
HIGH DIMENSIONAL EXPANDERS

ALEXANDER LUBOTZKY

Abstract. Expander graphs have been, during the last five
decades, the subject of a most fruitful interaction between pure
mathematics and computer science, with influence and applications
going both ways (cf. [55], [37], [56] and the references therein). In
the last decade, a theory of “high dimensional expanders” has be-
gun to emerge. The goal of the current paper is to describe some
paths of this new area of study.

0. Introduction

Expander graphs are graphs which are, at the same time, sparse and
highly connected. These two seemingly contradicting properties are
what makes this theory non trivial and useful. The existence of such
graphs is not a completely trivial issue, but by now there are many
methods to show this: random methods, Kazhdan property (T ) from
representation theory of semisimple Lie groups, Ramanujan conjecture
(as proved by Deligne and Drinfeld) from the theory of automorphic
forms, the elementary Zig-Zag method and “interlacing polynomials”.

The definition of expander graphs can be expressed in several dif-
ferent equivalent ways (combinatorial, spectral gap etc. - see [55],
[40]). When one comes to develop a high dimensional theory; i.e. a
theory of finite simplicial complexes of dimension d ≥ 2, which resem-
bles that of expander graphs in dimension d = 1, the generalizations
of the different properties are (usually) not equivalent. One is led to
notions like: coboundary expanders, cosystolic expanders, topological
expanders, geometric expanders, spectral expanders etc. each of which
has its importance and applications.

In §1, we recall very briefly several of the equivalent definitions of
expander graphs (ignoring completely the wealth of their applications).
These will serve as pointers to the various high dimensional generaliza-
tions.

In §2, we will start with the spectral definition. For this one needs
“discrete Hodge theory” as developed by Eckmann ([22]). In this sense
the classical work of Garland [29], proving Serre’s conjecture on the
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vanishing of the real cohomology groups of arithmetic lattices of p-adic
Lie groups, can be considered as the earliest work on high dimensional
expanders. His “local to global” method which treats the finite quo-
tients of the Bruhat-Tits building has been rediscovered in recent years,
with many applications, some of them will be described in §2.

In §3, we turn our attention to Gromov’s topological and geometric
expanders (a.k.a. the topological and geometric overlapping proper-
ties). These quite intuitive directions were shown to be related to two
much more abstract definitions of coboundary and cosystolic (high di-
mensional) expanders. The last ones are defined using the language of
F2-cohomology. Here also a “local to global” method enables to produce
topological expanders from finite quotients of Bruhat-Tits buildings of
p-adic Lie groups.

Section 4 will deal with random simplicial complexes, while in §5 we
will briefly mention several applications and connections with computer
science.

1. A few words about expander graphs

Let X = (V,E) be a finite connected graph with sets of vertices V

and edges E. The Cheeger constant of X, denoted h(X), is:

h(X) = inf
A,B⊆V

|E(A,B)|
min(|A|, |B|)

where the infimum runs over all the possibilities of disjoint partitions
V = A∪B and E(A,B) is the set of edges connecting vertices in A to
vertices in B.

The graph X is εεε-expander if h(X) ≥ ε.
Let L2(V ) be the space of real functions on V with the inner product

⟨f, g⟩ =
∑
v∈V

deg(v)f(v)g(v) and L2
0(V ) the subspace of those which are

orthogonal to the constant functions. Similarly, L2(E) is the space of
functions on the edges with the standard inner product.

We fix an arbitrary orientation on the edges, and for e ∈ E we denote
its end points by e− and e+. Let d : L2(V ) → L2(E) be the map
(df)(e) = f(e+)− f(e−) for f ∈ L2(V ) and ∆ = d∗d : L2(V ) → L2(V )

when d∗ is the adjoint of d. The operator ∆ is called the Laplacian of
the graph. One can show (cf. [55, Chap. 4]), that it is independent of
the chosen orientation. One can check that

∆ = I −M
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when M is the Markov operator on L2(V ), i.e.,

(Mf)(x) =
1

deg(x)

∑
{y|(x,y)∈E}

f(y).

The smallest eigenvalue of ∆ is 0 and it comes with multiplicity one
if (and only if) X is connected, which we will always assume. The
eigenfunctions with respect to 0 are the constant functions and as ∆ is
self adjoint, L2

0(V ) is invariant under ∆ and the spectral gap

λ1(X) = inf

{
⟨∆f, f⟩
⟨f, f⟩

∣∣∣f ∈ L2
0(V )

}
is the smallest eigenvalue of ∆ acting on L2

0(V ).
The following result is a discrete analogue of the classical Cheeger in-

equality (and its converse by Buser). This discrete version was proved
by Tanner, Alon and Milman (the reader is referred again to [55,
Chap. 4] for a detailed history).

Theorem 1.1. If X is a finite connected k-regular graph, then:
h2(X)

2k2
≤ λ1(X) ≤ 2h(X)

k

We are usually interested in infinite families of k-regular graphs
(“sparse”). Such a family forms a family of expanders (i.e., h(X) ≥ ε

for the same ε > 0, for every X) if and only if λ1(X) ≥ ε′ > 0 for
the same ε′ for every X. I.e., Theorem 1.1 says that expanders can be
defined, equivalently, either by a combinatorial definition or using the
spectral gap definition. Expressing this using the adjacency operator
A rather than the Laplacian ∆: being expanders means that the sec-
ond largest eigenvalue λ(X) of A is bounded away from k, which is the
largest one.

Strictly speaking the notion of expanders requires spectral gap only
in one side of the spectrum of A, but in many applications (e.g. if one
wants to estimate the rate of convergence of the random walk on X

to the uniform distribution) one needs bounds on both sides. Recall
that −k is also an eigenvalue of A iff X is bi-partite. We can now
define: A k-regular connected graph is Ramanujan if all eigenvalues λ

of A are either λ = ±k or |λ| ≤ 2
√
k − 1. By the well-known Alon-

Boppana theorem, the bound 2
√
k − 1 is the best one can hope for

for an infinite family of k-regular graphs. Let us recall that for the
k-regular infinite tree T = Tk, the classical result of Kesten asserts
that the spectrum of the adjacency operator on L2(Tk) is exactly the
interval [−2

√
k − 1, 2

√
k − 1]. In a way Kesten’s result lies beyond
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the Alon-Boppana theorem and there are many generalizations of this
philosophy (cf. [31]).

Ramanujan graphs were presented by Lubotzky-Phillips-Sarnak
[54], Margulis [65], Morgenstern and recently by Marcus-Spielman-
Srivastava [64].

There are several other ways to define expanders. Let us mention
here one which has been observed only quite recently and has a natural
extension to high dimensional simplicial complexes.

Let X be a finite connected k-regular graph, with adjacency matrix
A, denote k = q + 1 and

µ(X) = max{|λ|
∣∣∣λ e.v. of A, λ ̸= ±k}.

So X is Ramanujan iff µ(X) ≤ 2
√
q. If X is bipartite, write V = V0∪V1

where V0 and V1 are the two sides, and if not V = V0 = V1. Let

L2
00(X) = {f ∈ L2(V )

∣∣∣∑
v∈Vi

f(v) = 0, for i = 0, 1}.

So, µ(X) is the largest (in absolute value) eigenvalue of A when acting
on L2

00(X). For λ ∈ [2
√
q, q + 1] write λ = q1/p + q(p−1)/p for a unique

p ∈ [2,∞], so λ = 2
√
q when p = 2.

Now, let π : T = Tk → X be a covering map. For a fixed t0 ∈ T ,
let Sr = {t ∈ T

∣∣∣distance(t, t0) = r} and for f ∈ L2
00(X) and t ∈ T , let

f̃(t) = 1
|Sr|

∑
s∈Sr

f(π(s)) if r = dist(t, t0), i.e. f̃ is the averaging of the

lift of f around t0.

Theorem 1.2 (Kamber [40]). µ(X) ≤ λ if and only if f̃ ∈ Lp+ε(T )

for all f ∈ L2
00(X), t0 ∈ T , and ε > 0. As a corollary X is Ramanujan

iff
f̃ ∈ L2+ε(T ), ∀t0,∀f, ∀ε.

2. High dimensional expanders: spectral gap

As described in §1, the notion of expander graphs can be expressed
via a spectral gap property of the Laplacian. This aspect has a natural
high dimension version, but to present it one needs the language of real
cohomology. Let us start by recalling the basic notations.

2.1. Simplicial complexes and cohomology. A finite simplicial
complex X is a finite collection of subsets, closed under inclusion, of
a finite set X(0), called the set of vertices of X. The sets in X are
called simplices or faces and we denote by X(i) the set of simplices of
X of dimension i (i-cells), which are the sets in X of size i + 1. So
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X(−1) is comprised of the empty set, X(0) - of the vertices, X(1) - the
edges, X(2) - the triangles, etc. Let d = dimX = max{i|X(i) ̸= ∅} and
assume X is a pure simplicial complex of dimension d, i.e., for every
F ∈ X, there exists G ∈ X(d) with F ⊆ G. Throughout this discussion
we will assume that X(0) = {v1, . . . , vn} is the set of vertices and we fix
an order v1 < v2 < . . . < vn among the vertices. Now, if F ∈ X(i) we
write F = {vj0 , . . . , vji} with vj0 < vj1 < . . . < vji . If G ∈ X(i−1), we
denote the oriented incidence number [F : G] by (−1)ℓ if F\G = {vjℓ}
and 0 if G ⊈ F . In particular, for every vertex v ∈ X(0) and for the
unique face ∅ ∈ X(−1), [v : ∅] = 1.

If F is a field then Ci (X,F) is the F-vector space of the functions
from X(i) to F. This is a vector space of dimension

∣∣X(i)
∣∣ over F where

the characteristic functions
{
eF

∣∣F ∈ X(i)
}

serve as a basis.
The coboundary map δi : C

i (X,F) → Ci+1 (X,F) is given by:

(δif) (F ) =
∑

G∈X(i)

[F : G] f (G) .

So, if f = eG for some G ∈ X(i), δieG is a sum of all the simplices of
dimension i + 1 containing G with signs ±1 according to the relative
orientations.

It is well known and easy to prove that δi◦δi−1 = 0. Thus Bi (X,F) =
im δi−1 - “the space of i-coboundaries” is contained in Zi (X,F) = ker δi
- the i-cocycles and the quotient H i (X,F) = Zi (X,F)/Bi (X,F) is the
i-th cohomology group of X over F.

In a dual way one can look at Ci (X,F) - the F-vector space spanned
by the simplices of dimension i. Let ∂i : Ci (X,F) → Ci−1 (X,F)
be the boundary map defined on the basis element F by: ∂F =∑

G∈X(i−1) [F : G] ·G, i.e. if F = {vj0 , . . . , vji} then ∂iF =
∑i

t=0 (−1)t

{vj0 , . . . , v̂jt , . . . , vji}. Again ∂i ◦ ∂i+1 = 0 and so the boundaries
Bi (X,F) = im ∂i+1 are inside the cycles Zi (X,F) = ker ∂i and
Hi (X,F) = Zi (X,F)/Bi (X,F) gives the i-th homology group of X

over F. As F is a field, it is not difficult in this case to show that
Hi (X,F) ≃ H i (X,F).

In the next section, we will need the case F = F2 - the field of
two elements, but for the rest of Section 2 we work with F = R.
In this case Ci(X,R) has the natural structure of a Hilbert space,
where for f, g ∈ Ci(X,R), ⟨f, g⟩ =

∑
F∈X(i)

deg(F )f(F )g(F ), when

deg(F ) = #{G ∈ X(d)
∣∣∣G ⊇ F}. Now, Ci(X,R) is the dual of Ci(X,R)

in a natural way and we can identify them and treat the operators
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∆up
i = δ∗i δi,∆

down
i = δi−1δ

∗
i−1 and ∆i = ∆up

i +∆down
i as operators from

Ci to Ci, all are self-adjoint with non-negative eigenvalues. One may
check that

(δ∗i f) (G) =
1

deg (G)

∑
F∈X(i+1)

[F : G] deg (F ) f (F )

for f ∈ Ci+1 (X,R) and G ∈ X(i), so in the regular case δ∗i is equal to
∂i+1 up to a constant multiple. Define Zi = ker δ∗i−1 and Bi = im δ∗i (so
in the regular case Zi = Zi,Bi = Bi). The following proposition, going
back to Eckmann [22], is elementary:

Proposition 2.1 (Hodge decomposition). Ci = Bi ⊕ Hi ⊕ Bi when
Hi = Ker(∆i) is called the space of Harmonic cycles. In fact Hi ≃
H i(X,R). Note that ∆up

i vanishes on Z i = Bi ⊕Hi.

Definition 2.2. The i-dimensional spectral gap of X is λ(i)(X) =

min{λ
∣∣∣λ e.v. of ∆up

i

∣∣∣
(Bi)⊥

}. One may check that (Bi)⊥ = Zi, and
as ∆up

i = δ∗i ◦ δi, we have

λ(i)(X) = inf
f∈(Bi)⊥

{
|⟨∆up

i f, f⟩|
⟨f, f⟩

}
=

(
inf
f∈Zi

{
∥δf∥
∥f∥

})2

.

Also, ∆up
i vanishes also on Hi, so λ(i)(X) > 0 implies H i(X,R) = {0},

and the converse is also true.

For a k-regular graph (B0)⊥ = Z0 = L2
0(X) and so λ1(X) that was

defined in §1 for a graph X, is λ(0)(X) in the notations here. We define:

Definition 2.3. A pure d-dimensional simplicial complex will be called
ε-spectral expander if for every i = 0, . . . , d− 1, λ(i) ≥ ε.

Recall that the Alon-Boppana theorem asymptotically bounds the
spectral gap of k-regular graphs by that of their universal cover, the
k-regular tree. In higher dimension the situation is more involved:

Theorem 2.4 ([74]). For an infinite complex X, let λ(i)(X) be the
bottom of the spectrum of ∆up

i (X) on (Bi)⊥. Let {Xn} be a family
of quotients of X, such that the injectivity radius of Xn approaches
infinity. If zero is not an isolated point in the spectrum of ∆up

i (X), on
(Gi)⊥, then

lim inf
n→∞

{λ(i)(Xn)} ≤ λ(i)(X).
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this case the Alon-Boppana principle can be violated (see [74, Thm.
3.10] for an example).

2.2. Garland method. The seminal paper of Howard Garland ([29],
see also [10]), can be considered as the first paper on high dimensional
expanders. It gave examples of spectral expanders, by a method which
bounds the eigenvalues of the simplicial complex by the eigenvalues
of its links. Garland’s method has been revisited in recent years with
various simplifications and extensions. Let us give here one of them,
but we need more definitions: If F is a face of X of dimension i, the
link of F in X denoted ℓkX(F ), is

ℓkX(F ) := {G ∈ X
∣∣∣F ∪G ∈ X,F ∩G = ∅}.

One can easily check that if X is a pure simplicial complex of dimension
d, dim(ℓkX(F )) = d− i− 1.

Garland’s method can be conveniently summarized by the following
theorem. Note that if dim(X) = d and dim(F ) = d− 2, then ℓkX(F )

is a graph.

Theorem 2.5 (Garland, cf. [35] ). If dim(X) = d and for every face
F of dimension d− 2, λ(0)(ℓkX(F )) ≥ ε, then

λ(d−1)(X) ≥ 1 + d ε− d.

So, Garland’s method enables to give a fairly good bound on
λ(d−1)(X) if all links of d − 2 faces are very good expanders. One
can use the result to bound also λ(j)(X) for j ≤ d− 1, by replacing X

with its j+1 skeleton, i.e., the collection of all the faces of X of dimen-
sion at most j + 1. In fact, even more: if the links of the (d− 2)-faces
are excellent expander graphs and the 1-skeleton is connected, then
the complex is spectral expander (cf. [70]). In the next subsection, we
will explain Garland’s motivation and results. But in recent years his
method have been picked up in various different directions. Most of
them have to do with vanishing of some cohomology groups.

One of the nicest applications of Garland’s method is the work of
Zuk [89], Pansu[72] and Ballman-Swiatkowski [4]. The starting point
of these works is the well-known result that a discrete group Γ has
Kazhdan property (T ) iff H1(Γ, V ) = {0} for every unitary represen-
tation of Γ on any Hilbert space. These authors used Garland’s work
to deduce such a vanishing result for H1 if Γ acts cocompactly on an
infinite contractible simplicial complex of dimension 2 all of whose ver-
tex links are very good expanders. The most amusing is Zuk’s method
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which enables (sometimes) to deduce property (T ) from a presentation
of Γ by generators and relations. For example it shows property (T )

for some random groups (see also [48]). This is very different than the
way Kazhdan produced the first groups with property (T ) and it shows
that property (T ) is not such a rare property.

A work of a similar flavor but in a different direction is the work of
De Chiffre, Glebsky, Lubotzky, and Thom ([16]). Recall first (vaguely)
the basic definition of “group stability”: Consider the degree n unitary
group U(n) with an invariant metric dn. We say that a group Γ pre-
sented by a finite set of generators S with finitely many relations R,
is (U(n), dn)-stable if every almost representation ρ of Γ into U(n) is
close to a representation ρ̃. By “almost” we mean that ρ(r) is very
close to the identity for every r ∈ R and “close” means that ρ(s) and
ρ̃(s) are close w.r.t. dn, for every s ∈ S. One can study these ques-
tions w.r.t. different distance functions, e.g., the one induced by the
Hilbert-Schmidt norm, the operator norm or the L2-norm, a.k.a. the
Frobenius norm.

Let us stick to the L2-norm. In [16] it is shown that if H2(Γ, V ) = {0}
for every unitary representation of Γ, then Γ is (U(n), dL2)-stable. Then
the Garland method is used (along the line of the results mentioned
above for H1) to produce many examples of L2-stable groups by con-
sidering actions on 3-dimensional infinite simplicial complexes, whose
edge-links are excellent expanders. This implies that many high rank
cocompact lattices in simple p-adic Lie groups are (U(n), dL2)-stable.
The most striking application is proving that there exists a group which
is not L2-approximated (the reader is referred to [16] for the definitions
and exact results and to [85] for background and applications).

In [35], Gundert and Wagner used the Garland method to estimate
the eigenvalues of random simplicial complexes - see also §4. For some
stronger versions of Garland’s method - see [69], [70] and the references
therein.

2.3. Bruhat-Tits buildings and their finite quotients. Let K be
a non-Archimedean local field, i.e., K is a finite extension of Qp, the
field of p-adic numbers, or K is Fq((t))-the field of Laurent power series
over a finite field Fq. Let O be the ring of integers of K, M the (unique)
maximal ideal of O, and Fq = O/M the finite quotient where q = pℓ

for some prime p and ℓ ∈ N. Let
char‘char”0303

G be a K-simple simply connected
group of K-rank r, e.g.,

char‘char”0303
G = SLn in which case r = n − 1, and let

G =
char‘char”0303

G(K).
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Bruhat and Tits developed a theory which associates with G an infi-
nite (if r ≥ 1) contractible simplicial complex B = B(G) of dimension r.
Here is a quick description of it: G has r+1 conjugacy classes of max-
imal compact subgroups (cf. [77, Theorem 3.13, p. 150]) and a unique
class of maximal open pro-p subgroups, called Iwahori subgroups. The
vertices of B are the maximal compact subgroups (so they come with
r+1 “colors” according to their conjugacy class) and a set of i+1 such
vertices form a cell if their intersection contains an Iwahori subgroup.
This is an r-dimensional simplicial complex whose maximal faces can
be identified with G/I when I is a fixed Iwahori subgroup (for more
see [13], [77] and [57] for a quick explicit description of B (SLn(Qp)).
The case of B (SL2(K)), which is a (q + 1)-regular tree, is studied in
detail in [81]).

Let Γ be a cocompact lattice in G, i.e., a discrete subgroup with
Γ \ G compact. Assume, for simplicity that Γ is torsion free, a con-
dition which can always be achieved by passing to a finite index sub-
group. Such Γ is always an arithmetic lattice if r ≥ 2 by Margulis
arithmeticity Theorem ([66]) and, at least if char(K) = 0, there are
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and [11, Chap. XI]) by representation theoretic methods, but Garland’s
method has its own life in various other contexts.

In Section 1, Theorem 1.2, we saw that expander graphs can also be
defined as “Lp-expanders” for a suitable 2 ≤ p ∈ R. This definition can
be extended to high dimensional simplicial complexes and is especially
suitable in the context of this subsection.

Let B be one of the Bruhat-Tits buildings described above and π :

B → X the covering map. Let f ∈ L2
0(X

(r)), i.e. a function orthogonal
to the constants on the r-cells of X (one can consider also i-cells for
0 ≤ i ≤ r, but we stick to these for simplicity of the exposition, the
reader is referred to [39] for a more general setting). Now, using the
notion of W -distance on B(r), when W is the affine Weyl group of
G, one can define for a fixed t0 ∈ B(r), a function f̃ on B(r) - the r-
faces of B, as follows: For t ∈ B(r), let f̃(t) = 1

|St|
∑
s∈St

f (π(s)) when

Sℓ = {s ∈ B(r)
∣∣∣W -distance (s, t0) = W -distance (t, t0)}.

Definition 2.6. We say that X is Lp-expander if for every t0 and f as
above f̃ ∈ Lp+ε(B(r)) for every ε > 0.

Applying Oh’s result [68] which gives the exact rate of decay of the
matrix coefficients of the unitary representations of G, the so-called
“quantitative property (T )”, Kamber deduced that X as above are
always Lp-expanders when p = p(G) according to the following table.

W Ãn B̃n C̃n D̃n, n even D̃n, n odd Ẽ6 Ẽ7 Ẽ8 F̃4 G̃2

p 2n 2n 2n 2(n− 1) 2n 16 18 29 11 6

Let us stress that this is not just an abstract result. From this fact,
we can deduce non-trivial inequalities on the eigenvalues of various
“Hecke operators” acting on the faces of X. The reader is referred to
[39] for more in this direction.

2.4. Ramanujan complexes. Ramanujan graphs stand out among
expander graphs as the optimal expanders from a spectral point of
view (cf. [86]). These are the finite connected k-regular graphs X for
which every eigenvalue λ of the adjacency matrix A = AX satisfies
either |λ| = k or |λ| ≤ 2

√
k − 1. The first constructions of such graphs

were presented as an application of the works of Deligne (in charac-
teristic zero) and Drinfeld (in positive characteristic) proving the so
called Ramanujan conjecture for GL2 (see [55] for a detailed survey).
Recently, a new (non-constructive) method has been presented in [64].
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It is therefore not surprising that following the work of Laurent Laf-
forgue [49] (for which he got the Fields Medal) extending Drinfeld’s
work from GL2 to GLd, general d, several mathematicians have started
to develop a high dimensional theory of Ramanujan simplicial com-
plexes, cf. ([14], [50], [63], [62], [80]). One may argue what is “the
right” definition of Ramanujan complexes (see the above references
and [43], [41], [27], [39], [52]). This topic deserves a survey of its own.
Here we just briefly point out some directions of research which came
out in the work of several mathematicians.

In the context of X = Γ\B where B a Bruhat-Tits building associated
with G =

char‘char”0303
G(K) as in §2.3, and Γ a cocompact lattice acting on it, the

most sensible definition seems to be the following:

Definition 2.7. In the notation above, Γ \ B is called a Ramanu-
jan complex if every infinite dimensional irreducible I-spherical G-
subrepresentation of L2(Γ \G) is tempered.

Recall that I is the Iwahori subgroup defined above, a representation
is I-spherical if it contains a non-zero I-fixed vector and it is tempered
if it is weakly-contained in L2(G).

This definition can be expressed also in other ways; it is L2-expander
in the notations of [39] and Definition 2.6 above. It can also be ex-
pressed in a combinatorial-spectral way. For the group SL2, in which
case B is a (q + 1)-regular tree and X = Γ \ B is a (q + 1)-regular
graph, this definition is equivalent to the graph being Ramanujan
graph. Ramanujan complexes are also optimal among high-dimensional
expanders (see [50], [63] and [74]). For most applications so far (such
as the geometric and topological expanders to be presented in §3) one
does not need the full power of the Ramanujan property and quan-
titative Property (T ) (á la Oh [68], see §2.3) suffices. On the other
hand the study of the cut-off phenomenon of Ramanujan complexes in
[52] did use the full power of the Ramanujan property. The same can
be said about the application of Ramanujan graphs and Ramanujan
complexes to the study of “golden gates” for quantum computation
(see [76] and [73]), where the Ramanujan bounds give a distribution of
elements in SU(2) with “optimal entropy”.

The Ramanujan graphs of [54] (a.k.a. the LPS-graphs) have also been
used to solve other combinatorial problems. For example they give the
best (from a quantitative point of view) known examples of “high girth,
high chromatic number” graphs. After finding the appropriate high
dimensional notions of “girth” and “chromatic number”, these results
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can indeed be generalized to the Ramanujan complexes constructed in
[62], (see [59], [30], [25]).

Ramanujan graphs can be characterized as those graphs whose as-
sociated zeta functions satisfy “the Riemann Hypothesis (RH)” - see
[55], for an exact formulation and references. An interesting direction
of research is to try to associate to high dimensional complexes suitable
“zeta functions” with the hope that also in this context the Ramanu-
janess of the complex can be expressed via the RH. For this direction
or research - see [84], [42], [17], [43], [41], [39] and [52].

3. Geometric and Topological expanders

In this chapter we will describe a phenomenon which is truly high di-
mensional; the geometric and topological overlapping properties which
lead to geometric and topological expanders. The latter call for
coboundary and cosystolic expanders.

3.1. Geometric and Topological overlapping. Our story begins
with a result of Boros and Füredi [12], at the time two undergraduates
in Hungary, who proved the following result, as a response to a question
of Erdös: If P is a set of n points in R2, then there exists a point
z ∈ R2 which is covered by

(
2
9
− o(1)

)(
n
3

)
of the

(
n
3

)
affine triangles

determined by these points. Shortly afterward Bárany [5] proved the
d-dimensional version: For every d ∈ N,∃ 0 < Cd ∈ R, such that if
P ⊆ Rd with |P | = n, then there exists z ∈ Rd which is covered by at
least Cd

(
n

d+1

)
of the

(
n

d+1

)
affine simplices determined by these points.

While 2/9 is optimal for d = 2, it is not known what are the optimal
Cd’s, neither what is their rate of convergence to 0, when d goes to
infinity.

Bárany’s result can be rephrased as: Let ∆
(d)
n be the complete d-

dimensional simplicial complex on n vertices (i.e. the collections of all
subsets of [n] of size at most d + 1) and f : ∆

(d)
n → Rd an affine map.

Then there exists z ∈ Rd which is covered by at least Cd

(
n

d+1

)
of the

images of the d-dimensional faces.
In [32], Gromov proved the following amazing result: Bárany’s the-

orem above is true for every continuous map f : ∆
(d)
n → Rd. In fact,

he proved it with constants Cd ∈ R which were better than what was
known before for affine maps. The reader is encouraged to draw the
2-dimensional case to realize how surprising and even counter-intuitive
this theorem is! Gromov also changed the point of view on these types
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of results; rather than thinking of them as properties of Rd, think of
them as properties of the simplicial complex X. Let us now define:

Definition 3.1. A d-dimensional pure simplicial complex X is said
to be ε-geometric (resp. ε-topological) expander if for every affine
(resp. continuous) map f : X → Rd, there exists z ∈ Rd such that
ε-proportion of the images of the d-cells in X(d), covers the point z.

So Bárany (resp., Gromov) Theorem is the claim that ∆(d)
n , the com-

plete simplicial complex of dimension d on n vertices, is Cd-geometric
(resp., Cd-topological) expander.

Let us look for a moment at the case of dimension one to see why
we call this property “expander”: If X = (V,E) is an expander graph
and f : X → R any continuous map, choose a point z ∈ R such that
the two disjoint sets

A = {v ∈ V
∣∣∣f(v) < z} and B = {v ∈ V

∣∣∣f(v) > z}

are of size approximately |V |
2

. By the expansion property, there are
many edges in E which connect A and B. The image of each such an
edge under f must pass through z by the mean value theorem. Hence
X is also a topological expander.

We should mention that a topological expander graph X does not
have to be an expander graph. Moreover, it does not even have to be
connected. For example, assume X is a union of a large expander graph
and another small (say of size o(|X|)) connected component. Then X

is a topological expander even though it is not an expander graph.
Anyway, Gromov and Bárany Theorems refer to the complete sim-

plicial complexes: note how difficult is the case d ≥ 2 and how triv-
ial it is to prove that the complete graph is an expander. Gromov
also proved that some other interesting simplicial complexes are d-
dimensional topological expanders, e.g., the flag complexes of d + 2

dimensional vector spaces over finite fields or more generally spherical
buildings of simple algebraic groups over finite fields (cf. [61]). All
these examples are not of bounded degree. Recall (see also Definition
4.1 below) that we say that a family of d-dimensional simplicial com-
plexes are of bounded degree (resp. bounded upper degree) if for every
vertex v (resp., every face F of dimension d − 1) the number of faces
containing it is bounded. The non trivial aspect of expander graphs in
dimension one is the construction of such graphs of bounded degree.

Gromov [32] put forward the basic questions: Let d ≥ 2, are there
bounded degree d-dimensional geometric/topological expanders?
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The existence of geometric expanders of bounded degree was shown
by Fox, Gromov, Lafforgue, Naor and Pach [28] in several ways - most
notably are two: the random method which we will come back to in §4
and the second is by showing that for a fixed d, if q is a large enough
(depending on d) and fixed, the Ramanujan complexes described in §2.4
are geometric expanders of bounded degree. A more general version
was given by Evra [24] .

Theorem 3.2. Given 2 ≤ d ∈ N, there exists q0 = q0(d) and ε = ε(d)

such that for every q > q0, if K is a non-Archimedean local field of
residue degree q and

char‘char”0303
G a simple K-algebraic group of K-rank d, then the

finite quotients of B = B(
char‘char”0303

G(K)) - the Bruhat-Tits building associated
with G =

char‘char”0303
G(K) - are all ε-geometric expanders.

Theorem 3.2 is deduced in [24] in a similar way as the proof in [28]
using a “mixing lemma” and a classical convexity result of Pach [71].
The mixing lemma is deduced there from Oh’s “quantitative property
(T ) ([68]). The language of Lp-expanders described in §2 gives a sys-
tematic way to express this. (Compare also to [75]). The fact that we
have an ε = ε(d) which is independent of q, provided q > q0, (which is
more than one needs in order to answer Gromov’s geometric question)
is due to the fact that for a fixed d ∈ N, one has the same p in the
table in §2.3. which works for all groups of rank d.

The question of bounded degree topological expanders is much more
difficult and will be discussed in the next subsections.

3.2. Coboundary expanders. As of now there is only one known
method (with several small variants) to prove that a simplicial complex
X is a topological expander. This is via “coboundary expander” which
requires the language of cohomology as introduced in §2.1, but this
time with F2-coefficients.

Let X be a finite d-dimensional pure simplicial complex, define on it
a weight function w as follows: for F ∈ X(i) let

w(F ) =
1(

d+1
i+1

)
|X(d)|

∣∣{G ∈ X(d)|G ⊇ F}
∣∣ .

One could work with a number of different weight functions, but this
one is quite pleasant, for example, it is a probability measure on X(i);
one easily checks that

∑
F∈X(i)

w(F ) = 1. Now for f ∈ Ci(X,F2), de-

note ∥f∥ =
∑

w(F )
{F∈X(i)|f(F ) ̸=0}

. We can now define the important notion of

“coboundary expanders” - a notion which was independently defined by
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Linial-Meshulam [51] and Gromov [32] (in both cases without calling
it coboundary expanders).

Definition 3.3. Let X be as above:

(a) For 0 ≤ i ≤ d − 1, define the ith coboundary expansion hi(X) of
X as:

hi(X) = min
f∈Ci\Bi

∥δif∥
∥[f ]∥

where [f ] = f + Bi is the coset of f w.r.t. the i-coboundaries and
∥[f ]∥ = min

g∈[f ]
∥g∥. (Note that ∥[f ]∥ is the “normalized distance” of

f from Bi). Let h(X) = min{hi(X)|i = 0, . . . , d− 1}.
(b) The complex X is said to be ε-coboundary expander if h(X) ≥ ε.

A few remarks are in order here:
(i) The reader can easily check that if X is a k-regular graph, then

h(X) = 2
k
· h(X) where h(X) is the Cheeger constant of the

graph as defined in §1. So, indeed the above definition extends
the notion of expander graphs.

(ii) The definition of εi, and especially the fact that the minimum
runs over f ∈ Ci \ Bi looks unnatural at first sight, but if we
recall that ∥[f ]∥ is exactly the “norm” of the element in f + Bi

which is closest to Bi, we see that this corresponds to going over
(



16 A. LUBOTZKY

such that if X is a d-dimensional complex which is an ε-coboundary
expander then it is an ε1-topological expander.

Now, combining Theorem 3.5 with Theorem 3.4, one deduces that
∆

(d)
n are topological expanders as mentioned in §3.1.
But these are of unbounded degree. Naturally, as the finite quotients

of the high rank Bruhat-Tits building are spectral and geometric ex-
panders, one tends to believe that they are also topological expanders.
This is still an open problem. Let us say right away that in general
these quotients (and even the Ramanujan complexes) are not cobound-
ary expanders. As was explained in [44] for many of the lattices Γ

in simple p-adic Lie groups, H1(Γ \ B,F2) ̸= {0} since it is equal to
H1(Γ,F2) = Γ/[Γ,Γ]Γ2 (since B is contractible) and the latter is often
non-zero. Thus hi(Γ\B) = 0 and Γ\B is not a coboundary expanders.

Still, one can overcome this difficulty. For this we need another
definition:

Definition 3.6. A d-dimensional complex X is called ε-cosystolic ex-
pander, if for every i = 0, . . . , d− 1, one has νi(X) ≥ ε and µi(X) ≥ ε

when:
νi(X) = min

f∈Ci\Zi

∥δi(f)∥
∥⌈f⌉∥

where ⌈f⌉ = f + Zi and

∥⌈f⌉∥ = min{∥g∥
∣∣∣ g ∈ ⌈f⌉}

and
µi = min

f∈Zi\Bi
∥f∥.

For later use, let us denote µ(X) = minµi(X) and ν(X) =

min νi(X). So, X is ε-cosystolic expansion if µ(X) ≥ ε and ν(X) ≥ ε.
So, X is “ε-cocycle expander”; it may not be coboundary expander if
H i ̸= {0} (for some i = 0, . . . , d − 1) but at least every representative
of a non-trivial cohomology class is “large”.

An extension of Gromov’s Theorem 3.5 is given in [21]:

Theorem 3.7. Cosystolic expanders are topological expanders.

It is natural to conjecture that the Ramanujan complexes and more
generally the quotients of the high rank Bruhat-Tits buildings, while
not coboundary expanders, in general, are still cosystolic expanders.
But also this is open. What is known is a somewhat weaker result
which still suffices to answer, in the affirmative, Gromov’s question on
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the existence of bounded degree topological expanders. The following
theorem was proved by Kaufman-Kazhdan-Lubotzky [44] for d ≤ 3 and
by Evra and Kaufman [26] for general d.

Theorem 3.8. Fix 2 ≤ d ∈ N, then there exists ε = ε(d) > 0 and
q0 = q0(d) such that if K is a local non-Archimedean field of fixed
residue degree q > q0 and G =

char‘char”0303
G(K) with

char‘char”0303
G simple K-group of K-rank

d, then the (d−1)-skeletons Y of the finite (d-dimensional) quotients X
of the Bruhat-Tits building B = B(G) form a family of bounded degree
(d− 1)-dimensional ε-cosystolic expanders.

As this Theorem holds for every d, it solves Gromov’s problem, but
in a somewhat unexpected way. We do believe that X in the theorem
are also cosystolic expanders and not just Y .

Evra and Kaufman in [26], give a quite general combinatorial cri-
terion to deduce a result like Theorem 3.8. They prove that if X is
a d-dimensional complex of bounded degree all of whose proper links
(i.e. ℓkX(F ) for every face F ̸= ∅) are coboundary expanders, and all
the underlying graphs of all the links (including ℓkX(∅) = X) are “very
good” expander graphs, then the (d − 1)-skeleton of X is a cosystolic
expander. The reader is referred to [26] for the exact quantitative for-
mulation. It is in spirit an “F2-version” of Garland’s local to global
method described in §2.2. It will be interesting to strengthen this re-
sult to the same level as Garland’s, i.e., to assume only that the proper
links are coboundary expanders and connected and X is connected. It
will be even more interesting if one could deduce (even with the current
hypothesis) that X itself is a cosystolic expander. This will show that
the d-dimensional Ramanujan complexes are topological expanders and
not merely their (d− 1) skeletons as we now know.

The issue discussed in this section is only the tip of the iceberg.
There are many more interesting problems (see [32], [33]) e.g. every
d-dimensional complex can be embedded in (2d + 1)-dimensional Eu-
clidean space, but only some can be embedded in 2d. Prove that high
dimensional expanders (in some or any of the definitions) can not.

4. Random simplicial complexes

As mentioned briefly above, the easiest way to prove existence of
bounded degree expander graphs is by random methods. One may
hope that this can be extended to the higher dimensional case of d-
dimensional simplicial complexes. But, here the problem is much more
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difficult. In fact, as of now, there is no known “random model” for d-
dimensional simplicial complexes of bounded degree (in the strong sense
- see below) which gives high dimensional topological expanders. This
is surprising as the existence of such topological expanders is known by
now by ([44], [26]) as was explained in §3. One may start to wonder
if such a model exists at all, or maybe topological bounded degree
expanders of high dimension are very rare objects. Perhaps there is a
kind of rigidity phenomenon analogue to what is well known by now
in Lie theory and locally symmetric spaces: While there are many
different Riemann surfaces (parameterized by Teichmüller spaces), the
higher dimensional case is completely different and rigidity results say
that there are “very few” and mainly the ones coming from arithmetic
lattices.

Let us now leave aside such a speculation and give a brief background
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In [51] Linial and Meshulam initiated such a theory for 2-dimensional
simplicial complexes. A theory which shortly afterward was extended
in [67] to the general d-dimensional case. The model studied Xd(n, p)

(nowadays called the Linial-Meshulam model for random d-dimensional
simplicial complexes) is the following: X ∈ Xd(n, p) is a d-dimensional
complex with [n] as the set of vertices, X contains the full (d − 1)-
skeleton, i.e., every subset of [n] of size at most d is in X and a subset
of size d+1 is in X with probability p, independently of the other d-cells.
So X1(n, p) is exactly the Erdös-Rényi model. Now, for d ≥ 2, such
an X is always connected. But, note that X ∈ X1(n, p) is connected if
and only if H0(X,F2) = {0}, so Linial, Meshulam and Wallach study
for d ≥ 2 and X ∈ Xd(n, p), when Hd−1(X,F2) = {0} and proved the
following far reaching generalization of the Erdös-Rényi theorem.

Theorem 4.1 ([51] for d = 2, [67] for all d). The threshold for the
homological connectivity, i.e. the vanishing of Hd−1(X,F2) for X ∈
Xd(n, p) is p
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got a lot of attention. This model, for k ≥ 3, gives almost surely
expander graphs of bounded degree.

One would like to have such a model for d-dimensional complexes.
But first, what do we mean by bounded degree? There are two natural
meanings in the literature, which coincide for d = 1.

Definition 4.1. A pure d-dimensional simplicial complex X is of de-
gree at most k if every vertex of it is contained in at most k cells of
dimension d (and so in at most 2d · k cells of any dimension). It is of
upper-degree at most k, if every face of dimension d− 1 is contained in
at most k cells of dimension d.

A natural model of bounded degree simplicial complexes Y d(n, k) is
given in [28]: Assume, for simplicity, that (d+1)|n and take a random
partition of [n] into n

d+1
subsets each of size d+1. Choose independently

k such partitions and let Y be the simplicial complex obtained by taking
its cells to be all these k n

d+1
subsets as well as all their subsets. The

case d = 1 boils down to the standard model of Bollobas.

Theorem 4.2 ([28]). For every fixed d ∈ N, ∃k0 = k0(d), such that for
every k ≥ k0, a complex Y ∈ Y d(n, k) is almost surely d-dimensional
geometric expander.

This theorem is very promising at first sight, but unfortunately,
Y ∈ Y d(n, k) is typically neither coboundary expander nor topolog-
ical expander. To visualize this think about the d = 2 case: When k is
fixed and n very large, for a typical Y ∈ Y 2(n, k), every edge of Y is
contained in at most one triangle. So, homotopically Y looks more like
a graph and one can map it into R2 with only small size overlapping
points.

So, altogether, this is a nice model which certainly deserves further
study (e.g. what is the threshold for k0 = k0(d) in Theorem 4.3?)
but it will not give us the stronger versions of expansion (topological,
cosystolic, coboundary etc.). As hinted at the beginning of this section,
it is still a major open problem to find a random model (if such at all
exists) of d-dimensional bounded degree simplicial complexes which
will give, say, topological expanders.

The situation with bounded upper degree is better: In [60] Lubotzky
and Meshulam gave a model for 2-dimensional complexes of bounded
upper degree (using the theory of Latin squares) and it was shown
to produce coboundary expanders (and so also topological expanders).
This was generalized to all d by Lubotzky-Luria-Rosenthal [58], with a



HIGH DIMENSIONAL EXPANDERS 21

slight twist of the construction, replacing the Latin squares by Steiner
systems and using the recent breakthrough of Keevash [46] on existence
of designs. Let us briefly describe the general model W d(n, k).

Let r ≤ q ≤ n be natural numbers and λ ∈ N. An (n, q, r, λ)-design
is a collection S of q-element subsets of [n] such that each r-element
subset of [n] is contained in exactly λ elements of S. Given n, d ∈ N, an
(n, d)-Steiner system is an (n, d+1, d, 1)-design, namely, a collection S

of subsets of size d + 1 of [n], such that each set of size d is contained
in exactly one element of S. Using the terminology of simplicial com-
plexes, an (n, d)-Steiner system can be considered as a d-dimensional
simplicial complex of upper degree one. Recently, in a groundbreaking
paper [46], Peter Keevash gave a randomized construction of Steiner
systems for any fixed d and large enough n satisfying certain necessary
divisibility conditions (which hold for infinitely many n ∈ N). From
now on, we will assume that given a fixed d ∈ N, the value of n satisfies
the divisibility condition from Keevash’s theorem.

Keevash’s construction of Steiner systems is based on randomized
algorithm which has two stages. We will explicitly describe the first
stage and use the second stage as a black box.

Given a set of d-cells A ⊆
(

[n]
d+1

)
, we call a d-cell τ legal with respect to

A if there is no common (d−1)-cell in τ and in any cell in A. Non-legal
cells are also called forbidden cells.

In the first stage of Keevash’s construction, also known as the greedy
stage, one selects a sequence of d-cells according to the following pro-
cedure. In the first step, a d-cell is chosen uniformly at random from(

[n]
d+1

)
. Next, at each step a legal d-cell (with respect to the set of

d-cells chosen so far) is chosen uniformly at random and is added to
the collection of previously chosen d-cells. If no such d-cell exists the
algorithm aborts. The procedure stops when the number of (d − 1)-
cells which do not belong to the boundary of the chosen d-cells is at
most nd−δ0 for some fixed δ0 > 0 which only depends on d. In partic-
ular, if the algorithm does not abort the number of steps is at least
(
(
n
d

)
− nd−δ0)/(d+ 1) ≥ nd/(2(d+ 1)!).

In the second stage, Keevash gives a randomized algorithm that adds
additional d-cells in order to cover the remaining (d− 1)-cells that are
not contained in any of the d-cells chosen in the greedy stage. We
do not need to go into the details of this algorithm. The important
thing for us is that with high probability the algorithm produces an
(n, d)-Steiner system.
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Fix k ∈ N and let S1, . . . , Sk be k independent copies of (n, d)-Steiner
systems chosen according to the above construction, and let X be the

d-dimensional simplicial complex whose d-cells are
k∪

i=1

Si, so X contains

the complete (d− 1)-skeleton and it is of upper degree at most k.
We can now state the main result of [58]:

Theorem 4.3. Fix d ∈ N, there exists k0 = k0(d) and ε = ε(d), such
that for every k ≥ k0, a random complex W ∈ W d(n, k) is almost surely
an ε-coboundary expander, and hence also a topological expander.

It will be of great interest to study various other properties of this
model. For example, find the threshold for k0(d) (the estimates ob-
tained from [58] are huge and it will be very interesting to give more
realistic upper bound, note that for d = 1, k0(d) = 3). Another inter-
esting problem is to study π1(W )-the fundamental group of W ; when
is it hyperbolic? has property (T )? trivial? The model W behaves
w.r.t. the model X as Bollobas’ model w.r.t. Erdös-Rényi, and this
suggests many further directions of research on these bounded upper
degree complexes.

5. High dimensional expanders and computer science

In recent years high dimensional expanders have captured the in-
terest of computer scientists and various connections and applications
have popped up. Most of these works are in their infancy. We will give
here only a few short pointers on these developments, with the hope
and expectation that the future will bring much more.

Probabilistically Checkable Proofs: The PCP theorem, proven
in the early 90’s (cf. [3, 2]), is a cornerstone of modern computational
complexity theory stating that proofs can be written in a robust locally-
testable format. PCPs are related to many areas within theoretical
computer science ranging from hardness of approximation to delegation
and efficient cloud computing.

The basic PCP theorem can be proven using an expander-graph-
based construction [19]. For stronger PCPs, e.g. with unique con-
straints, or shorter proof length, or with lower soundness error, stronger
forms of expansion seem to be needed, in particular high dimensional
expansion might play a pivotal role. Dinur and Kaufman [18] explore
replacing the standard direct product construction (also known as par-
allel repetition [78]) by a much more efficient bounded-degree high di-
mensional expanders as constructed in [63, 62]. Direct products are
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ubiquitous in complexity, especially as a useful hardness amplification
construction, and bounded-degree high dimensional expanders may po-
tentially be useful in many of those settings.

Locally testable codes: LTCs are an information-theoretic analog
of PCPs. These error correcting codes have the additional property
that it is possible to locally test whether or not a received word is
close to being a codeword. Unlike many problems in coding theory,
this is a property that random codes do not have. This makes it even
more challenging to settle the problem whether LTCs can have both
linear rate and distance. The current best construction comes from a
PCP and its rate is inverse poly-logarithmic [6, 19]. High dimensional
expanders naturally yield locally testable codes, whose parameters are
unfortunately sub-optimal.

Property testing: The central paradigm in property testing is the
interplay between local views of an object and its global properties.
The object can be a codeword, an NP-proof, or simply a graph. This
theory generalizes both PCPs and LTCs and has significant practical
applications. It was an unexpected discovery that high dimensional ex-
panders (and especially the cohomological/coboundary expanders men-
tioned above) fit very naturally into this theory [45]. Specifically, the-
orems about high dimensional expanders readily translate to results on
property testing.

Quantum computation and quantum error correcting codes:
Sipser and Spielman [82] showed how extremely good expander graphs
yield excellent LDPC error-correcting codes. However, the existence
of LDPC quantum error-correcting codes (even inexplicitly) remains a
major open problem. Recent work by Guth and Lubotzky [36] is a step
in this direction, which is related to our topic: Every simplicial complex
gives a “homological error correcting code” (see [8], [88]) but in general
they are of poor quality. High dimensional coboundary expanders are
related to local testability of codes (see [1]).

Another basic problem in quantum computation seeks a finite uni-
versal set of quantum gates that can efficiently generate an arbitrary
unitary matrix in U(n) to desired accuracy. This is solved by Ki-
taev and Solovay’s classical algorithm, but non-optimally. The genera-
tors of Lubotzky-Phillips-Sarnak’s Ramanujan graphs [53] fare better,
but come with no efficient generative algorithm. Following the break-
through of Ross-Selinger [79], the case n = 2 is essentially solved in a
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recent work by Sarnak and Parzanchevski [76] who came up with op-
timal (a.k.a. golden) gates and an explicit generative algorithm based
on Ramanujan graphs. In ongoing work they use higher dimensional
Ramanujan complexes to find such “golden gates” for higher n [73].
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Linial, O. Parzanchevski and R. Rosenthal for remarks on an earlier
version of this paper which greatly improved it. In addition, thanks
are due to ERC, NSF and BSF their support.

References
[1] Dorit Aharonov and Lior Eldar. Quantum locally testable codes. SIAM J.

Comput., 44(5):1230–1262, 2015.
[2] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario

Szegedy. Proof verification and the hardness of approximation problems. J.
ACM, 45(3):501–555, 1998.

[3] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new char-
acterization of NP. J. ACM, 45(1):70–122, 1998.

[4] W. Ballmann and J. Świątkowski. On L2-cohomology and property (T) for
automorphism groups of polyhedral cell complexes. Geom. Funct. Anal.,
7(4):615–645, 1997.

[5] Imre Bárány. A generalization of Carathéodory’s theorem. Discrete Math.,
40(2-3):141–152, 1982.

[6] Eli Ben-Sasson and Madhu Sudan. Short PCPS with polylog query complexity.
SIAM J. Comput., 38(2):551–607, 2008.

[7] Béla Bollobás. A probabilistic proof of an asymptotic formula for the number
of labelled regular graphs. European J. Combin., 1(4):311–316, 1980.

[8] H. Bombin and M. A. Martin-Delgado. Homological error correction: classical
and quantum codes. J. Math. Phys., 48(5):052105, 35, 2007.

[9] A. Borel and G. Harder. Existence of discrete cocompact subgroups of reductive
groups over local fields. J. Reine Angew. Math., 298:53–64, 1978.

[10] Armand Borel. Cohomologie de certains groupes discretes et laplacien p-adique
(d’après H. Garland). pages 12–35. Lecture Notes in Math., Vol. 431, 1975.

[11] Armand Borel and Nolan R. Wallach. Continuous cohomology, discrete sub-
groups, and representations of reductive groups, volume 94 of Annals of Math-
ematics Studies. Princeton University Press, Princeton, N.J.; University of
Tokyo Press, Tokyo, 1980.

[12] E. Boros and Z. Füredi. The number of triangles covering the center of an
n-set. Geom. Dedicata, 17(1):69–77, 1984.

[13] F. Bruhat and J. Tits. Groupes réductifs sur un corps local. Inst. Hautes Études
Sci. Publ. Math., (41):5–251, 1972.

[14] Donald I. Cartwright, Patrick Solé, and Andrzej Żuk. Ramanujan geometries
of type n. Discrete Math., 269(1-3):35–43, 2003.

[15] W. Casselman. On a p-adic vanishing theorem of Garland. Bull. Amer. Math.
Soc., 80:1001–1004, 1974.

[16] Marcus De Chiffre, Lev Glebsky, Alex Lubotzky, and Andreas Thom. Stability,
cohomology vanishing, and non-approximable groups. 2017.

[17] Anton Deitmar and Ming-Hsuan Kang. Geometric zeta functions for higher
rank p-adic groups. Illinois J. Math., 58(3):719–738, 2014.



HIGH DIMENSIONAL EXPANDERS 25

[18] I. Dinur and T. Kaufman. High dimensional expanders imply agreement ex-
panders. In Electronic Colloquium on Computational Complexity (ECCC), vol-
ume 24, page 89, 2017.

[19] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):Art. 12, 44,
2007.



26 A. LUBOTZKY

[39] Amitay Kamber. lp expander complexes. 2016.
[40] Amitay Kamber. lp expander graphs. 2016.
[41] Ming-Hsuan Kang. Riemann hypothesis and strongly Ramanujan complexes

from GLn. J. Number Theory, 161:281–297, 2016.
[42] Ming-Hsuan Kang and Wen-Ching Winnie Li. Zeta functions of complexes

arising from PGL(3). Adv. Math., 256:46–103, 2014.
[43] Ming-Hsuan Kang, Wen-Ching Winnie Li, and Chian-Jen Wang. The zeta

functions of complexes from PGL(3): a representation-theoretic approach. Is-
rael J. Math., 177:335–348, 2010.

[44] Tali Kaufman, David Kazhdan, and Alexander Lubotzky. Isoperimetric in-
equalities for Ramanujan complexes and topological expanders. Geom. Funct.
Anal., 26(1):250–287, 2016.

[45] Tali Kaufman and Alexander Lubotzky. High dimensional expanders and prop-
erty testing. In ITCS’14—Proceedings of the 2014 Conference on Innovations
in Theoretical Computer Science, pages 501–506. ACM, New York, 2014.

[46] Peter Keevash. The existence of designs.
[47] Antti Knowles and Ron Rosenthal. Eigenvalue confinement and spectral gap

for random simplicial complexes. Random Structures Algorithms, 51(3):506–
537, 2017.

[48] Marcin Kotowski and Michał Kotowski. Random groups and property (T ):
żuk’s theorem revisited. J. Lond. Math. Soc. (2), 88(2):396–416, 2013.

[49] Laurent Lafforgue. Chtoucas de Drinfeld et correspondance de Langlands. In-
vent. Math., 147(1):1–241, 2002.

[50] W.-C. W. Li. Ramanujan hypergraphs. Geom. Funct. Anal., 14(2):380–399,
2004.

[51] Nathan Linial and Roy Meshulam. Homological connectivity of random 2-
complexes. Combinatorica, 26(4):475–487, 2006.

[52] Eyal Lubetzky, Alex Lubotzky, and Ori Parzanchevski. Random walks on ra-
manujan complexes and digraphs.

[53] A. Lubotzky, R. Phillips, and P. Sarnak. Hecke operators and distributing
points on S2. II. Comm. Pure Appl. Math., 40(4):401–420, 1987.

[54] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

[55] Alexander Lubotzky. Discrete groups, expanding graphs and invariant mea-
sures, volume 125 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1994.
With an appendix by Jonathan D. Rogawski.

[56] Alexander Lubotzky. Expander graphs in pure and applied mathematics. Bull.
Amer. Math. Soc. (N.S.), 49(1):113–162, 2012.

[57] Alexander Lubotzky. Ramanujan complexes and high dimensional expanders.
Jpn. J. Math., 9(2):137–169, 2014.

[58] Alexander Lubotzky, Zur Luria, and Ron Rosenthal. Random steiner systems
and bounded degree coboundary expanders of every dimension. 2015.

[59] Alexander Lubotzky and Roy Meshulam. A Moore bound for simplicial com-
plexes. Bull. Lond. Math. Soc., 39(3):353–358, 2007.

[60] Alexander Lubotzky and Roy Meshulam. Random Latin squares and 2-
dimensional expanders. Adv. Math., 272:743–760, 2015.

[61] Alexander Lubotzky, Roy Meshulam, and Shahar Mozes. Expansion of
building-like complexes. Groups Geom. Dyn., 10(1):155–175, 2016.

[62] Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Explicit constructions of
Ramanujan complexes of type d. European J. Combin., 26(6):965–993, 2005.

[63] Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Ramanujan complexes of
type d. Israel J. Math., 149:267–299, 2005. Probability in mathematics.



HIGH DIMENSIONAL EXPANDERS 27

[64] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing
families I: Bipartite Ramanujan graphs of all degrees. Ann. of Math. (2),
182(1):307–325, 2015.

[65] G. A. Margulis. Explicit group-theoretic constructions of combinatorial
schemes and their applications in the construction of expanders and concen-
trators. Problemy Peredachi Informatsii, 24(1):51–60, 1988.

[66] G. A. Margulis. Discrete subgroups of semisimple Lie groups, volume 17 of
Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics
and Related Areas (3)]. Springer-Verlag, Berlin, 1991.

[67] R. Meshulam and N. Wallach. Homological connectivity of random k-
dimensional complexes. Random Structures Algorithms, 34(3):408–417, 2009.

[68] Hee Oh. Uniform pointwise bounds for matrix coefficients of unitary represen-
tations and applications to Kazhdan constants. Duke Math. J., 113(1):133–192,
2002.

[69] Izhar Oppenheim. Vanishing of cohomology with coefficients in representa-
tions on Banach spaces of groups acting on buildings. Comment. Math. Helv.,
92(2):389–428, 2017.

[70] Izhar Oppenheim. Local Spectral Expansion Approach to High Dimensional
Expanders Part I: Descent of Spectral Gaps. Discrete Comput. Geom.,
59(2):293–330, 2018.

[71] János Pach. A Tverberg-type result on multicolored simplices. Comput. Geom.,
10(2):71–76, 1998.

[72] Pierre Pansu. Formules de Matsushima, de Garland et propriété (T) pour des
groupes agissant sur des espaces symétriques ou des immeubles. Bull. Soc.
Math. France, 126(1):107–139, 1998.

[73] O. Parzanchevski and P. Sarnak. Golden-gates for pu(3) and pu(4). In prepa-
ration.

[74] Ori Parzanchevski and Ron Rosenthal. Simplicial complexes: spectrum, homol-
ogy and random walks. Random Structures Algorithms, 50(2):225–261, 2017.

[75] Ori Parzanchevski, Ron Rosenthal, and Ran J. Tessler. Isoperimetric inequal-
ities in simplicial complexes. Combinatorica, 36(2):195–227, 2016.

[76] Ori Parzanchevski and Peter Sarnak. Super-Golden-Gates for PU(2). Adv.
Math., 327:869–901, 2018.

[77] Vladimir Platonov and Andrei Rapinchuk. Algebraic groups and number theory,
volume 139 of Pure and Applied Mathematics. Academic Press, Inc., Boston,
MA, 1994. Translated from the 1991 Russian original by Rachel Rowen.

[78] Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803,
1998.

[79] Neil J. Ross and Peter Selinger. Optimal ancilla-free Clifford+T approximation
of z-rotations. Quantum Inf. Comput., 16(11-12):901–953, 2016.

[80] Alireza Sarveniazi. Explicit construction of a Ramanujan (n1, n2, . . . , nd−1)-
regular hypergraph. Duke Math. J., 139(1):141–171, 2007.

[81] Jean-Pierre Serre. Trees. Springer-Verlag, Berlin-New York, 1980. Translated
from the French by John Stillwell.

[82] Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Trans. Inform.
Theory, 42(6, part 1):1710–1722, 1996. Codes and complexity.

[83] John Steenbergen, Caroline Klivans, and Sayan Mukherjee. A Cheeger-type
inequality on simplicial complexes. Adv. in Appl. Math., 56:56–77, 2014.

[84] Christopher K. Storm. The zeta function of a hypergraph. Electron. J. Com-
bin., 13(1):Research Paper 84, 26, 2006.



28 A. LUBOTZKY

[85] A. Thom. Finitary approximation of groups and their applications. In Proc.
of the Int. Congress of Mathematicians 2018, Rio de Janeiro, Rio de Janeiro,
2018. SBM and World Scientific.

[86] Alain Valette. Graphes de Ramanujan et applications. Astérisque, (245):Exp.
No. 829, 4, 247–276, 1997. Séminaire Bourbaki, Vol. 1996/97.

[87] N. C. Wormald. Models of random regular graphs. In Surveys in combinatorics,
1999 (Canterbury), volume 267 of London Math. Soc. Lecture Note Ser., pages
239–298. Cambridge Univ. Press, Cambridge, 1999.

[88] Gilles Zémor. On Cayley graphs, surface codes, and the limits of homological
coding for quantum error correction. In Coding and cryptology, volume 5557
of Lecture Notes in Comput. Sci., pages 259–273. Springer, Berlin, 2009.

[89] A. Żuk. Property (T) and Kazhdan constants for discrete groups. Geom. Funct.
Anal., 13(3):643–670, 2003.

Instititue of Mathematics
Hebrew University
Jerusalem 9190401

Israel
alex.lubotzky@math.huji.ac.il


