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Abstract

Geometric aspects play an important role in the ccnstruction and anal-
ysis of structure-preserving numerical metheds tor a wide variety of ordi-
nary and partial differential equations. ere we review the development
and theory of symplectic integrators tor Hamiltonian ordinary and par-
tial differential equations, of dynamical lew-rank approximation of time-
dependent large matrices and tenscrs, and its use in numerical integrators
for Hamiltonian tensor network approximations in quantum dynamics.

1 Introduction

It has become a cormiimcnplace notion in all of numerical analysis (which here
is understood as corngrising the construction and the mathematical analysis of
numerical algoritihms) that a good algorithm should “respect the structure of
the problem” -— and in many cases the “structure” is of geometric nature. This
immediately lzacs to two basic questions, which need to be answered specifcally
for each proofem:

= How can numerical methods be constructed that “respect the geometry”
of the problem at hand?

< What are benefts from using a structure-preserving algorithm for this
problem, and how do they come about?

In this note we present results in the numerical analysis of dynamic (evolution-
ary, time-dependent) ordinary and partial diferential equations for which geo-
metric aspects play an important role. These results belong to the area that has
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become known as Geometric Numerical Integration, which has developed vividly

in the past quarter-century, with substantial contributions by researchers with
very diferent mathematical backgrounds. We just refer to the books (in chrono-
logical order) [SSC94, HLWO02, Sur03, LR04, HLWO06, Lub08, FQ10, Faol2,
WYW13, BC16] and to the Acta Numerica review articles [SS92, IMKNZO00,
MWO01, MQO02, HLW03, DDEO5, BL07, Chu08, HO10, Wan10, CMKO11, AEEVE12,
DE13]. In this note we restrict ourselves to some selected topics to whicii we
have contributed.

In Section B we begin with reviewing numerical methods for approximately
solving Hamiltonian systems of ordinary diferential equations, which are ubig-
uitous in many areas of physics. Such systems are characterized by the sym-
plecticity of the Fow, a geometric property that one would like ta transfer to the
numerical discretization, which is then called a symplectic iniegrator. Here, the
two questions above become the following:

= How are symplectic integrators constructed?

= What are favourable long-time properties of syinplectic integrators, and
how can they be explained?

The frst question relates numerical metihods with the theories of Hamilton and
Jacobi from the mid-19th century. anc the latter question connects numerical
methods with the analytical tectinigues of Hamiltonian perturbation theory, a
subject developed from the iate 19th throughout the 20th century, from Lind-
stedt and Poincaré and Birkic¥ to Siegel and Kolmogorov, Arnold and Moser
(KAM theory), to Nekiroshev and further eminent mathematicians. This con-
nection comes abouit via hackward error _analysis, which is a concept that frst
appeared in numerical linear algebra [Wil60]. The viewpoint is to interpret
the numerical approxiination as the exact (or almost exact) solution of a mod-
ifed equation. in the case of a symplectic integrator applied to a Hamiltonian
diferentiai equation, the modifed diferential equation turns out to be again
Hamiltonian, with a Hamiltonian that is a small perturbation to the original
one. This brings Hamiltonian perturbation theory into play for the long-time
araiysis of symplectic integrators. Beyond the purely mathematical aspects,
it should be kept in mind that symplectic integrators are frst and foremost
an important tool in computational physics. In fact such numerical methods
appeared frst in the physics literature [dV56, Ver67, Rut83], in such areas as
nuclear physics and molecular dynamics, and slightly later [WH91] in celes-
tial mechanics, which has been the original motivation in the development of
Hamiltonian perturbation theory [P0i92, SM71]. It was not least with the use
of symplectic integrators that the centuries-old question about the stability of
the solar system was fnally answered negatively in the last decade by Laskar;
see [Las13] and compare also with [Mos78].

In Section 3 we consider numerical methods for fnite-dimensional Hamilto-
nian systems with multiple time scales where, in the words of Fermi, Pasta &
Ulam [FPU55], “the non-linearity is introduced as a perturbation to a primarily
linear problem. The behavior of the systems is to be studied for times which are



long compared to the characteristic periods of the corresponding linear problem.”
The two basic questions above are reconsidered for such systems. Except for
unrealistically small time steps, the backward error analysis of Section P does
not work for such systems, and a diferent technique of analysis is required.
Modulated Fourier expansions in time were originally developed (since 2000) for
studying numerical methods for such systems and were subsequently also recog-
nized as a powerful analytical technique for proving new results for contiruous
systems of this type, including the original Fermi—Pasta—Ulam system. \Whiie
the canonical transformations of Hamiltonian perturbation theory transform
the system into a normal form from which long-time behaviour can be read of,
modulated Fourier expansions embed the system into a high-gimensional sys-
tem that has a Lagrangian structure with invariance propertics that enable us to
infer long-time properties of the original system. Modulated Fourier expansions
do not use nonlinear coordinate transformations, which is oie reason for their
suitability for studying numerical methods, which are roest often not invariant
under nonlinear transformations.

In Section E] we present long-time results for suiteble numerical discretiza-
tions of Hamiltonian partial differential equations such as nonlinear wave equa-
tions and nonlinear Schrédinger equatioris. A number of important results on
this topic have been obtained in the last dacade, linking the numerical analysis
of such equations to recent advances in their mathematical analysis. The view-
point we take here is to consider the Hamiltonian partial diferential equation as
an infnite-dimensional system of the oscillatory type of Section E with infnitely
many frequencies, and we present results on the long-time behaviour of the nu-
merical and the exact sciuticns that have been obtained with modulated Fourier
expansions or with techiigues from infnite-dimensional Hamiltonian perturba-
tion theory. We menticn, however, that there exist other viewpoints on the
equations consicered, with diferent geometric concepts such as multisymplec-
ticity [Bri97, NiRSS8]. While multisymplectic integrators, which preserve this
geometric structure, have been constructed and favourably tested in numerical
experimenits (BRO1, AMO04] (and many works thereafter), as of now there appear
to be no proven results on the long-time behaviour of such methods.

in Section E we consider dynamical low-rank approximation, which leads to
a difaerent class of dynamical problems with diferent geometric aspects. The
problem here is to approximate large (or rather too large, huge) time-dependent
inatrices, which may be given explicitly or are the unknown solution to a matrix
diferential equation, by matrices of a prescribed rank, typically much smaller
than the matrix dimension so that a data-compressed approximation is obtained.
Such problems of data and/or model reduction arise in a wide variety of appli-
cations ranging from information retrieval to quantum dynamics. On projecting
the time derivative of the matrices to the tangent space of the manifold of low-
rank matrices at the current approximation, this problem leads to a diferential
equation on the low-rank manifold, which needs to be solved numerically. We
present answers to the two basic questions formulated at the beginning of this
introduction, for this particular problem. The proposed “geometric” numerical
integrator, which is based on splitting the orthogonal projection onto the tan-



gent space, is robust to the (ubiquitous) presence of small singular values in
the approximations. This numerically important robustness property relies on
a geometric property: The low-rank manifold is a ruled manifold (like a hyper-
boloid). It contains fat subspaces along which one can pass between any two
points on the manifold, and the numerical integrator does just that. In this
way the high curvature of the low-rank manifold at matrices with small singular
values does not become harmful. Finally, we address the nontrivial extension to
tensors of various formats (Tucker tensors, tensor trains, hierarchical tenscrs),
which is of interest in time-dependent problems with several spatial dimensions.

Section B on tensor and tensor network approximations in quantum dynamics
combines the worlds of the previous two sections and connects them with recent
developments in computational quantum physics. The reduction of the time-
dependent many-particle Schrédinger equation to a low-ranic tensor manifold
by the Dirac—Frenkel time-dependent variational principie uses a tangent-space
projection that is both orthogonal and symplectic. It resultsin a (non-canonical)
Hamiltonian diferential equation on the tensor manifold that can be discretized
in time by the projector-splitting integrator of Section E which is robust to small
singular values and preserves both the normi and the energy of the wavefunction.

2 Hamiltonian systems of ordinary differential
equations

2.1 Hamiltonian systems

Diferential equations of the form (with * = d/d¢)

r=- ¢H(pq), ¢=+ pH(pq) 2.1

are fundarental to many branches of physics. The real-valued Hamilton func-
tion H, defnzd on a domain of R4+ (the phase space), represents the total
energy and ¢(t) R? and p(t) R? represent the positions and momenta,
respectively, of a conservative system at time ¢. The total energy is conserved:

along every solution (p(t), ¢(t)) of the Hamiltonian diferential equations.
Numerical example: We consider four variants of the Euler method, which for
a given (small) step size h > 0 compute approximations p,, ~ p(nh), ¢, ~ q(nh)
via
DPni1 =Pn—h qH(pn—i-om Qn+ﬁ), Gn+1 = qn +h pH(pn+cx» Qn+ﬁ)a
with o,  {0,1;. For o = = 0 this is the explicit Euler method, /for
«a = B = 1itis the implicit Euler method. The partitioned methods with o =

are known as the symplectic Euler methods. All four methods are of order r = 1,
that is, the error after one step of the method is  (h"*1) with r = 1.



Figure 2.1: Numerical sirmiu(ation of the outer solar system.

We apply these methods to the outer solar system, which is an N-body
problem with Hamiltorian
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where » = (p”....,p"), ¢ = (¢°,....¢") and |- | denotes the Euclidean norm,

and the constants are taken from [HLWO086, Section 1.2.4]. The positions ¢* R?
and momenta p°  R3 are those of the sun and the fve outer planets (in-
cluding Pluto). Figure [1] shows the numerical solution obtained by the four
versions of the Euler method on a time interval of 200000 earth days. For
the explicit Euler method the planets spiral outwards, for the implicit Euler
method they spiral inwards, fall into the sun and fnally are ejected. Both sym-
plectic Euler methods show a qualitatively correct behaviour, even with a step
size (in days) that is much larger than the one used for the explicit and im-
plicit Euler methods. Figure é shows the relative error of the Hamiltonian,
(H(pn,qn) — H(po,q0))/ H(po,q0)', along the numerical solution of the four
versions of Euler’s method on the time interval 0 < nh < 200000. Whereas the
size of the error increases for the explicit and implicit Euler methods, it remains
bounded and small, of a size proportional to the step size A, for both symplectic
Euler methods.



relative error of the Hamiltonian
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Figure 2.2: Relative error of the Hamiltonian on the interva! ¢ < ¢ < 200 000.

2.2 Symplecticity of the low and sympijectic integrators

The time-t flow of a diferential equation § = f{%) is the map ¢, that associates
with an initial value yo at time 0 the solutior value at time ¢ ¢:(yo) = y(t).
Consider now the Hamiltonian system (@f; or equivalently, for y = (p, q),

y=J ' H(y) with J:(_OI é)

The fow ¢; of the Hamiltonian system is symplectic (Or canonical), that is, the
derivative matrix Dy, with respect 10 the initial value satisfes

Do(y)" T Dpy(y) = J

for all y and ¢ for which ¢, (y) exists. This quadratic relation is formally similar
to orthogonality, with J in place of the identity matrix I, but it is related to
the preservation of areas rather than lengths in phase space.

There is aisc a local converse: If the fow of some diferential equation is
symplectic, then there exists locally a Hamilton function for which the corre-
sponding Hamiltonian system coincides with this diferential equation.

A numerical one-step method y,,+1 = ®,(y,) (with step size k) is called
symplectic if the numerical fow &, is a symplectic map:

D (y)" JD(y) = J.

Such methods exist: the “symplectic Euler methods” of the previous subsec-
tion are indeed symplectic. This was frst noted, or considered noteworthy,
in an unpublished report by de Vogelaere [dV56]. The symplecticity can be
readily verifed by direct calculation or by observing that the symplectic Eu-
ler methods are symplectic maps with the h-scaled Hamilton function taken as
the generating function of a canonical transformation in Hamilton and Jacobi’s
theory. More than 25 years later, Ruth [Rut83] and Feng Kang [Fen85, Fen86]
independently constructed higher-order symplectic integrators using generating
functions of Hamilton-Jacobi theory. These symplectic methods require, how-
ever, higher derivatives of the Hamilton function. Symplectic integrators began



to fnd widespread interest in numerical analysis when in 1988 Lasagni, Sanz-
Serna and Suris [Las88, SS88, Sur88] independently characterized symplectic
Runge-Kutta methods by a quadratic relation of the method coe¥cients. This
relation was already known to be satisfed by the class of Gauss—Butcher meth-
ods (the order-preserving extension of Gaussian quadrature formulae to difer-
ential equations), which include methods of arbitrary order. Like the Euler
methods, Runge-Kutta methods only require evaluations of the vectaor veld,
but no higher derivatives.

The standard integrator of molecular dynamics, introduced to the fe!d by
Verlet in 1967 [Ver67] and used ever since, is also symplectic. For a Hamiitonian
H(p,q) = 3p" M~'p+ V(q) with a symmetric positive defnite mass inatrix A,
the method is explicit and given by the formulas

h
p'rL+1/2 = DPn— 5 V(Qn)
Gn+t1 = qn + hM_lerri,Q
h oy
Pn+1 = DPn+t1/2 — Z 4 \Gn—!—l)'

Such a method was also formulated by iie astronomer Stérmer in 1907, and
can even be traced back to Newton’s Principia from 1687, where it was used
as a theoretical tool in the proof of the preservation of angular momentum
in the two-body problem (Kepler’'s second law), which is preserved by this
method (cf. [Wan1Q]). The abcve method is referred to as the Stérmer—Verlet
method, Verlet method or ieapfiog method in diferent communities. The sym-
plecticity of this methcd car: be understood in various ways by relating the
method to_classes of methods that have proven useful in a variety of applica-
tions (cf. [HLWO3]): @5 a composition method (it is a composition of the two
symplectic Euler methods with half step size), as a splitting method (it solves
in an alternating way the Hamiltonian diferential equations corresponding to
the kinetic erergy %pTM_lp and the potential energy V' (¢)), =and as a vari-
ational integrator: it minimizes the discrete action functional that results from
approximating the action integral

/NL(Q(t),q'(t))dt with L(q,d):%q'TMq_V(q)

to

by the trapezoidal rule and using piecewise linear approximation to ¢(t). The
Stérmer—Verlet method can thus be interpreted as resulting from a discretiza-
tion of the Hamilton variational principle. Such an interpretation can in fact be
given for every symplectic method. Conversely, symplectic methods can be con-
structed by minimizing a discrete action integral. In particular, approximating
the action integral by a quadrature formula and the positions ¢(¢) by a piece-
wise polynomial leads to a symplectic partitioned Runge-Kutta method. With
Gauss quadrature, this gives a reinterpretation of the Gauss—Butcher methods
(cf. [Sur90, MWO01, HLWO6]).



2.3 Backward error analysis

The numerical example of Section El] and many more examples in the literature,
show that symplectic integrators behave much better over long times than their
non-symplectic counterparts. How can this be explained, or put diferently:
How does the geometry lead to favourable dynamics? There is a caveat: As was
noted early on [GDC91, CSS92], all the benefts of symplectic integrators are
lost when they are used with variable step sizes as obtained by standard step
size control. So it is not just about preserving symplecticity.

Much insight into this question is obtained from the viewpoint ¢f Lackward
analysis, where the result of one step of a numerical method for a diferential
equation y = f(y) is interpreted as the solution to a modifed diferential equa-
tion (or more precisely formal solution, having the same excansicn in powers of
the step size h)

Y= f@) +hfi(@) +h2 @) + PP @) - ...

The question then is how geometric propertics of the numerical method, such
as symplecticity, are refected in the mcdited diferential equation. It turns
out that in the case of a symplectic integratcr applied to a Hamiltonian difer-
ential equation, each of the perturbaticn terms is a Hamiltonian vector feld,
fi(y) =J~' H;(y) (at least locallv, an simply connected domains). The formal
construction was frst given by Moser [Mos68], where the problem of interpo-
lating a near-identity symplectic map by a Hamiltonian fow was considered.
For the important class of sympizctic partitioned Runge-Kutta methods (which
includes all the examples meritioned in Section @), a diferent construction in
[Hai94], using the thecry of P-series and their associated trees, showed that the
perturbation Hamiltorizans H; are indeed global, defned on the same domain on
which the Hamiiton function H is defned and smooth. Alternatively, this can
also be shown using the explicit generating functions for symplectic partitioned
Runge—-Kutta niethods as derived by Lasagni; see [HLWO06, Sect.1X.3]. This
global result is in particular important for studying the behaviour of symplec-
tic integrators for near-integrable Hamiltonian systems, which are considered in
nzigibcurhoods of tori. It allows us to bring the rich arsenal of Hamiltonian
periurbation theory to bear on the long-time analysis of symplectic integrators.

The step from a formal theory (with the three dots at the end of the line)
to rigorous estimates was taken by Benettin & Giorgilli [BG94] (see also [HL97,
Rei99] and [HLWO06, Chapter IX] for related later work), who showed that in
the case of an analytic vector feld f, the result y; = ®p(yo) of one step of the
numerical method and the time-h fow ¢ (yo) of the corresponding modifed
diferential equation, suitably truncated after N ~ 1/h terms, difer by a term
that is exponentially smajl in 1/h: ,

| |

Op(yo) — Pn(yo) < Che /",

uniformly for yo varying in a compact set. The constants C and ¢ can be
given explicitly. It turns out that c is inversely proportional to a local Lipschitz



constant L of f, and hence the estimate is meaningful only under the condition
hL < 1. We note that in an oscillatory Hamiltonian system, L corresponds to
the highest frequency in the system.

A diferent approach to constructing a modifed Hamiltonian whose fow is
exponentially close to the near-identity symplectic map is outlined by Neish-
tadt [Nei84], who exactly embeds the symplectic map into the fow of a non-
autonomous Hamiltonian system with rapid oscillations and then uses averaging
to obtain an autonomous modifed Hamiltonian.

2.4 Long-time near-conservation of energy

The above results immediately explain the observed near-preservation of the
total energy by symplectic integrators used with constant step size: Over each
time step, and as long as the numerical solution stays in a fxed compact set, the
Hamilton function H of the optimally truncated modifed diferential equation
is almost conserved up to errors of size  (he=¢/"). On writing H(y,,) — H(yo)
as a telescoping sum and adding up the errors, we thus obtain

H(yn) — H(yo) = (e_c/2h) for nh <e®/?".

For a symplectic method of order r, the modifed Hamilton function H is (k")
close to the original Hamilton function H, uniformly on compact sets, and so
we have near-conservation of energy over exponentially long times:

H(y,) — H(yo) = (") for nh< ec/2h,

Symplecticity is, however, not necessary for good energy behaviour of a nu-
merical method. First, the assumption can clearly be weakened to conju-
gate symplecticity, that is, the one-step method y,,1 = ®,(y,) is such that
D), = X,;l o Wy, o x, Where the map ¥, is symplectic. But then, for some meth-
ods such as the Stormer—Verlet method, long-time near-conservation of energy
can be proved by an argument that does not use symplecticity, but just the
time-symmetry ®_; o ®; = id of the method [HLWO03]. That proof is sim-
ilar in spirit to proving the conservation of the energy ip"M~'p + V(q) =
3G M + V(q) for the second-order diferential equation M¢+ V(q) =0 by
taking the inner product with ¢ and noting that there results a total diferen-
tial: 4 (14" M¢+V(g)) = 0. This kind of argument can be extended to proving



backward error analysis and the perturbation theory of integrable systems, a
rich mathematical theory originally developed for problems of celestial mechan-
ics [Poi92, SM71, AKN97].

A Hamiltonian system with the (real-analytic) Hamilton function H(p, q) is
called integrable if there exists a symplectic transformation (p,q) = ¥(a,0) to
action-angle variables (a,0), defned for actions a = (aq,...,aq) iN SOMe open
set of R% and for angles ¢ on the d-dimensional torus T¢ = {(6y,...,04); 0;
R mod 27}, such that the Hamiltonian in these variables depends only on the
actions:

H(p,q) = H(¢(a,0)) = K(a).
In the action-angle variables, the equations of motion are simply @ = 0, = w(a)
with the frequencies w = (w1, ...,wq)T = oK. For every a, the torus {(a,9) :
6 T is thus invariant under the fow. We express the actions and angles in
terms of the original variables (p, ¢) via the inverse transform as

(a,0) = (I(p,q),O0(p,q))

and note that the components of I = (I3,...,1;) are frst integrals (conserved
quantities) of the integrable system.

The efect of a small perturbation of an integrable system is well under
control in subsets of the phase space where the frequencies w satisfy Siegel’s
diophantine condition:

/
k-w >~k forall k 7% k=0,

for some positive constants v and v, with k' = " 'k;/. For v > d — 1, almost



initial values and a Cantor set of step sizes this holds even perpetually, as the
existence of invariant tori of the numerical integrator close to the invariant tori
of the integrable system was shown by Shang [Sha99, Sha0Q].

The linear error growth persists when the symplectic integrator is applied to
a perturbed integrable system H(p,q) + €G(p, q) with a perturbation parameter
of size e = (h®) for some positive exponent «. Perturbed integrable systems
have KAM tori, i.e., deformations of the invariant tori of the integrable system
corresponding to diophantine frequencies w, which are invariant under the €ow
of the perturbed system. If the method is applied to such a perturbed integrable
system, then the numerical method has almost-invariant tori over exponentially
long times [HL97]. For a Cantor set of non-resonant step sizes there are even
truly invariant tori on which the numerical one-step map rediices to rotation by
hw in suitable coordinates [HLWO02, Sect. X.6.2].

In a very diferent line of research, one asks for integrable discretizations of
integrable systems; see the monumental treatise by Suris {Sur03].

2.6 Hamiltonian systems on marifoids

In a more general setting, a Hamiltonian system is considered on a symplectic

manifold, which is a manifold witih a ciosed, non-degenerate alternating
two-form w, called the symplectic form. Given a smooth Hamilton function
H > R, the corresponding Hamiltonian diferential equation is to fnd

w:[0,7] »  such that
Wy (W(t),0) = dH (u(t)[v] forallv T,q

where T,,  denotes the tangent space at » of , for a given initial value
u(0) = ug . Oninserting v = u(t) it is seen that the total energy H (u(t)) is
constant in tlnm We write again u(t) = ¢:(ug) to indicate the dependence on
the initial value. The fow map ¢, is symplectic in the sense that the symplectic
form w is preserved along the fow: for all ¢ and ug where ;(ug) exists,

We, (un) (At (o) [€], dps (uo)[n]) = wuo (§,m) forall &n Ty, ;5 OF pjw=w.

C ntrary to the canonical Hamiltonian systems considered before, no general

rescription is known how to construct a symplectic numerical integrator for a
general Hamiltonian system on a general symplectic manifold.

However, for the important class of Hamiltonian systems with holonomic
constraints, there exist symplectic extensions of the Stérmer—Verlet method
[And83, LR94] and of higher-order partitioned Runge—Kutta methods [Jay96].
Here the symplectic manifold is the submanifold of R2? given by constraints
g(¢) = 0, which constrain only the positions, together with the implied con-
straints for the momenta, Dg(q) ,H(p,q) = 0.

Apart from holonomic mechanical systems, there exist specially tailored sym-
plectic integrators for particular problem classes of non-canonical Hamiltonian
systems. These are often splitting methods, as for example, for rigid body
dynamics [DLM97, BCFO01], for Gaussian wavepackets in quantum dynamics
[FLO6], and for post-Newtonian equations in general relativity [LWB10].
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Figure 3.1: Chain of alternating stif harmonic and soft anharmonic springs.

3 Hamiltonian systems with multiple time scales

3.1 Oscillatory Hamiltonian systems

The numerical experiment by Fermi, Pasta and Ulam in 1255, which showed
unexpected recurrent behaviour instead of relaxation to equivartition of energy
in a chain of weakly nonlinearly coupled particles, has spurred a wealth of re-
search in both mathematics and physics; see, e.g., [Ca!08, B105, For92, Wei97].
Even today, there are only few rigorous matheinatical results for large particle
numbers in the FPU problem over long times iBPC6, HL12], and rigorous the-
ory is lagging behind the insight obtained from carefully conducted numerical
experiments [BCP13].

Here we consider a related class of osciliatory Hamiltonian systems for which
the long-time behaviour is by now aquite well understood analytically both for
the continuous problem and its numerical discretizations, and which show inter-
esting behaviour on several t'me scales. The considered multiscale Hamiltonian
systems couple high-frequency harmonic oscillators with a Hamiltonian of slow
motion. An illustrative exarnple of such a Hamiltonian is provided by a Fermi—
Pasta—Ulam type sysierin of point masses interconnected by stif harmonic and
soft anharmonic springs, as shown in Figure @; see [GGMV92] and [HLWO06,
Section 1.5]. The general setting is as follows: For positions ¢ = (go, 41, - - -, qm)
and momenta p = {po,p1,...,Pm) With p;, g; R% , let the Hamilton function
be given Lty

H(p,q) = Hu(p,q) + Hsiow (p, ),
where the oscillatory and slow-motion energies are given by
m
Hy(p,q) = % (‘pj‘2 + Wi lg 2), Haow(p:q) = ;po *+U(g)
j=1

with high frequencies
wj >e 0<e<xl.

The coupling potential U is assumed smooth with derivatives bounded inde-
pendently of the small parameter . On eliminating the momenta p; = ¢;, the
Hamilton equations become the system of second-order diferential equations

Gj+wig=— ;Ulg), j=0,...,m,
where ; denotes the gradient with respect to ¢;, and where we set wo = 0. We

are interested in the behaviour of the system for initial values with an oscillatory

12
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energy that is bounded independently of &:
H,(p(0),4(0)) < Const.
This system shows diferent behaviour on diferent time scales:

_ _ : _ / _
(i) almost-harmonic motion of the fast variables (p;,g;) (5 = 0) on time scale
g,

@D motiish of the slow variables (po, go) on the time scale ¢;

(iii) energy exchange between the harmonic oscillators with the same frequency
on the time scale ¢~ 1;



The relationship between the two techniques of proof, (H) and (F), is not
clear at present. The proofs look very diferent in the basic arguments, in the
geometric content and in the technical details, yet lead to very similar results
about the long-time behaviour of the continuous problem.

3.2 Modulated Fourier expansion

Modulated Fourier expansions in time have proven useful in the long-time anal-
ysis of diferential equations where the nonlinearity appears as a perturbation
to a primarily linear problem (as laid out in the programme of [FPU55] cited in
the introduction). This encompasses important classes of Hamiltoniari ordinary
and partial diferential equations. The approach can be sucressiuily used for the
analysis of the continuous problems as well as for their numericai discretizations,
as is amply shown in the corresponding references in this and the next section.
In particular for the analysis of numerical methods, it ofe:s the advantage that
it does not require nonlinear coordinate transforms. Instead, it embeds the orig-
inal system in a high-dimensional system of mioduiation equations that has a
Lagrangian / Hamiltonian structure with irvariance properties. In addition to
the use of modulated Fourier expansions as an analytical technique, they have
been used also as a numerical approximation method in [HLWO02, Chapter XI11]
and [Coh04, CDI09, CDI10, FS14, BCZ14, Zhal7].

We now describe the basic steps how, for the problem of the previous subsec-
tion, a simple ansatz for the sclutior: cver a short time interval leads to long-time
near-conservation results for the oscillatory energies E; = 1 (/p; 24w lg?). We
approximate the solutici g; ¢f the second-order diferential equation of the pre-
vious section as a moaulated Fourier expansion,

gty =N 2Rt elFt  for short times 0 <t < 1,

with mcaulation functions zj’“ all derivatives of which are required to be bounded
independentiy of . The sum is taken over a fnite set of multi-indices & =
(k1. . km) 2™, and k-w =) kjw;. The slowly changing modulation func-
tions are multiplied with the highly oscillatory exponentials e(*«)t = T | (ei“ﬂ)kj,
which are products of solutions to the linear equations i; + w?z; = 0. Such
products can be expected to be introduced into the solution ¢; by the nonlin-
earity.

Similar multiscale expansions have appeared on various occasions in the
literature. The distinguishing feature here is that such a short-time expansion
is used to derive long-time properties of the Hamiltonian system.

3.2.1 Modulation system and non-resonance condition

When we insert this ansatz into the diferential equation and collect the coe -
cients to the same exponential ¢!(*“)t, we obtain the infnite system of modu-
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lation equations for z = (z})

(@F = (k-w)?) 2 +2i(k - w) 2 + 2 = —%’l (2).

The left-hand side results from the linear part §; + w?qj of the diferential
equation. The right-hand side results from the nonlinearity and turns out to



under a continuous group action (a geometric property) yields the existence of
conserved quantities of the motion (a dynamic property). By Noether’s theorem,
the modulation equations thus conserve

Gy, y) =—1> > kwey; k.
ik

Since the modulation equations are solved only up to a defect (V) in the
construction of the modulated Fourier expansion, the functions 4 aie a'most-
conserved quantities with  (¢V*!) deviations over intervals of lengtih  (1).
They turn out to be (¢) close to the oscillatory energies E.;. By patching
together many short time intervals, the drift in the almost-invariants 4 is con-
trolled to remain bounded by CteN+! < Ce over long times ¢ < =V, and hence
also the deviation in the oscillatory energies Ey isonly () over such long times.
We thus obtain long-time near-conservation of the oscillatory energies Ej.

3.3 Long-time results for numericzi integrators

Modulated Fourier expansions were frst developed in [HLOOb] and further in
[HLWO02, Chapter XII1] to understand the observed long-term near-conservation
of energy by some numerical methccis foi step sizes for which the smallness
condition hL <« 1 of the backward errei analysis of Section @ is not fulflled.
For the numerical solution of the diferential equation of Section @ we are
interested in using numerica! integrators that allow large step sizes h such that
h/e > ¢o > 0. In this situation, the one-step map of a numerical integrator is
no longer a near-identity map, as was the case in Section P

For a class of time-svimimetric trigonometric integrators, which are exact for
the uncoupled harmanic oscillator equations i; + w?z; = 0 and reduce to the
Stormer—Veriet method for w; = 0, the following results are proved for step sizes
h that satisty a numerical non-resonance condition:

v
hw; is bounded away (by h) from a multiple of .

Urder just this condition it is shown in [CGHL15], using modulated Fourier
expansions, that the slow energy Hgoy is nearly preserved along the numerical
solution for very long times ¢t < h~" for arbitrary N > 1 provided the total
energy remains bounded along the numerical solution. If in addition,

sums of +hw; with at most N + 1 terms are
bounded away from non-zero multiples of 27,

then also the total and oscillatory energies H and H, are nearly preserved
along the numerical solution for ¢ < A=Y for the symplectic methods among the
considered symmetric trigonometric integrators. Modifed total and oscillatory
energies are nearly preserved by the non-symplectic methods in this class. These
results yield the numerical version of property (vi) above. A numerical version
of property (v) was shown in [CHLO05]. The single-frequency case was previously
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studied in [HLOOK]. For the Stérmer—Verlet method, which can be interpreted as
a trigonometric integrator with modifed frequencies, related long-time results
are given in [HL0Oa, CGHL15].

The numerical version of the energy transfer of property (iii) was studied in
[HLWO2, Section XI11.4] and in [CHLO5, MS14]. Getting the energy transfer
qualitatively correct by the numerical method turns out to put more restricticns
on the choice of methods than long-time energy conservation.

While we concentrated here on long-time results, it should be mentioried that
Txed-time convergence results of numerical methods for the multiscale preblem
ash »0ande »0with h/e > ¢y > 0 also pose many challenges; see, e.g.,
[GASSS99, HL9S, GH06, BGG'17] for systems with constant high frequencies
and also [LW14, HL16] for systems with state-dependent high freguencies, where
near-preservation of adiabatic invariants is essential. We aiso refer to [HLWO6,
Chapters X111 and XI1V] and to the review [CJLLO6].

4 Hamiltonian partial differeuntial equations

There is a vast literature on the long-time hehaviour of nonlinear wave equations,
nonlinear Schrodinger equations and other Harniltonian partial diferential equa-
tions; see, e.g., the monographs [Kuk93, Bou99, Cra00, Kuk0(g, KP03, GK14]
where infnite-dimensional versions of Hamiltonian perturbation theory are de-
veloped. Here we consider a few analytical results that have recently been
transfered also to numerical discretizations.

4.1 Long-time regularity preservation
We consider the nonliriear wave equation (or nonlinear Klein-Gordon equation)
D2u = 02u — pu+ g(u), u=u(z,t) R

with 27-pericdic boundary condition in one space dimension, a positive mass

para:rrieter p and a smooth nonlinearity ¢ = G’ with g(0) = ¢’(0) = 0. This

eqiiation is a Hamiltonian partial diferential equation 0;v = — , H(u,v), Oyu =
+H{u,v) (Where v = 9yu) with Hamilton function

H(u,v) = % /_: (;( 2 4 (0,u)? —|—pu2) = G(u)> dz

on the Sobolev space H' of 2x-periodic functions.

Written in terms of the Fourier coefcients u; of u(z,t) = 3. u;(t)e”,
the nonlinear wave equation takes the form of the oscillatory second-order dif-
ferential equation of Section B.1, but the system is now infnite-dimensional:

iy +wiu; =79(w), j Z,

where 7 gives the jth Fourier coefFcient and w; = /2 + p are the frequencies.
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The following result is proved, using infnite-dimensional Hamiltonian per-
turbation theory (Birkhof normal forms), by Bambusi [Bam03], for arbitrary
N > 1: Under a non-resonance condition on the frequencies w;, which is satis-
fed for almost all values of the parameter p, and for initial data (u°,v°) that
are e-small in a Sobolev space H**! x H* with sufciently large s = s(N), the
harmonic energies E; = §('i; > + w? 'u; %) are nearly preserved over the time
scale t < e, and so is the H**+! x H* norm of the solution (u(t), v(t)).

An alternative proof using modulated Fourier expansions was given in [CHLO8b]
with the view towards transfering the result to numerical discretizations with
trigonometric integrators as done in [CHLO8a], for which in addition also a
numerical non-resonance condition is required.

Related long-time near-conservation results are proved for other classes of
Hamiltonian diferential equations, in particular for nonlinear Schrédinger equa-
tions with a resonance-removing convolution potential, in [Bou96, BG06, Gré07]
using BirkhoT normal forms and in [GL10a] using modulated Fourier expansions.
These results are transfered to numerical discretization by Fourier collocation
in space and splitting methods in time in [FGP10g, FGP10b, GL10b



The above hurdles are overcome in [CHLO08a] for the nonlinearly perturbed
wave equation of the previous subsection discretized by Fourier collocation in
space and symplectic trigonometric integrators in time. Here, high regularity
of the numerical solution and near-conservation of energy are proved simultane-
ously using modulated Fourier expansions. In [GL10b], this technique and the
energy conservation results are taken further to a class of nonlinear Schréodinger
equations with a resonance-removing convolution potential (in arbitrary space
dimension) discretized by Fourier collocation in space and a splitting method in
time.

Long-time near-conservation of energy for symplectic splitting methods ap-
plied to the nonlinear Schrédinger equation in one space dimension (without
a resonance-removing convolution potential) is shown in [FG11, Faol2] with
a backward error analysis adapted to partial diferential equations and, under
weaker step size restrictions, in [Gaul6] with modulated Fourier expansions. In



on Birkhof normal forms and the other one on modulated Fourier expansions.
The latter technique is used in [FGL14] to transfer the result to numerical
discretization using Fourier collocation in space and a splitting method for time
discretization. The long-time orbital stability under smooth perturbations is in
contrast to the instability under rough perturbations shown in [Han14].

5 Dynamical low-rank approximation

Low-rank approximation of too large matrices and tensors is a fundamental
approach to data compression and model reduction in a wide range of aizplication
areas. Given a matrix A R™*", the best rank-r approxirraiion to A with
respect to the distance given by the Frobenius norm (that is, the Euclidean
norm of the vector of entries of a matrix) is known to be cttained by a truncated
singular value decomposition: A ~ >°'_, o;u;v;, where oy,...,0, are the r
largest singular values of A, and u; R™ and v; R™ are the corresponding
left and right singular vectors, which form an crtircriormal basis of the range
and corange, respectively, of the best approximation. Hence, only » vectors of
both length m and n need to be stored. If » < win(m,n), then the requirements
for storing and handling the data are signitcantly reduced.

When A(t) R™*" 0 <t < T, is a time-dependent family of large ma-
trices, computing the best rank-r approximation would require singular value
decompositions of A(t) for every time instance ¢ of interest, which is often not
computationally feasible. Maiecver, when A(t) is not given explicitly but is the
unknown solution to a matrix diferential equation A(t) = F(t, A(t)), then com-
puting the best rank-r approximation would require to frst solve the diferential
equation on R™*", which may not be feasible for large m and n, and then to
compute the singular value decompositions at all times of interest, which may
again not be feasthle,

5.1 Oynamical low-rank approximation of matrices

An aiternative — and often computationally feasible — approach can be traced
baclc to Dirac [Dir3Q] in a particular context of quantum dynamics (see also
the riext section). Its abstract version can be viewed as a nonlinear Galerkin
method on the tangent bundle of an approximation manifold and reads
as follows: Consider a diferential equation A(t) = F(t, A(t)) in a (fnite- or
infnite-dimensional) Hilbert space a, and let  be a submanifold of . An
approximation Y (t) to a solution A(t) (for 0 < ¢ < T) is determined by
choosing the time derivative Y (¢) as the orthogonal projection of the vector feld
F(t,Y(t)) to the tangent space Ty ;)  at Y(t)

Y(t) = PY(t)F(tv Y(t))ﬂ (51)

where Py denotes the orthogonal projection onto the tangent space at Y
Equation (@) is a diferential equation on the approximation manifold
which is complemented with an initial approximation Y (0) to A(0) .

20



When is a fat space, then this is the standard Galerkin method, which is a
basic approximation method for the spatial discretization of partial diferential
equations. When is not fat, then the tangent space projection Py depends
onY, and (@) is a nonlinear diferential equation even if F is linear.

For the dynamical low-rank approximation of time-dependent matrices, (El])
isused with  chosen as the manifold of rank-r matrices in the space g = R™*"
equipped with the Frobenius inner product (the Euclidean inner product ¢i the
matrix entries). This approach was frst proposed and studied in [KLO7&]. The
rank-r matrices are represented in (non-unique) factorized form as

Y =USVT,

where U R™*"and V' R™" have orthonormal columns anci 5 R"*" is an
invertible matrix. The intermediate small matrix S is not assumed diagonal,
but it has the same non-zero singular values as Y . Riferential equations
for the factors U, S, V' can be derived from (@) (uniguely under the gauge con-
ditions UTU = 0 and VTV = 0). They contain the inverse of S as a factor on
the right-hand side. It is a typical situatior that 5 iias small singular values, be-
cause in order to obtain accurate approximaiility, the discarded singular values
need to be small, and then the smallest retaired singular values are usually not
much larger. Small singular values cormpiicate the analysis of the approximation
properties of the dynamical low-rank acproximation (p.1), for a geometric rea-
son: the curvature of the rank-r manifold aty (measured as the local
Lipschitz constant of the proiection map Y | » Py) is proportional to the inverse
of the smallest singular vaiue of Y. It seems obvious that high curvature of the
approximation manifcld can impair the approximation properties of (@), and
for a general manifoic' tiris is indeed the case. Nevertheless, for the manifold

of rank-r matrices there are numerical and theoretical results in [KL073a] that
show good apireximation properties also in the presence of arbitrarily small
singular values.

5.2 Projector-splitting integrator

The numerical solution of the diferential equations for U, S,V encounters dif-
rcuities with standard time integration methods (such as explicit or implicit
Runge-Kutta methods) when S has small singular values, since the inverse of S
appears as a factor on the right-hand side of the system of diferential equations.

A numerical integration method for these diferential equations with remark-
able properties is given in [LO14]. It is based on splitting the tangent space
projection, which at Y = USV " is an alternating sum of three subprojections:

P Z=zvVvT —UuUTzZzvvT +UU" Z.

Starting from a factorization Y,, = UnSnVnT at time t¢,, the corresponding
splitting integrator updates the factorization of the rank-r approximation to
Yoi1 = Un+15n+1Vn11 at time ¢,.1. It alternates between solving (approxi-
mately if need be) matrix diferential equations of dimensions m x r (for US),
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rxr (for S), n x r (for V.ST) and doing orthogonal decompositions of matrices
of these dimensions. The inverse of S does not show up in these computations.

The projector-splitting integrator has a surprising exactness property: if the
given matrix A(¢) is already of rank r for all 