact equivalently, over a geometric
generic point of the diagonal X � XI). The �rst two properties above
imply a) and b) of the proposition. The third one and the smooth-
ness of ϵI ensure that, for W irreducible, ϵ�

I(SI;W ) is the intersection
cohomology sheaf of ChtI;W and therefore the new de�nition of HI;W
generalizes the �rst one using the intersection cohomology of ChtI;W .

8. Excursion operators and the main theorem of [47]

Let I be a �nite set. Let (i)i2 I 2 Gal(F=F )I . Let W be a repre-
sentation of bGI and x 2 W and � 2 W � be invariant by the diagonal
action of bG. We de�ne the endomorphism SI;W;x;�;(i )i 2 I of (7.5) as the
composition

Hf 0g;1
H (x)
��! Hf 0g;W � I

�� 1
� I��!� HI;W

(i )i 2 I����! HI;W
�� I��!� Hf 0g;W � I

H (�)
��! Hf 0g;1

(8.1)

where 1 denotes the trivial representation of bG, and x : 1 ! W �I and
� : W �I ! 1 are considered as morphisms of representations of bG (we
recall that �I : I ! f0g is the obvious map and that W �I is simply the
vector space W equipped with the diagonal action of bG).

Paraphrasing (8.1) this operator is the composition
� of a creation operator associated to x, whose e�ect is to create

legs at the same (generic) point of the curve,
� of a Galois action, which moves the legs on the curve inde-

pendently from each other, then brings them back to the same
(generic) point of the curve,

� of an annihilation operator associated to �.
It is called an �excursion operator� because it moves the legs on the
curve (this is what makes it non trivial).

To W; x; � we associate the matrix coe�cient f de�ned by

f((gi)i2 I) = ⟨�; (gi)i2 I � x⟩:(8.2)

We see that f is a function on bGI invariant by left and right translations
by the diagonal bG. In other words f 2 O( bGn bGI= bG), where bGn bGI= bG
denotes the coarse quotient, de�ned as the spectrum of the algebra of
functions f as above. Unlike the stacky quotients considered before,
the coarse quotients are schemes and therefore forget the automorphism
groups of points.

For every function f 2 O( bGn bGI= bG) we can �nd W; x; � such that
(8.2) holds. We show easily that SI;W;x;�;(i )i 2 I does not depend on
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the choice of W; x; � satisfying (8.2), and therefore we denote it by
SI;f;(i )i 2 I .

The conjectures of Arthur and Kottwitz on multiplicities in vector
spaces of automorphic forms and in the cohomologies of Shimura va-
rieties [4, 43] give, by extrapolation to stacks of shtukas, the following
heuristics.

Remark 8.1. Heuristically we conjecture that for every global Lang-
lands parameter � there exists a Qℓ-linear representation A� of its
centralizer S� � bG (factorizing through S�=Z bG), so that we have a
Gal(F=F )I-equivariant isomorphism

HI;W 
Q‘ Qℓ
?=

⊕

�

(
A� 
Q‘

W�I

)S�(8.3)

where W�I is the Qℓ-linear representation of Gal(F=F )I obtained by
composition of the representation W of bGI with the morphism �I :
Gal(F=F )I ! bG(Qℓ)I , and S� acts diagonally. We conjecture that
(8.3) is functorial in W , compatible to �� and that it is equal to the
decomposition (7.6) when W = 1 (so that H� = (A�)S� ).

In the heuristics (8.3) the endomorphism SI;f;(i )i 2 I = SI;W;x;�;(i )i 2 I

of

Hf 0g;1 
Q‘ Qℓ

�� 1
� ;��!� H; ;1 
Q‘ Qℓ

?=
⊕

�

(A�)S�

acts on (A�)S� by the composition

(A�)S�
�� ;��!� (A� 
 1)S�

IdA � 
 x
����! (A� 
 W�I )S� (�(i ))i 2 I�����! (A� 
 W�I )S�

IdA � 
 �
����! (A� 
 1)S�

�� 1
� ;��!� (A�)S�

i.e. by the scalar

⟨�; (�(i))i2 I � x⟩ = f
(
(�(i))i2 I

)
:

In other words we should have

H�
?= eigenspace of the SI;f;(i )i 2 I with the eigenvalues f

(
(�(i))i2 I

)
:

(8.4)

The heuristics (8.4) clearly indicates the path to follow. We show
in [47] that the SI;f;(i )i 2 I generate a commutative Qℓ-algebra B and
satisfy some properties implying the following proposition.

Proposition 8.2. For each character� of B with values in Qℓ there
exists a unique global Langlands parameter� such that for allI; f and
(i)i2 I , we have

�(SI;f;(i )i 2 I ) = f((�(i))i2 I):(8.5)
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The unicity of � in the previous proposition comes from the fact that,
for any integer n, taking I = f0; :::; ng, the coarse quotient bGn bGI= bG
identi�es with the coarse quotient of ( bG)n by diagonal conjugation by
bG, and therefore, for any (1; :::; n) 2 (Gal(F=F ))n, (8.5) applied to
(i)i2 I = (1; 1; :::; n) determines (�(1); :::; �(n)) up to conjugation
and semisimpli�cation (thanks to [75]). The existence and continuity
of � are justi�ed thanks to relations and topological properties satis�ed
by the excursion operators.

Since B is commutative we obtain a canonical spectral decomposition
Hf 0g;1 
Q‘ Qℓ =

⊕
� H� where the direct sum is taken over characters �

of B with values in Qℓ. Associating to each � a unique global Langlands
parameter � as in the previous proposition, we deduce the decomposi-
tion (7.6) we wanted to construct. We do not know if B is reduced.

Moreover the unrami�ed Hecke operators are particular cases of ex-
cursion operators: for every place v and for every irreducible represen-
tation V of bG with character �V , the unrami�ed Hecke operator TV;v is
equal to the excursion operator Sf 1;2g;f;(Frobv ;1) where f 2 O( bGn( bG)2= bG)
is given by f(g1; g2) = �V (g1g� 1

2 ), and Frobv is a Frobenius element at
v. This is proven in [47] by a geometric argument (essentially a com-
putation of the intersection of algebraic cycles in a stack of shtukas).
It implies the compatibility of the decomposition (7.6) with the Satake
isomorphism at all places.

Remark 8.3. By the Chebotarev density theorem, the subalgebra of
B generated by all the Hecke algebras Hv is equal to the subalgebra
generated by the excursion operators with ♯I = 2. The remarks at
the end of section 6 show that in general it is necessary to consider
excursion operators with ♯I > 2 to generate the whole algebra B.

Finally we can state the main theorem.

Theorem 8.4. We have a canonical decomposition ofQℓ-vector spaces

Ccusp
c (BunG(Fq)=�; Qℓ) =

⊕

�

H�;(8.6)

where the direct sum in the RHS is indexed by global Langlands param-
eters , i.e. bG(Qℓ)-conjugacy classes of morphisms� : Gal(F=F ) !
bG(Qℓ) factorizing through �1(X; �), de�ned over a �nite extension of
Qℓ, continuous and semisimple.

This decomposition is uniquely determined by the following property
: H� is equal to the generalized eigenspace associated to the character
� of B de�ned by

�(SI;f;(i )i 2 I ) = f((�(i))i2 I :(8.7)

This decomposition is respected by the Hecke operators and is com-
patible with the Satake isomorphism at all placesv of X.
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Everything is still true with a level (a �nite subscheme N of X). We
denote by BunG;N(Fq) the set of isomorphism classes of G-bundles over
X trivialized on N . Then we have a canonical decomposition

Ccusp
c (BunG;N(Fq)=�; Qℓ) =

⊕

�

H�;(8.8)

where the direct sum is taken over global Langlands parameters � :
�1(X ∖ N; �) ! bG(Qℓ). This decomposition is respected by all Hecke
operators and compatible with the Satake isomorphism at all places of
X ∖ N . If G is split we have, by [80],

BunG;N(Fq) = G(F )nG(A)=KN(8.9)

(where A is the ring of adŁles, O is the ring of integral adŁles, ON the
ring of functions on N and KN = Ker(G(O) ! G(ON))). When G
is non necessarily split the RHS of (8.9) must be replaced by a direct
sum, indexed by the �nite group ker1(F; G), of adelic quotients for
inner forms of G and in the de�nition of global Langlands parameters
we must replace bG by the L-group (see [11] for L-groups).

We have a statement similar to theorem 8.4 with coe�cients in Fℓ
instead of Qℓ.

We can also consider the case of metaplectic groups thanks to the
metaplectic variant of the geometric Satake equivalence due to Finkel-
berg and Lysenko [29, 66, 34].

Remark 8.5. Drinfeld gave an idea to prove something like the heuris-
tics (8.3) but it is a bit di�cult to formulate the result. Let Reg be
the left regular representation of bG with coe�cients in Qℓ (considered
as an inductive limit of �nite dimensional representations). We can
endow the Qℓ-vector space Hf 0g;Reg (of in�nite dimension in general)
with

a) a structure of module over the algebra of functions on the �a�ne
space S of morphisms � : Gal(F=F ) ! bG with coe�cients in
Qℓ-algebras�,

b) an algebraic action of bG (coming from the right action of bG on
Reg) which is compatible with conjugation by bG on S.

The space S is not rigorously de�ned and the rigorous de�nition of
structure a) is the following. For any �nite dimensional Qℓ-linear rep-
resentation V of bG, with underlying vector space V , Hf 0g;Reg 
 V is
equipped with an action of Gal(F=F ), making it an inductive limit of
�nite dimensional continuous representations of Gal(F=F ), as follows.
We have a bG-equivariant isomorphism

� : Reg 
V ≃ Reg 
V
f 
 x 7! [g 7! f(g)g:x]



SHTUKAS AND LANGLANDS CORRESPONDENCE 23

where bG acts diagonally on the RHS, and to give a meaning to the for-
mula the RHS is identi�ed with the vector space of algebraic functions
bG ! V . Therefore we have an isomorphism

Hf 0g;Reg 
 V = Hf 0g;Reg 
 V
��!� Hf 0g;Reg 
 V ≃ Hf 0;1g;Reg � V

where the �rst equality is tautological (since V is just a vector space)
and the last isomorphism is the inverse of the fusion isomorphism ��f 0;1g

of (7.4). Then the action of Gal(F=F ) on the LHS is de�ned as the
action of Gal(F=F ) on the RHS corresponding to the leg 1. If V1

and V2 are two representations of bG, the two actions of Gal(F=F )
on Hf 0g;Reg 
 V1 
 V2 associated to the actions of bG on V1 and V2

commute with each other and the diagonal action of Gal(F=F ) is the
action associated to the diagonal action of bG on V1 
 V2. This gives a
structure as we want in a) because if V is as above, x 2 V , � 2 V � , f
is the function on bG de�ned as the matrix coe�cient f(g) = ⟨�; g:x⟩,
and  2 Gal(F=F ) then we say that Ff; : � 7! f(�()), considered as
a �function on S�, acts on Hf 0g;Reg by the composition

Hf 0g;Reg
Id 
 x���! Hf 0g;Reg 
 V �! Hf 0g;Reg 
 V Id 
 ����! Hf 0g;Reg:

Any function f on bG can be written as such a matrix coe�cient, and
the functions Ff; when f and  vary are supposed to �generate topo-
logically all functions on S�. The property above with V1 and V2 implies
relations among the Ff;, namely that Ff;12 =

∑
� Ff �

1 ;1 Ff �
2 ;2 if the

image of f by comultiplication is
∑

� f�
1 
 f�

2 . In [84] Xinwen Zhu
gives an equivalent construction of the structure a). Structures a) and
b) are compatible in the following sense: the conjugation gFf;g� 1 of
the action of Ff; on Hf 0g;Reg by the algebraic action of g 2 bG is equal
to the action of Ffg ; where f g(h) = f(g� 1hg).

The structures a) and b) give rise to a �O-module on the stack S= bG of
global Langlands parameters� (such that the vector space of its �global
sections on S� is Hf 0g;Reg). For any morphism � : Gal(F=F ) ! bG(Qℓ),
we want to de�ne A� as the �ber of this O-module at � (considered as
a �Qℓ-point of S whose automorphism group in the stack S= bG is S��).
Rigorously we de�ne A� as the biggest quotient of Hf 0g;Reg 
Q‘ Qℓ on
which any function Ff; as above acts by multiplication by the scalar
f(�()), and S� acts on A�. If the heuristics (8.3) is true it is the same
as A� from the heuristics. When � is elliptic (i.e. when S�=Z bG is �nite),
� is �isolated in S� in the sense that it cannot be deformed (among
continuous morphisms whose composition with the abelianization of bG
is of �xed �nite order) and, as noticed by Xinwen Zhu, heuristics (8.3)
is true when we restrict on both sides to the parts lying over �. In
general due to deformation of some non elliptic � there could a priori
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be nilpotents, and for example we don’t know how to prove that B is
reduced so we don’t know how to prove the heuristics (8.3).

We can see the heuristics (8.3), and the structures a) and b) above,
as an illustration of the general idea that, in a spectral decomposi-
tion, when the points of the spectrum naturally have automorphism
groups, the multiplicities should be associated to representations of
these groups. By contrast the algebra B of excursion operators gives
the spectral decomposition with respect to the coarse quotient associ-
ated to S= bG, where we forget the automorphism groups S�.

Remark 8.6. The previous remark makes sense although S was not
de�ned. To de�ne a space like S rigorously it may be necessary to
consider continuous morphisms � : Gal(F=F ) ! bG with coe�cients in
Zℓ-algebras where ℓ is nilpotent (such � have �nite image), and S would
be an ind-scheme over Spf Zℓ. Then to de�ne structure a) we would
need to consider Reg with coe�cients in Zℓ, and, for any representation
W of bGI with coe�cients in Zℓ, to construct HI;W as a Zℓ-module.

9. Local aspects: joint work with Alain Genestier

In [40], Alain Genestier and I construct the local parameterization
up to semisimpli�cation and the local-global compatibility.

Let G be a reductive group over a local �eld K of equal character-
istics. We recall that the Bernstein center of G(K) is de�ned, in two
equivalent ways, as

� the center of the category of smooth representations of G(K),
� the algebra of central distributions on G(K) acting as multipli-

ers on the algebra of locally constant functions with compact
support.

On every Qℓ-linear irreducible smooth representation of G(K), the
Bernstein center acts by a character.

The main result of [40] associates to any character � of the Bernstein
center of G(K) with values in Qℓ a local Langlands parameter �K(�) up
to semisimpli�cation , i.e. (assuming G split to simplify) a conjugacy
class of morphisms Weil(K=K) ! bG(Qℓ) de�ned over a �nite extension
of Qℓ, continuous and semisimple.

We show in [40] the local-global compatibility up to semisimplication,
whose statement is the following. Let X be a smooth projective and
geometrically irreducible curve over Fq and let N be a level. Then if
� is a global Langlands parameter and if � =

⊗
�v is an irreducible

representation of G(A) such that �KN is non zero and appears in H� in
the decomposition (8.8), then for every place v de X we have equality
between

� the semisimpli�cation of the restriction of � to Gal(Fv=Fv) �
Gal(F=F ),
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� the semisimple local parameter �K(�) where � is the charac-
ter of the Bernstein center by which it acts on the irreducible
smooth representation �v of G(K).

We use nearby cycles on arbitrary bases (Deligne, Laumon,
Gabber, Illusie, Orgogozo), which are de�ned on oriented products
of toposes and whose properties are proven in [74] (see also [42]
for an excellent survey). Technically we show that if all the i
are in Gal(Fv=Fv) � Gal(F=F ) then the global excursion operator
SI;f;(i )i 2 I 2 End

(
Ccusp

c (BunG;N(Fq)=�; Qℓ)
)

acts by multiplication by
an element zI;f;(i )i 2 I of the ℓ-adic completion of the Bernstein center
of G(Fv) which depends only on the local data at v. We construct
zI;f;(i )i 2 I using stacks of �restricted shtukas�, which are analogues of
truncated Barsotti-Tate groups.

Remark 9.1. In the case of GLr the local correspondence was known
by Laumon-Rapoport-Stuhler [57] and the local-global compatibility
(without semisimpli�cation) was proven in [44]. Badulescu and Hen-
niart explained us that in general we cannot hope more that the local-
global compatibility up to semisimplication.

10. Independence on ℓ

Grothendieck motives (over a given �eld) form a Q-linear category
and unify the ℓ-adic cohomologies (of varieties over this �eld) for di�er-
ent ℓ: a motive is �a factor in a universal cohomology of a variety�. We
consider here motives over F . We conjecture that the decomposition

Ccusp
c (BunG(Fq)=�; Qℓ) =

⊕

�

H�

we have constructed is de�ned over Q (instead of Qℓ), indexed by mo-
tivic Langlands parameters �, and independent on ℓ. This conjecture
seems out of reach for the moment.

The notion of motivic Langlands parameter is clear if we admit
the standard conjectures. A motivic Langlands parameter de�ned
over Q would give rise to a �compatible� family of morphisms �ℓ;� :
Gal(F=F ) ! bG(Qℓ) for any ℓ not dividing q and any embedding
� : Q ,! Qℓ. When G = GLr, the condition of compatibility is
straightforward (the traces of the Frobenius elements should belong
to Q and be the same for all ℓ and �) and the fact that any irreducible
representation (with determinant of �nite order) for some ℓ belongs to
such a family (and has therefore �compagnons� for other ℓ and �) was
proven as a consequence of the Langlands correspondence in [44]. It
was generalized in the two following independent directions

� Abe [2] used the crystalline cohomology of stacks of shtukas to
construct crystalline compagnons,
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� when F is replaced by the �eld of rational functions of any
smooth variety over Fq, Deligne proved that the traces of Frobe-
nius elements belong to a �nite extension of Q and Drinfeld
constructed these compatible families [18, 25, 28].

For a general reductive group G the notion of compatible family is
subtle (because the obvious condition on the conjugacy classes of the
Frobenius elements is not su�cient). In [26] Drinfeld gave the right
conditions to de�ne compatible families and proved that any continuous
semisimple morphism Gal(F=F ) ! bG(Qℓ) factorizing through �1(U; �)
for some open dense U � X (and such that the Zariski closure of its
image is semisimple) belongs to a unique compatible family.

11. Conjectures on Arthur parameters

We hope that all global Langlands parameters � which appear in this
decomposition come from elliptic Arthur parameters, i.e. conjugacy
classes of continuous semisimple morphisms Gal(F=F ) � SL2(Qℓ) !
bG(Qℓ) whose centralizer is �nite modulo the center of bG. This SL2
should be related to the Lefschetz SL2 acting on the intersection co-
homology of compacti�cations of stacks of shtukas. We even hope
a parameterization of the vector space of discrete automorphic forms
(and not only cuspidal ones) indexed by elliptic Arthur parameters.

Moreover we expect that generic cuspidal automorphic forms ap-
pear exactly in H� such that � is elliptic as a Langlands parameter
(i.e. that it comes from an elliptic Arthur parameter with trivial SL2
action). This would imply the Ramanujan-Petersson conjecture (an
archimedean estimate on Hecke eigenvalues).

By [27] the conjectures above would also imply p-adic estimates on
Hecke eigenvalues which would sharper than those in [46].

12. Recent works on the Langlands program for
function fields in relation with shtukas

In [1] G. Böckle, M. Harris, C. Khare, and J. Thorne apply the results
explained in this text together with Taylor-Wiles methods to prove (in
the split and everywhere unrami�ed situation) the potential automor-
phy of all Langlands parameters with Zariski-dense image. Thus they
prove a weak form of the �Galois to automorphic� direction.

In [86] Zhiwei Yun and Wei Zhang proved analogues of the Gross-
Zagier formula, namely equality between the intersection numbers of
some algebraic cycles in stacks of shtukas and special values of deriva-
tives of L-functions (of arbitrary order equal to the number of legs).

In [83] Liang Xiao and Xinwen Zhu construct algebraic cycles in
special �bers of Shimura varieties. Their construction was inspired by
the case of the stacks of shtukas and is already new in this case (it gives
a conceptual setting for the Eichler-Shimura relations used in [47]).
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13. Geometric Langlands program

The results explained above are based on the geometric Satake equiv-
alence [69], and are inspired by the factorization structures studied by
Beilinson and Drinfeld [8]. The geometric Langlands program was pi-
oneered by Drinfeld [21] and Laumon [58], and then developped itself
in two variants, which we will discuss in turn.

13.1. Geometric Langlands program for ℓ-adic sheaves. Let X
be a smooth projective curve over an algebraically closed �eld of char-
acteristic di�erent from ℓ.

For any representation W of bGI the Hecke functor

ϕI;W : Db
c(BunG; Qℓ) ! Db

c(BunG �XI ; Qℓ)

is given by
ϕI;W (F) = q1;!

(
q�

0(F) 
 FI;W
)

where BunG
q0 � HeckeI

q1�! BunG �XI is the Hecke correspondence
classifying modi�cations of a G-bundle at the xi, and FI;W is de�ned
as the inverse image of SI;W by the natural formally smooth morphism
HeckeI ! MI .

Let � be a bG-local system on X. Then F 2 Db
c(BunG; Qℓ) is said to

be an eigensheaf for � if we have, for any �nite set I and any repre-
sentation W of ( bG)I , an isomorphism ϕI;W (F) s! F � W�, functorial
in W and compatible to exterior tensor products and fusion. The con-
jecture of the geometric Langlands program claims the existence of an
�-eigensheaf F (it should also satisfy a Whittaker normalization con-
dition which in particular prevents it to be 0). For G = GLr this
conjecture was proven by Frenkel, Gaitsgory, Vilonen in [30, 32]

When X, BunG, � and F are de�ned over Fq (instead of Fq), a
construction of Braverman and Varshavsky [82] produces subspaces of
cohomology classes in the stacks of shtukas and this allows to show
that the function given by the trace of Frobenius on F belongs to the
factor H� of decomposition (8.6), as explained in section 15 of [47].

The ℓ-adic setting is truly a geometrization of automorphic forms
over function �elds, and many constructions were geometrized: Braver-
man and Gaitsgory geometrized Eisenstein series [12], and Lysenko ge-
ometrized in particular Rankin-Selberg integrals [63], theta correspon-
dences [64, 65, 48], and several constructions for metaplectic groups
[67, 68].

13.2. Geometric Langlands program for D-modules. Now let X
be a smooth projective curve over an algebraically closed �eld of char-
acteristic 0. A feature of the setting of D-modules is that one can
upgrade the statement of Langlands correspondence to a conjecture
about an equivalence between categories on the geometric and spectral
sides, respectively. See [33] for a precise statement of the conjecture
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and [36] for a survey of recent progress. Such an equivalence can in
principle make sense due to the fact that Galois representations into
bG, instead of being taken individually, now form an algebraic stack
LocSys bG classifying bG-local systems, i.e. bG-bundles with connection
(by contrast one does not have such an algebraic stack in the ℓ-adic
setting).

On the geometric side, one considers the derived category of
D-modules on BunG, or rather a stable 1-category enhancing it.
It is denoted D-mod(BunG) and is de�ned and studied in [19].
The category on the spectral side is a certain modi�cation of
QCoh(LocSys bG), the (derived or rather 1-) category of quasi-coherent
sheaves on the stack LocSys bG. The modi�cation in question is
denoted IndCohNilp(LocSys bG), and it has to do with the fact that
LocSys bG is not smooth, but rather quasi-smooth(a.k.a. derived locally
complete intersection). The di�erence between IndCohNilp(LocSys bG)
and QCoh(LocSys bG) is measured by singular support of coherent
sheaves, a theory developed in [3]. The introduction of Nilp in [3]
was motivated by the case of P1 [45] and the study of the singular
support of the geometric Eisenstein series. In terms of Langlands
correspondence, this singular support may also be seen as accounting
for Arthur parameters. More precisely the singularities of LocSys bG
are controlled by a stack Sing(LocSys bG) over LocSys bG whose �ber
over a point � is the H � 1 of the cotangent complex at �, equal to
H2

dR(X; bg�)� ≃ H0
dR(X; bg�

�) ≃ H0
dR(X; bg�) where the �rst isomorphism

is PoincarØ duality and the second depends on the choice of a
non-degenerate ad-invariant symmetric bilinear form on bg. Therefore
Sing(LocSys bG) is identi�ed to the stack classifying (�; A), with
� 2 LocSys bG and A an horizontal section of the local system bg�

associated to � with the adjoint representation of bG. Then Nilp is the
cone of Sing(LocSys bG) de�ned by the condition that A is nilpotent. By
the Jacobson-Morozov theorem, any such A is the nilpotent element
associated to a morphism of SL2 to the centralizer of � in bG, i.e. it
comes from an Arthur parameter. The singular support of a coherent
sheaf on LocSys bG is a closed substack in Sing(LocSys bG). The category
IndCohNilp(LocSys bG) (compared to QCoh(LocSys bG)) corresponds to
the condition that the singular support of coherent sheaves has to be
included in Nilp (compared to the zero section where A = 0). The
main conjecture is that there is an equivalence of categories

D-mod(BunG) ≃ IndCohNilp(LocSys bG):(13.1)

Something weaker is known: by [33], D-mod(BunG) �lives" over
LocSys bG in the sense that QCoh(LocSys bG), viewed as a monoidal cate-
gory, acts naturally on D-mod(BunG). Note that QCoh(LocSys bG) acts
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on IndCohNilp(LocSys bG) (one can tensor a coherent complex by a per-
fect one and obtain a new coherent complex) and the conjectured equiv-
alence (13.1) should be compatible with the actions of QCoh(LocSys bG)
on both sides.

Theorem 8.4 (re�ned in remark 8.5) can be considered as an arith-
metic analogue of the fact that D-mod(BunG) �lives" over LocSys bG (cu-
riously, due to the lack of an ℓ-adic analogue of LocSys bG, that result
does not have an analogue in the ℓ-adic geometric Langlands program,
even if the vanishing conjecture proven by Gaitsgory [32] goes in this
direction). And the fact that Arthur multiplicities formula is still un-
proven in general is parallel to the fact that the equivalence (13.1) is
still unproven.

When G = T is a torus, there is no di�erence between
QCoh(LocSys bT ) and IndCohNilp(LocSys bT ). In this case, the desired
equivalence QCoh(LocSys bT ) ≃ D-mod(BunT ) is a theorem, due to
Laumon [56].

The formulation of the geometric Langlands correspondence as an
equivalence of categories (13.1), and even more the proofs of the results,
rely on substantial developments in the technology, most of which had
to do with the incorporation of the tools of higher category theory and
higher algebra, developed by J. Lurie in [62, 61]. Some of the key con-
structions use categories of D-modules and quasi-coherent sheaves on
algebro-geometric objects more general than algebraic stacks (a typi-
cal example is the moduli space of G-bundles on X equipped with a
reduction to a subgroup at the generic point ofX).

13.3. Work of Gaitsgory and Lurie on Weil’s conjecture on
Tamagawa numbers over function �elds. In [37, 38] (see also [35])
Gaitsgory and Lurie compute the cohomology with coe�cients in Zℓ of
the stack BunG when X is any smooth projective curve over an alge-
braically closed �eld of characteristic other than ℓ, and G is a smooth
a�ne group scheme over X with connected �bers, whose generic �ber is
semisimple and simply connected. They use in particular a remarkable
geometric ingredient, belonging to the same framework of factoriza-
tion structures [8] (which comes from conformal �eld theory) as the
geometric Satake equivalence. The Ran space of X is, loosely speak-
ing, the prestack classifying non-empty �nite subsets Z of X. The
a�ne grassmannian GrRan is the prestack over the Ran space classify-
ing such a Z, a G-bundle G on X, and a trivialization � of G on X n Z.
Then the remarkable geometric ingredient is that the obvious mor-
phism GrRan ! BunG; (Z; G; �) 7! G has contractible �bers in some
sense and gives an isomorphism on homology. Note that when k = C
and G is constant on the curve, their formula implies the well-known
Atiyah-Bott formula for the cohomology of BunG, whose usual proof is
by analytic means.
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Now assume that the curve X is over Fq. By the Grothendieck-
Lefschetz trace formula their computation of the cohomology of BunG
over Fq gives a formula for j BunG(Fq)j, the number of Fq-points on
the stack BunG. Note that since BunG is a stack, each isomorphism
class y of points is weighted by 1

Auty (Fq) , where Auty is the algebraic
group of automorphisms of y, and Auty(Fq) is the �nite group of its Fq-
points. Although the set of isomorphism classes y of points is in�nite,
the weighted sum converges. Gaitsgory and Lurie easily reinterpret
j BunG(Fq)j as the volume (with respect to some measure) of the quo-
tient G(A)=G(F ) (where F is the function �eld of X and A is its ring
of adŁles) and prove in this way, in the case of function �elds, a for-
mula for the volume of G(A)=G(F ) as a product of local factors at all
places. This formula, called the Tamagawa number formula, had been
conjectured by Weil for any global �eld F .

Over number �elds BunG does not make sense, only the conjecture of
Weil on the Tamagawa number formula remains and it had been proven
by Kottwitz after earlier works of Langlands and Lai by completely
di�erent methods (residues of Eisenstein series and trace formulas).

14. Homage to Alexandre Grothendieck (1928-2014)

Modern algebraic geometry was built by Grothendieck, together with
his students, in the realm of categories: functorial de�nition of schemes
and stacks, Quot construction for BunG, tannakian formalism, topos,
Øtale cohomology, motives. His vision of topos and motives already
had tremendous consequences and others are certainly yet to come.
He also had a strong in�uence outside of his school, as testi�ed by the
rise of higher categories and the work of Beilinson, Drinfeld, Gaitsgory,
Kontsevich, Lurie, Voevodsky (who, sadly, passed away recently) and
many others. He changed not only mathematics, but also the way we
think about it.
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