p-ADIC GEOMETRY

PETER SCHOLZE

ABSTRACT. We discuss recent developments in p-adic geometry, ranging from
foundational results such as the degeneration of the Hodge-to-de Rham spectrai
sequence for “compact p-adic manifolds” over new period maps on rmoduli
spaces of abelian varieties to applications to the local and global Langlands
conjectures, and the construction of “universal” p-adic cohomolcay theories.
We fnish with some speculations on how a theory that combings all primes p,
including the archimedean prime, might look like.

1. INTRODUCTION

In this survey paper, we want to give an introqauction to the world of ideas which
the author has explored in the past few yzars, and indicate some possible future
directions. The two general themes that dominate this work are the conomology of
algebraic varieties, and the local and gicabal Langlands correspondences. These two
topics are classically intertwined ever since the cohomology of the moduli space of
elliptic curves and more genera! Shimura varieties has been used for the construction
of Langlands correspondences. Mest of our work so far is over p-adic felds, where
we have established anaiogues of the basic results of Hodge theory for “compact
p-adic manifolds”, have constructed a “universal” p-adic cohomology theory, and
have made progress towards establishing the local Langlands correspondence for
a general p-adic reductive group by using a theory of p-adic shtukas, and we will
recall these resuits below.

However, here we wish to relay another, deeper, relation between the cohomology
of algebraic varieties and the structures underlying the Langlands corresondence, a
relation that pertains not to the cohomology of specifc algebraic varieties, but to
the very notion of what “the” cohomology of an algebraic variety is. Classically,
the study of the latter is the paradigm of “motives” envisioned by Grothendieck;
however, that vision has still only been partially realized, by Voevodsky, [Moe0Q],
and others. Basically, Grothendieck’s idea was to fnd the “universal” cohomology
as the universal solution to a few basic axioms; in order to see that this has the
desired properties, one however needs to know the existence of “enough” algebraic
cycles as encoded in the standard conjectures, and more generally the Hodge and
Tate conjectures. However, little progress has been made on these questions. We
propose to approach the subject from the other side and construct an explicit co-
homology theory that practically behaves like a universal cohomology theory (so
that, for example, it specializes to all other known cohomology theories); whether
or not it is universal in the technical sense of being the universal solution to certain
axioms will then be a secondary question.

This deeper relation builds on the realization of Drinfeld, [Dri80], that in the
function feld case, at the heart of the Langlands correspondence lie moduli spaces of
shtukas. Anderson, [And86], Goss, [Gos96], and others have since studied the notion
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of t-motives, which is a special kind of shtuka, and is a remarkable function feld
analogue of motives, however without any relation to the cohomology of algebraic
varieties. What we are proposing here is that, despite extreme difculties in making
sense of this, there should exist a theory of shtukas in the number feld case, and
that the cohomology of an algebraic variety, i.e. a motive, should be an example of
such a shtuka.

This picture has been essentially fully realized in the p-adic case. In the frst
sections of this survey, we will explain these results in the p-adic case; towards the
end, we will then speculate on how the full picture over SpecZ should look like,
and give some evidence that this is a reasonable picture.

Acknowledgments. This survey was written in relation to the author’s lec-
ture at the ICM 2018. Over the past years, | have beneftted tremendously from
discussions with many mathematicians, including Bhargav Bhatt, Ana Caraiani,
Gerd Faltings, Laurent Fargues, Ofer Gabber, Eugen Hellmann, Lars Hesselholt,
Kiran Kedlaya, Mark Kisin, Arthur-César le Bras, Akhil Mathew, Matthew Mor-
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fnite-dimensional by a theorem of Kiehl, [Kie67]. By the defnition of Hig(X/C)
as the hypercohomology of the de Rham complex, one fnds an F;-spectral sequence

By = HY(X, Q) = Hif! (X/C)
called the Hodge-to-de Rham spectral sequence. In complex geometry, a basic

consequence of Hodge theory is that this spectral sequence degenerates at E; if X
admits a Kahler metric. This assumption is not necessary in p-adic geometry:

Theorem 2.1 ([Sch13a, Corollary 1.8], [BMS16, Theorem 13.12]). For any proger
smooth rigid-analytic space X over C, the Hodge-to-de Rham spectral sejuence

EY = HI (X, Q) = Hy (X/C)
degenerates at ;. Moreover, for all : > 0,

1
Z dime H'™9(X, ) = dime Hig (X/C) = dimg, H#2,(X,Q,) .
7=0

Fortunately, the Hodge-to-de Rham spectral saguerice does degenerate for the
Hopf surface — and the examples of nondegeneraiion such as the lwasawa manifolds
do not have p-adic analogues.

Over the complex numbers, the analogue of the equality dime Hig(X/C) =
dimg, H,(X,Q,) follows from the compaiison isomorphism between singular and
de Rham cohomology. In the p-adic case, the situation is slightly more complicated,
and the comparison isomorphism cnlv exists after extending scalars to Fontaine’s
feld of p-adic periods Bgr. If X ic oniy defned over C, it is nontrivial to formulate
the correct statement, as there is no natural map C' — Bgr along which one can
extend scalars; the correct statement is Theorem @ below.

There is however a diTerent way to obtain the desired equality of dimensions.
This relies on the Hodge-Tate spectral sequence, a form of which is implicit in
Faltings’s proof of the Hodge-Tate decomposition, [Fal88].

Theorem 2.2 ({Sch13k, Theorem 3.20], [BMS16, Theorem 13.12]). For any proper
smooth rigid-arialytic space X over C, there is a Hodge-Tate spectral sequence

Ey = H'(X,9%)(~j) = Hg” (X, Z,) @z, C
thet usgenerates at Es.

Here, (—j) denotes a Tate twist, which becomes important when one wants
to make everything Galois-equivariant. Note that the Hodge cohomology groups
appear in the other order than in the Hodge-to-de Rham spectral sequence.

Remark 2.3. If X is the base change of a proper smooth rigid space defned over a
discretely valued feld K C C, then everything in sight carries a Galois action, and
it follows from the results of Tate, [[Tat67], that there is a unique Galois-equivariant
splitting of the abutment fltration, leading to a Galois-equivariant isomorphism

Hét(Xa Qp) ®Qp C= @Hﬁ_j(Xa Q?X)(_]) )
j=0
answering a question of Tate, [[Tat67, Section 4.1, Remark]. However, this isomor-
phism does not exist in families. This is analogous to the Hodge decomposition
over the complex numbers that does not vary holomorphically in families.
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An interesting question is whether Hodge symmetry could still hold under some
condition on X. Such an analogue of the Kahler condition has recently been pro-
posed by Li, [Lil7]. In joint work with Hansen, [HL17], they state the following
conjecture that they prove in the case i +j = 1.

Conjecture 2.4. Let X be a proper smooth rigid-analytic variety that admits a
formal model X whose special fbre is projective. Then for all i,j > 0, one has
dime HY (X, %) = dime HI (X, Q).

The condition is indeed analogous to the Kéhler condition; in Arakzlov tieory,
the analogue of a metric is a formal model, and the positivity congiticn on the
Kéhler metric fnds a reasonable analogue in the condition that the shecial fbre is
projective.

Note that in particular it follows from the results of Hainsen-Li that for any
proper formal model X of the Hopf surface (which exist vy Raynaud’s theory of
formal models), the special fbre is a non-projective (sing.iai) proper surface.

From the Hodge-to-de Rham and the Hodge-Tate sipectial sequence, one obtains
abutments fltrations that we call the Hodge-de Rkhari Fltration and the Hodge-
Tate fltration. Their variation in families defnes interesting period maps as we
will recall in the next sections.

3. PERIOD MAPS FRCM DE RHAM COHOMOLOGY

First, we recall the more ciassicai case of the period maps arising from the
variation of the Hodge fltratien on de Rham cohomology. For simplicity, we will
discuss the moduli space .vi/7Z of elliptic curves. If E is a an elliptic curve over
the complex numbers, then H(E, QL) = (Lie E)* is the dual of the Lie algebra,
HY(E,Og) = Lie E* 15 the Lie algebra of the dual elliptic curve E* (which, for
elliptic curves, is cancnically isomorphic to E itself), and the Hodge-de Rham
fltration is a short exact sequence

0 — (Lie B)* = Hiz(E/C) — Lie E* =0,
where Hi(7/C) = H},.(F,Z) ®z C. The classical period map takes the form

M(C) H* = P(C) \ P}(R)
where M — M(C) is the GLo(Z)-torsor parametrizing trivializations of the frst
singular cohomology of the elliptic curve. Given an elliptic curve E/C with such a
trivialization H'(E, Z) = 7Z?, the Hodge fltration (Lie E)* C H},.(FE,Z)®zC = C?
defnes a point of P1(C) \ P}(R) as

Hl

sing

(B,7) ®7 C = Hiz(E/C) = (Lie E)* @ (Lie E)* .

If now FE is an elliptic curve over the algebraically closed p-adic feld C, then we
still have the identifcations H°(E,Q},) = (Lie E)*, H'(E,Og) = Lie E* and the
Hodge-de Rham fltration

0 — (Lie B)* — Hiz(F/C) — LieE* -0 .
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To construct period maps, we need to fx a point = € M(F,). Let @p be the
completion of the maximal unramifed extension of Q,, and consider the rigid space
e rig

M=M 5, -
Let U, C M be the tube of z, i.e. the open subspace of all points specializing
to z. This is isomorphic to an open unit ball D = {z | |2| < 1}. Then the
crystalline nature of de Rham cohomology (in particular, the connecticn) imply
that the de Rham cohomology H)jy(E;) is canonically identifed for ali @ ¢ i/,
Now the variation of the Hodge fltration defnes a period map

Mot Up 2D — P! = (P} )18
Q

There are two cases to consider here. If z corresponds to arc ordinary elliptic
curve, then there is an identifcation U, = D such that the map =, is given by the
logarithm map

2 log(l+2): Uy =D ={z]]z| <1} - Al cP'.

This map is an étale covering map onto A!, and the geometric fbres are given by
copies of Q,/Z,; for example, the fbre over ( is given by all p-power roots of unity
minus 1, i.e. z = (p» — 1. Note that this implies in particular that (A}Cp)“g has
interesting (non-fnite) étale coverings, cor:itrary both to the scheme case and the
case over the complex numbers.

If 2 corresponds to a superstngular elliptic curve, then =, becomes a map

'/rm:Um%D%IF”l.

In this case, the man is krown as the Gross-Hopkins period map, [HG94]. It
is an étale covering map of P! whose geometric fbres are given by copies of
GL2(Qp)1/GLs(Z,,), where GL3(Q,)1 C GL2(Q,) is the open subgroup of all
g € GL2(Q,) with det g € Z,5.

It is important to note that these maps =, for varying x cannot be assembled into
a single may from M towards P!, contrary to the case over the complex numbers.
We will however see a global period map in the next section.

These examples are the basic examples of local Shimura varieties, which are
associated with local Shimura data, [RV14]:

(i) A reductive group G over Q,,.
(ii) A conjugacy class of minuscule cocharacters u : G, — G@p, defned over
the refex feld E (a fnite extension of Q).

(iii) A o-conjugacy class b € B(G, p).

We will say something about datum (iii) in Theorem @ below. In our example,
we have G = GLo, and p is the conjugacy class of ¢ — diag(¢,1). In this case,
B(G, i) contains exactly two elements, corresponding to the cases of ordinary and
supersingular elliptic curves, respectively.

Let E be the completion of the maximal unramifed extension of E. Correspond-
ing to G and p, one gets a fag variety gquG’M over I, which we consider as an adic
space; in our example, this is Pl. The following theorem on the existence of local
Shimura varieties proves a conjecture of Rapoport-Viehmann, [RV14].
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Theorem 3.1 ([SW17]). There is a natural open subspace .#(¢, , C Flc,,, called
the admissible locus, and an étale covering map

M(GJLM),K — JG‘Y((L;,M C 956‘,”
with geometric fhres G(Q,)/K for any compact open subgroup K C G(Q,).

Remark 3.2. The geometric fbres difer from the examples above. In the exam-
ples, M(a b.1),GLo(z,) 1S @ certain disjoint union of various U, for = ranging through
a p-power-isogeny class of elliptic curves.

The (towers of) spaces (M a,.),x)kca,) are known as local Shimura va-
rieties; their cohomology is expected to realize local Langlands correspondences,
cf. [RV14]. This is one of our primary motivations for constructing these spaces.

In hindsight, one can say that in [RZ96], Rapoport-Zink canstiiicted these local
Shimura varieties in many examples, by explicitly constiucting Mg, ) x as a
moduli space of p-divisible groups with extra structures such as endomorphisms
and polarization, together with a quasi-isogeny to a ¥«ed p-divisible group. An
advantage of this approach is that, at least for speciai chicices of K such as parahoric
subgroups, one actually constructs formal scheimies whcse generic fbre is the local
Shimura variety, and it is often easier to underciand the formal scheme.

We will explain our construction of locai Shiimura varieties in Section H and in
Section ﬂ we will deal with integral meaels ¢f local Shimura varieties.

4. PERIOD MAPS ¥ROM ETALE COHOMOLOGY

A diferent period map known &s the Hodge-Tate period map parametrizes the
variation of the Hodge-Tate Titration in families, and has been defned for general
Shimura varieties of Hodge type in [Sch15].

If £ is an elliptic curve over the algebraically closed p-adic feld C, the Hodge-
Tate Fltration is given by a short exact sequence

O — Lie B* — Hi(E,Z,) ®z, C — (Lie E)*(-1) = 0.

Note that the Lie algebra terms here appear in opposite order when compared to
the situaticry over C. To obtain the period map, we need to trivialize the middle
term. Thus, using the space M = (/\/l@p)rig as in the last section, we consider the
giagram

o

M

DG
M

Pt .

Here M — M parametrizes isomorphisms HY, (E, Z,) = Zz; this defnes a GLy(Z),)-
torsor. An essential difculty here is that this space will be very big, and in par-
ticular highly nonnoetherian. By [Sch1§], it gives a basic example of a perfectoid
space in the sense of [Sch12].

Now M admits the Hodge-Tate period map
THT M — ]fbl

sending a pair of an elliptic curve E/C with an isomorphism H;, (F,Z,) = Z2 to
the fltration Lie E* C H} (E,Z,) ®z, C = C.



p-ADIC GEOMETRY 7

The geometry of this map is very interesting. When restricted to Drinfeld’s
upper half-plane Q> = P! \ P'(Q,), the map is a pro-fnite étale cover, while the
fbres over points in P'(Q,) are curves, so that the fbre dimension jumps. Let us
discuss these two situations in turn.

If we fx a supersingular elliptic curve z € M(F,), then we can restrict the
Hodge-Tate period map to

ﬁx =U, X M ./\;l s
and arrive at the following picture:

— (795
U THT

x

pre 2
Here, the map ﬁ% — U, is a GLy(Z,)-torsor, while U, — P! has geometric fbers

GL2(Qp)1/GLa(Zy); in fact, in total U, — P! is a GLy(Q,);-torsor. To restore full
GL2(Q,)-equivarience, we consider the perfectoid space

MLT,OO = ﬁw XGLQ(QP)l GL?(QP) = |_|[7$ )
Z

which is known as the Lubin-Tate tower at infnite level, cf. [SW13], [Weil6]. On the
other hand, U, — Q2 turns out to be an Oj-torsor, where D/Q, is the quaternion
algebra. Here, the Op-action arises from the identifcation Op = End(E;) ®z Z,,
where E,, is the supersingular elliptic curve corresponding to z; by functoriality,
this acts on the deformation space of z, and thus also on U, and (NJI. In terms of
the Lubin-Tate tower,

. 52
7THT~MLT,oo — Q

is a D*-torsor.

We see that M1, has two diferent period morphisms, corresponding to the
Hodge-de Rham fltration and the Hodge-Tate fltration. This gives the isomor-
phism between the Lubin-Tate and Drinfeld tower at infnite level, [Fal02], [FGLO03],

GLy(Q,) MLT,c0o == MpDroo _px
1 It =l
A similar duality theorem holds true for any local Shimura variety for which b
is basic. The local Shimura datum (G, b, 1) then has a dual datum (G, b, i), where
G = J, is the o-centralizer of b, b = b=! € J,, and 11 = x~ ! under the identifcation
G@p = G@p.
Theorem 4.1 ([SW13], [SW17]). There is a natural isomorphism

m  M@gpwx = lm Mg e
KCG(Qp) KcG(Qp)

Remark 4.2. This proves a conjecture of Rapoport-Zink, [RZ96, Section 5.54].
One has to be careful with the notion of inverse limits here, as inverse limits in adic
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On the other hand, we can restrict the Hodge-Tate period map to P'(Q,). In
this case, the fbres of 7y are curves. More precisely, consider the Igusa curve
Ig parametrizing ordinary elliptic curves E in characteristic p together with an
isomorphism E[p>ls = Q,/Z, of the of the étale quotient E[p>]¢, of the p-divisible
group E[p™]. Its perfection IgP*" lifts uniquely to a Fat formal scheme Jg over Zp,
and then, modulo boundary issues, 7THT( x) is the generic fbre of Jg.

Let us state these results about the Hodge-Tate period map for a general Shimura
variety of Hodge type.

Theorem 4.3 ([Sch15], [CS17]). Consider a Shimura variety Shyx, K ¢ G{Ay), of
Hodge type, associated with some reductive group G/Q and Shimura data, including
the conjugacy class of cocharacters 1 with feld of defnition E. Let 5% , = G/P,
be the corresponding fag variety.E Fix a prime p and a prime p of E dividing p.
(i) For any compact open subgroup K? C G(AZJZ), there is a unique perfectoid
space Shx» over E, such that

Shgr ~ lim (ShK Kr @ I \Ilb
KpCG(Qp)

(if) There is a G(Qy)-equivariant Hodge-Tate period map
THT : Sth S5 f*’?ﬁgw s

where we consider the right-hand side as an adic space over E,.
(iii) There is a Newton stratifcation

FHeu= || F,
beB(G,u)
into locally closzd strata.
(iv) If the Shimuia variety is compact and of PEL type, then if T € ﬁﬁ%w is
a geometric poirt, the fbre w;fT(f) is the canonical lift of the perfection of
the Igusa variety associated with b.

We note that the Newton strata in (iii) are only defned on the adic space:
sometimes they are nonempty but have no classical points!

5. APPLICATIONS TO LANGLANDS RECIPROCITY

The geometry of the Hodge-Tate period map has been used to obtain new results
on the Langlands conjectures relating automorphic forms and Galois representa-
tions, especially in the case of torsion coe¥cients.

Let us frst recall the results obtained in [Sch15]. For any reductive group G over
Q and a congruence subgroup I' € G(Q), one can look at the locally symmetric
Xr =T\X, where X is the symmetric space for G(R). To study Hecke operators,
it is more convenient to switch to the adelic formalism, and consider

Xk = GQ\X x G(Af)/K)
for a compact open subgroup K C G(Ay), assumed sufciently small from now on.
The cohomology H!(Xf,C) with complex coefcients can be computed in terms

of automorphic forms. By the Langlands correspondence, one expects associated
Galois representations. Much progress was made on these questions in case X is

2There are actually two choices for this fag variety; we refer to [CS17] for a discussion of which
one to choose.
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a hermitian symmetric space, so that the Xy are algebraic varieties over number
felds, and their étale cohomology gives Galois representations. However, the groups
G = GL,, for n > 2 are not of this type.

It was conjectured by Grunewald in the 70’s and later more precisely Ash,
[Ash92], that this relation between cohomology and Galois representations extends
to the full integral cohomology groups H'(Xx,Z), including their torsion sub-
groups, which can be enormous, especially in the case of hyperbolic 3-manifelds,
cf. [BV13].

Theorem 5.1 ([Sch15]). Assume that G = Resg/q GL, for some totally real or
CM feld F. Consider the abstract Hecke algebra T acting on Xk, generated by
Hecke operators at good primes, and let Tx C End(6D; H*(Xk,Z)) be the image of
T. For any maximal ideal m C Tgk, there is a continuous semisimirie representation

B 1 Gal(F/F) — GLy(Tx /m)

which is unramifed at good primes, with Frobenius eigenvalies determined in terms
of Hecke operators. If p,, is absolutely irreducikie, then there is a nilpotent ideal
Iw C Tk w in the m-adic completion T ., of T witcse nilpotence degree is bounded
in terms of n and [F' : Q], such that there is s centinuous representation

pm : Gal(F/F) = GLn(Tk m/Im)

which is unramifed at good primes, with the characteristic polynomials of Frobenius
elements determined in terms of Hecke operators.

In particular, for all cohomotogical automorphic representations 7 of G, there ex-
ists a corresponding continucus semisimple Galois representation p, : Gal(F/F) —
GL,(Q,) unramifed at good primes.

The fnal part of this theorem was proved previously by Harris-Lan-Taylor-
Thorne, [HLTT14G]. The general strategy is to realize Xk as a boundary compo-
nent of the Borel-Serre compactifcation of a Shimura variety X ;. associated with
a quasisplit symupiectic or unitary group, and use the known existence of Galois
representations for cusp forms on that space. The key part of the argument then
is to show that all torsion cohomology classes on f(f( can be lifted to characteristic
0, which is done using certain subtle results from p-adic Hodge theory in [Sch15].

For applications, one needs a precise understanding of the behaviour of the Galois
representations at bad primes as well, in particular for primes dividing ¢. To attack
such questions, a better understanding of the torsion in Xf( is necessary. This has
been obtained recently in joint work with Caraiani.

Theorem 5.2 ([CS]). Let T be the Hecke algebra acting on the cohomology of Xf{.
Assume that the maximal ideal m C T is generic. Then

H(XzZ)a =0

f0ri>d=dimc)~(}~(.

Essentially by Poincaré duality, this implies that also Hi(X'f(? Zy)z = 0fori < d,
and that Hd(Xf{, Zy) is £-torsion free. From the realization of X in the boundary
of X, one gets a long exact sequence

o= HY Xz, Z)s — HY((Xk), Zo)s — H'Y Xz, Zo)a =0 — ...,
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where (Xx)’ is a torus bundle over X, and the source is ¢-torsion free. Now the
general strategy is to move any cohomology class in H (X, Z)m 10 HY(( X)), Z)m
by using the torus bundle to shift cohomological degrees, lift it to Hd(XK7Z@)ﬁ,
and then use that this group injects into its rationalization, which can be expressed
in terms of automorphic forms on G.

Let us comment on the proof of Theorem @ The result works for more general
Shimura varieties,? so let us change the notation. Let (Shi)kca(a,) be a Shimura
variety corresponding to a reductive group G over QQ together with some extia data,
including a conjugacy class of minuscule cocharacters p : G, — G, defned over
the refex feld E. Fix a prime p # ¢ so that a certain genericity condition on the
Txed maximal ideal of the Hecke algebra holds true at p, and a (suiciently small)
tame level KP C G(Aﬁi). We get (the minimal compactifcatior of) the perfectoid
Shimura variety at infnite level,

Shier ~ lim(Shi, xr @ By
KT’

where p is a prime of E dividing p. We have the }-\cage-Tate period map
THT Sh*Kp — fj’égﬂ .

The strategy now is to rewrite RI'.(Shgo,Z;) as RI'(Flq, ., Rnar.jiZe), Where
j : Shgr — Sh}, is the open immersion. The Hecke operators away from p act
trivially on the fag variety, so one cain also rewrite

RT.(Shir,Zip)m = RU(HG p, (RTaTe i1 L)) -

The task is now to understana tie sheaf (Rmyr.j1Ze)m. The frst observation is
that, with a suitable defniticr, it lies in D<= for the perverse t-structure; this
uses that Ry, is simultaneously afne and partially proper (but still has fbres
of positive dimensiori -- a phenomenon only possible in this highly nonnoetherian
setup). The other observation is that its fbres are given by the cohomology of
Igusa varieties, Ly using Theorem @ The cohomology of Igusa varieties has been
computed by Stiii, [Shild], but only with Q,-coefcients and in the Grothendieck
group. Urider the genericity condition, one fnds that this always gives zero ex-
cept if the point lies in #l¢ ,,(Q,) C F#Lg,,. One can now play of these obser-
vations, which gives the conclusion that (Rmgyr.jiZe)m 1S concentrated on the 0-
dimensional space .-#(¢ ,,(Q,). Thus, there is no higher cohomology, and the bound
<4Q7THT*jlz[)m € pp=d Implles that RFC(Sth,Zg)m = RP(?EG‘#, (R’/THT*j!Zg)m)
is in degrees < d.

One nice aspect of this strategy is that it describes the cohomology of Shimura
varieties in terms of the cohomology of certain sheaves on the fag varieties #/q ,,,
and it becomes an interesting question to understand those sheaves themselves.
This leads to a relation to the geometrization of the local Langlands correspondence
conjectured by Fargues, cf. Section E

Finally, let us mention that these results have led to the following applications.

Theorem 5.3 (JACCT17]). Let ' be a CM Tfeld.

(1) For any elliptic curve E over F', the L-function L(E,s) has meromorphic
continuation to C. Moreover, E satisfes the Sato-Tate conjecture.

3The compact case has appeared in [CS17].
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(2) For any cuspidal automorphic representation 7 of GLo (A r) whose archimedean

component is of parallel weight 2, the Ramanujan-Petersson conjecture holds
true at all places.

Theorem @ is proved by establishing the potential automorphy of £ and of
all symmetric powers of E resp. ; here “potential” means after base change to
(many) extensions F/F. Thus, the second part follows Langlands’s strategy for
establishing the Ramanujan-Petersson conjecture in general, and it is the frst time
that this conjecture has been proved in a case where the associated motive (or some
closely related motive) is not known to exist, and in particular the prcof dces not
invoke Deligne’s theorem on the Weil conjectures.

For the proof of Theorem @ one wants to see that “all” Galeis repiesentations
arise via Theorem B.1. This follows Wiles’ strateqgy [Wil95]; inore precisely, we use
the variant proposed by Calegari-Geraghty, [CG17].

6. p-ADIC TWISTOR THECRY

Further developments in p-adic geometry arose frcin the realization that the
structures arising from the cohomology of urcper smooth rigid-analytic varieties
over the algebraically closed p-adic feld C can be naturally organized into a modi-
fcation of vector bundles on the Fargues-fcntatine curve in a way closely resembling
a reinterpretation of Hodge theory in terms of vector bundles on the twistor-P!.

Let us frst recall the statements cvier C. Consider the twistor-P?, i.e. the nonsplit

real form ﬁﬁ of P!, which we will take to be given as the descent of P{ to R via

z — —=. We fx the point < € W((C) corresponding to {0,00} C P{. There is an
action of the nonsplit reai torus U(1) (that we consider as an algebraic group) on

IE’E Txing oc.
Proposition 6.1 {Simpson, [Sim97, Section 5]). The category of U(1)-equivariant

semistable vector bundles on P} is equivalent to the category of pure R-Hodge
structures.

Let us briefy recall the proof of this result. As the action of the algebraic group
U(1) on [/P?]}g \ {oo} is simply transitive (as after base change to C, it is the simply
transitive action of G,,, on itself), U(1)-equivariant vector bundles on ]IAD]}Q \ {0} are
equivalent to R-vector spaces V. Thus, given a U(1)-equivariant vector bundle &
on ﬁg, we get an R-vector space V' such that

PE\{o0}

equivariantly for the U(1)-action. Identifying the completion of ﬁ’% at oo with
Spf C[[t]], we get at the completion at co a U(1)-equivariant C[[t]]-lattice A C
V ®r C((t)). However, this is equivalent to a decreasing fltration Fil' V¢ C V¢, via
the Rees construction

A=Y FIV)([) € V eR (1)

One then checks that £ is semistable precisely when (V,Fil’ Vi) defnes a pure
Hodge structure.
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Thus, a description of the inverse functor is that one starts with a pure R-Hodge
structure (V, Fil? V) and the trivial vector bundle £ =V ®g Oﬁ, and modifes it
at oo via the lattice A defned above to obtain a new vector bundle £ which is still
U(1)-equivariant.

A very similar formalism exists in the p-adic case. Associated with the alge-
braically closed p-adic feld C, there is the Fargues-Fontaine curve FF <, which is a
regular noetherian scheme over Q,, of Krull dimension 1 with a distinguished point
oo € FF¢. The completed local ring of FF¢ at oo is Fontaine’s period ring 57, a
complete discrete valuation ring with residue feld C and fraction feld Z4z.
Theorem 6.2 (Fargues-Fontaine, [FF17]). All residue Felds of FF at closed points
are algebraically closed nonarchimedean extensions of Q,. Any vector bundle on
FFc is a direct sum of stable vector bundles, and there is a unigue stable vector
bundle Orr(A) for every rational slope A = & € Q, which is of rank r and degree
s (if r and s are chosen coprime with r > 0).

Note that a similar result holds true for PL, but only half-integral slopes A € %Z
occur in that case.

Given a proper smooth rigid-analytic space X over C, one can form the trivial
vector bundle

& =H\(X.Z,) ®z, Orr, -

Theorem 6.3 ([BMS16, Theorem 131, Theorem 13.8]). There is a functorial
B -lattice

E = H.,(X/B{) C H4(X,Zy) ®z, Bar -
If X = Xo®@xC for some discrately valued subfeld K c C, then H},  (X/BJ;) =
H!n(Xo/K) @k Bjy, and the inclusion comes from the de Rham comparison iso-
morphism.

Thus, one cah ferm a modifcation £’ of £ along oco. The new vector bundle will
in general bz related to the (log-)crystalline cohomology of a (log-)smooth formal
model. !n other words, the comparison isomorphism between étale and crystalline
cohomalogy can be understood in terms of a modifcation of vector bundles on the
Fargues-Fontaine curve.

In fact, contrary to étale cohomology that is ill-behaved for spaces like the unit
gdisc, it should be possible to defne this modifed vector bundle much more generally,
without properness and without using formal models. The following conjecture
arose from discussions of the author with Arthur-César le Bras.

Conjecture 6.4. There is a cohomology theory H%Fc (X)) for quasicompact sep-
arated smooth rigid spaces X over C taking values in vector bundles on FFq. If
X has an overconvergent model X' (for example, if X is a®noid), then the f-
bre of H{_(X) at oo is the overconvergent de Rham cohomology H,(XT/C) in
the sense of GroRe-Klonne, [GKO04], and the completion of Hi (X) at oc is the
overconvergent crystalline cohomology H! XT/B(;*R) defned following [BMSL16,
Section 13].

rys(

In other words, not only does de Rham cohomology lift naturally to B:{R along
the surjection Bj; — C as can be explained in terms of a version of crystalline
cohomology, but it does actually deform into a vector bundle on all of FF¢.
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Now we defne for any local Shimura datum (G, b, i) the local Shimura variety
M,k In terms of modifcations of G-torsors on the Fargues-Fontaine curve.

Theorem 6.5 (Fargues, [Farl7]). For any reductive group G over Q,, there is a
natural bijection b — &, between Kottwitz’ set B(G) of o-conjugacy classes and the
set of G-torsors on FF¢ up to isomorphism. Moreover, b € B(G, 1) C B(G) if and
only if &, can be written as a modifcation at oo of type u of the trivial G-torsor &;.

The fnal statement appears in [Rapl7]. Now we defne
MG p),00(C) = M M p 1), 5 (C)
K

to be the set of all modifcations & --» &, at oo of type p. The groitp G(Q,) is
the group of automorphisms of &, and thus acts on this inverse {imit; then for all
K C G(Qyp),
M pu).x(C) = MG pu),0(C)/K .

In order to make Mg, ), x into a rigid space, we need to defne it as a moduli
problem. For the rest of this section, we make zxtensive use of the theory of
perfectoid spaces, and assume that the reader is tarniliar with it, cf. [Sch14]; some
of the structures that appear now will however be motivated in the next section.
We use that for any perfectoid space S of characteristic p together with an untilt
S* over Q,, one can construct a relative Fargues-Fontaine curve FFg that is an adic
space over Q, and comes with a section o : Spa S* — FFg. Then Mg b ),00(5)
parametrizes modifcations & |pr, --» £4|Fr, at oo of type p as before. This defnes
a structure of a diamond, [Schi7h]:

Defnition 6.6. Let Perf be the category of perfectoid spaces of characteristic p. A
diamond is a pro-étale sheaf Y on Perf that can be written as a quotient Y = X/R
of a perfectoid space X by a pro-étale equivalence relation R € X x X.

An example of & diamond is given by the sheaf Spd Q,, that attaches to any per-
fectoid space 5 of characteristic p the set of all untilts S* over Q,. More generally,
if X is an adic space over Q,, one can defne a diamond X whose S-valued points
are given by an untilt S* over Q,, together with a map S* — X.

Theciem 6.7 ([SW17]). For any nonarchimedean feld L/Q,, the functor X +— X<
defries a fully faithful functor from the category of seminormal rigid spaces over L
to the category of diamonds over Spd L = (Spa L)®.

The diamond M g 4 ),k = M(G,b,p),00/ I OVEr SpdE is the image of a smooth
rigid space over E under this functor.

The proof makes use of the results of Kedlaya, [Ked10], and Kedlaya-Liu, [KL15],
on families of vector bundles on the Fargues-Fontaine curve.

From here, it becomes natural to consider much more general spaces, parametriz-
ing modifcations of arbitrary G-bundles at several points with modifcations of
arbitrary type, not necessarily minuscule. Such spaces live over the base space
SpdQ, x ... x SpdQ, parametrizing the points of modifcation: These products
give good meaning to the non-existent products Spec Q, XspecFy - - - XSpecF, Spec Qp.
The resulting spaces are now in general just diamonds. The purpose of the foun-
dational manuscript [Sch17b] is to develop a solid theory of étale cohomology for
diamonds with the aim of using these spaces to obtain a general local Langlands
correspondence.
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These spaces are naturally organized into Hecke stacks acting on the stack Bung
of G-bundles on the Fargues-Fontaine curve. Fargues realized that this gives rise to
a picture perfectly resembling the geometric Langlands correspondence for classical
smooth projective curves, [Farl6], [Farl8], [FS]. This in particular involves perverse
¢-adic sheaves on Bung whose pullback to the fag varieties %/, should arise
globally from the construction R 1.7, sketched in the previous section.

It is too early to state the expected theorems about the applications to the iocal
Langlands correspondence, but let us mention that recently Kaletha-Vieinsicin,
[KW17], have used the étale cohomology of diamonds as developed in [5chi7h) to
prove Kottwitz’ conjecture, [Rap95], about the realization of the Jacquet-LLanglands
correspondence in the cohomology of local Shimura varieties.

Remark 6.8. As the theory of diamonds is critical to the feundations, as is the
possibility of defning SpdQ, x SpdQ,, let us quickly give a description of the
product Spd Q, x SpdQ,. Consider the open unit disc Dy, = {z | |2| < 1} as
embedded in the multiplicative group via z — 1 + z; then Dq, itself is a group
object. Let HNDQP be the inverse limit of Dg, alorc z — (14 2)? — 1. Then ]ﬁ)@p is
(pre)perfectoid, and admits a natural Q,-action. Now

Spd @, x Spd Q, = (By, " {0})°/Z; .

On the right-hand side, one factor of Spd (@, arises from the structure map ]ﬁ)@p —
Spa @Q,, but the other factor gets reaiizea in terms of the perfectoid punctured unit
disc, and thus has become geometric.

These constructions in fact {ead to a description of the absolute Galois group of
Q, as a geometric fundamental group:

Theorem 6.9 ([Weil7l). For any algebraically closed nonarchimedean feld C'/Q,,
the étale fundamenta! group of (D¢ \ {0})/Q, agrees with the absolute Galois group
of Q. o

A search for a hypothetical space SpecZ x SpecZ thus seems closely related to
a realization of the absolute Galois group of Q as a geometric fundamental group.
For a step in this direction, let us mention the following result, which uses the ring
of rational Witt vectors W, (R) C Whig(R). For all r € R, there is the Teichmdiller
ift 7] € Wiat(R).

Theorem 6.10 ([KS16]). Let L be a feld of characteristic 0 that contains all roots
of unity, and fx an embedding Q/Z — L*, 1/n +— (,. Then the category of fnite
extensions of L is equivalent to the category of connected fnite coverings of the
topological space

X (L) C (Spec Wyt (L)) (C)
that is the connected component singled out by the condition that [(,,] maps to
e2mi/n ¢ C for all n > 1.

In fact, X (L) has a deformation retract to a compact Hausdorf space, which
gives a realization of the absolute Galois group of L as the profnite fundamental
group of a compact Hausdorf space! This formally implies that the absolute Galois
group of L is torsion-free, cf. [KS16, Proposition 7.10].

The space X (L) gives rise to certain non-profnitely complete structures on nat-
ural arithmetic invariants. If L is the cyclotomic extension of QQ, one can show
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that the actual fundamental group of X (L) given by topological loops is a proper
dense subgroup of the absolute Galois group. Moreover, it acts naturally on the set
log Q@ C C of logarithms of algebraic numbers, compatibly with exp : logQ — Q.
Similarly, for general L as in the theorem, the Cech cohomology groups H*(X (L), Z)
give certain torsion-free non-profnitely completed abelian groups with

HY(X(L),Z)/n = H(Gal(L/L),Z/nZ)
for all n > 1, cf. [KS16, Theorem 1.8].

7. p-ADIC SHTUKAS

Going further, one can reinterpret the linear-algebraic structures that appeared
in the last section in terms of a p-adic analogue of shtukas Let us frst recall the
basic defnition of a shtuka from the function feld case. here is a version of the
following defnitions for any reductive group G obtained by replacing vector bundles
by G-torsors.

Defnition 7.1. Let X be a smooth projective cuive over IFy, and let S be a scheme
over F,. A shtuka over S relative to X with {egs at xy,...,x, : S — X is a vector
bundle & over S xp, X together with an isGmerphism

(Frobs€)lsxe, x\Ur, 1., = Elsxe, x\UL, Ty,
where 'y, : S — S xp, X is the graph of z;.

Drinfeld used moduli spaces oi shtukas with two legs to prove the global Lang-
lands correspondence for CLs, [Dri80]. This was generalized to GL,,, still using
moduli spaces with two legs, by L. Laforgue, [Laf02]. Recently, V. Laforgue has
used all moduli spaces w:th an arbitrary number of legs simultaneously to prove
the automorpbhic ta Galois direction of the global Langlands correspondence for any
reductive group &, {Lafl2].

There is a corresponding notion of local shtuka, where one works with the local
curve X = SpfTF,[[¢]]. The legs are now parametrized by maps z1,...,z, : S —
X = SpfF,[t]], i.e. locally nilpotent elements ¢, € Og(S). As this contains no
topoiogical information, we pass to the world of rigid geometry. For simplicity,
we qiscuss the case of geometric points, and so assume that S = SpaC for some
complete algebraically closed nonarchimedean feld C of characteristic p; we will
later allow more general base spaces again. The legs are maps S — X, which are
parametrized by topologically nilpotent elements ¢, € C, i.e. |[t;] < 1. The fbre
product S xr, X becomes the open unit ball Do = {t € C | |t| < 1}, and the legs
give rise to points z; € D¢. There is a Frobenius Frobe acting on D¢, coming from
the Frobenius on C. This is not a map of rigid spaces over C, but it does exist in
the category of adic spaces.

Defnition 7.2. A (local) shtuka over S = Spa C relative to X = Spf F,[[t]] with
legs at z1,...,x, : S — X given by elements ¢; € C, |¢;| < 1, is a vector bundle &£
over Do = S xp, X together with an isomorphism

(Frob&&) b {t1,..tnt = ElDON {1,080}

that is meromorphic along the t;.



16 PETER SCHOLZE

The main observation of [SW17] is that it is possible to give a mixed-characte-
ristic version of this defnition, where X = SpfZ,. As a geometric point, one still
takes S = SpaC where C is a complete algebraically closed nonarchimedean feld
of characteristic p. Naively, there are now no interesting maps S = SpaC — X =
Spf Z,; there is exactly one, which factors over SpecF,. We will see momentarily
how to solve this problem. But let us frst face the other problem of defning a
reasonable fbre product “S x X", where the product should be over SpecF,. The
basic insight is that for any perfect ring R, “Spec R x Spf Z,” should be givei by
Spf W(R) with the p-adic topology on W (R). If R is itself an adic ring with the
I-adic topology, then “Spf R x Spf Z,, = Spf W (R)”, where W (R) is eguipped with
the (p, [I])-adic topology.

In particular, we should set “Spf O¢ x Spf Z,,” = Spf(W(O¢)). The ring W(O¢)
plays an important role in p-adic Hodge theory, and is traditionaliy called Aj;,¢ there.
If w € C is a topologically nilpotent unit, then passing frcm Spf O¢ to its generic
fbre Spa C amounts to inverting . Thus, we defne the cuten subspace

“SpaC x SpaZ,” = {[w] # 0} < SpalW(O¢)) ,

which is a well-defned adic space. The following proposition shows that this be-
haves very much like a classical smooth rigid curve, except that it does not live over
any base feld.

Proposition 7.3 ([FF17], [Ked16]). For any connected open a¥noid subspace
U =Spa(R,R") C “SpaC x SpaZ,” ,

the ring R is a principal ideal domain. For any maximal ideal m C R, the quotient
Cw» = R/m is a complete algebraically closed nonarchimedean feld. Moreover, there
is a canonical isomorphism
r—xP

i.e. C = Cb is the tilt of Cy, in the terminology of [Sch12]. Conversely, for
any compleie algetraically closed nonarchimedean feld C* with an isomorphism
(C*)> = ¢, there is a unigue maximal ideal m c R (for any large enough open
subset 7/) such that C* = R/m, compatibly with the identifcation of (C*)* with C.

Jn athier words, “classical points” of “SpaC x SpaZ,” parametrize untilts of C.
This shows that we should reinterpret the data of the maps z; : S = SpaC — X =
SpaZ, as the data of untilts C?, ..., C% of C.

Defnition 7.4. A (local/p-adic) shtuka over S = SpaC relative to X = SpfZ,
with legs at x1,...,z, given by untilts Cf, ...,C% of O, is a vector bundle £ over
“SpaC x SpaZ,” together with an isomorphism

(FrObz’g)l“SpaCXSpaZp"’\{ml,.u,xn} = 5|“SpaCxSpaZp"’\{:rl,...,a:n}
that is meromorphic along the z;.

In the case of one leg, these structures are closely related to the structures that
appeared in the last section, by the following theorem of Fargues.

Theorem 7.5 (Fargues, [SW17]). Assume that C¥ is an untilt over Q,, let oo :
Spec C* — FF¢ be the corresponding point of the Fargues-Fontaine curve,d and

4The Fargues-Fontaine curve depends only on the tilt of C*, but the point L depends on C*.
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let Bj; = Biz(C*) be the complete local ring at oo with quotient feld Bqr. The
following categories are equivalent.

(i) Shtukas over S = Spa C relative to X = Spf Z, with one leg at C*.

(i) Pairs (T,Z), where T is a fnite free Z,-module and = C T'®z, Bqr is a
B, -lattice.

(iii) Quadruples (Fy,F2,5,T), where F; and F, are two vector bundles on
the Fargues-Fontaine curve FFc, 8 : Filppo\{oo} = F2lrre\{so} 1S @N
isomorphism, and 7" is a fnite free Z,-module such that 7, = T'®z, Orr.
is the corresponding trivial vector bundle.

(iv) Breuil-Kisin-Fargues modules, i.e. fnite free A,y = W(Os)-modules M
together with a (-linear isomorphism M{[_—is] = M[¢], where € € Ajy s

a generator of ker(Ains — Oct).

Note that local Shimura varieties are parametrizing data of type (iii). The
equivalence with (i) shows that one can regard local Shimura varieties as moduli
spaces of shtukas, and it gives a possibility of formulating an integral model for the
local Shimura varieties that we will now discuss.

In [SW17], we construct moduli spaces of siitukas with any number of legs.
However, already the case of one leg has impertant applications, so let us focus on
this case. In addition to the group G over Q,, w2 need to Tx a model G of G over Z,,
and the most important case is when G is parahoric. To defne the moduli problem,
we need to bound the modifcation at the leg; this leads to a version of the a¥Fne
Grassmannian. Here, SpdZ, denotes the functor on Perf taking any perfectoid
space S of characteristic p to the set of untilts S* over Z,. If S = Spa(R,R™) is
afnoid, then S¥ = Spa(R* &), and there is a natural ring B, (R*) that surjects
onto R* with kernel generated by some nonzerodivisor ¢ € Bj;(RF) such that
B(J{R(Rﬁ) is £-adically complete. This interpolates between the following cases:

(1) If RF = C* is an untilt over Q, of an algebraically closed nonarchimedean
feld R = © of characteristic p, then B (C*) is Fontaine’s ring considered
previousty.

(2) if R = R is of characteristic p, then BJ;(R*) = W(R) is the ring of
p-typical Witt vectors.

Defnition 7.6. Let G be a parahoric group scheme over Z,. The Beilinson-Drin-
feid Giassmannian
Grg’spdzp — Spd Zp

is the moduli problem on Perf taking an a®noid perfectoid space S = Spa(R, RT)
of characteristic p to the set of untilts S* = Spa(R*, R**) over Z, together with a
G-torsor over B, (RF) that is trivialized over Bqgr(R*).

In the following, we make use of the following proposition to identify perfect
schemes or formal schemes as certain pro-étale sheaves. In both cases, one can
defne a functor X — X, where X< parametrizes untilts over X.

Proposition 7.7. The functor X — X< defnes a fully faithful functor from the
category of perfect schemes to the category of pro-étale sheaves on Perf. Similarly,
for any nonarchimedean feld L over Q,, the functor X — X< from normal and
fat formal schemes locally formally of fnite type over Spf O, to pro-étale sheaves
over Spd Oy, is fully faithful.
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The proof of the second part relies on a result of Lourengo, [Loul7], that recovers
formal schemes as in the proposition from their generic fbre and the perfection of
their special fbre, together with the specialization map.

Theorem 7.8 ([Zhul7], [BS17], [SW17]). The special fbre of Grg spaz, is given by
the Witt vector aFne Grassmannian Grg’ constructed in [Zhul7] and [BS17] that
can be written as an increasing union of perfections of projective varieties along
closed immersions. The generic fbre of Grg spaz, is the B(TR—afne Grassmannian
of G, and can be written as an increasing union of proper diamonds aleng closad
immersions.

For a conjugacy class of minuscule cocharacters p defned over £, there is a
natural closed immersion

ygg,u — Grg,SdeP XSpd Zy, SpdE .

We let
Ml(og(i#) C Grg,spaz, Xspdz, Spd Op

be the closure of ﬁ@& u We conjecture that it corries frorm a normal and fat projec-
tive scheme over Spec Og under Proposition [7.7. Thiz would give a group-theoretic
defnition of the local model in the theory oi Shuriura varieties, cf. e.g. [Pap18].

Defnition 7.9. Given local Shimura data (&, b, 1) and a parahoric model G, let
Mg, 5 =+ SpdOg

be the moduli problem taking S < Pert to the set of untilts S* over O together with
a G-shtuka over “S x SpaZ,” with one leg at S* that is bounded by Ml(%fu), and a
trivialization of the shtuka at the boundary of “S x SpaZ,” by &.

For a precise formuiatior. of the following result, we refer to [SW17].
Theorem 7.10 {{SW17]lj. This defnition recovers Rapoport-Zink spaces.

Using this group-theoretic characterization of Rapoport-Zink spaces, we can ob-
tain new isocmoructisms between diferent Rapoport-Zink spaces.

Corollary 7.11. The conjectures of Rapoport-Zink, [RZ17], and Kudla-Rapoport-
Zink, (WRZ], on alternative descriptions of the Drinfeld moduli problem hold true.

in varticular, by [KRZ], one gets an integral version and moduli-theoretic proof
of Cerednik’s p-adic uniformization theorem, [Cer76].

To prove Theorem , one needs to see that p-adic shtukas are related to
the cohomology of algebraic varieties or p-divisible groups. This is the subject of
integral p-adic Hodge theory that we will discuss next.

8. INTEGRAL p-ADIC HODGE THEORY

The following question arises naturally from Theorem @ As it is more natural
in this section, let us change notation, and start with an algebraically closed p-adic
feld C and consider shtukas over its tilt C” with one leg at the untilt C of C*. Given
a proper smooth rigid-analytic space X over C, consider 7' = H{ (X, Z,)/(torsion)
with the fnite free Bf.-module = = H/ . (X/B};) C T ®z, Bar from Theo-
rem @ By Theorem E there is a corresponding Breuil-Kisin-Fargues module
H};hnf(X); we normalize it here so that the Frobenius is an isomorphism after in-

verting £ resp. ¢(&). Can one give a direct cohomological construction of this?
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FIGURE 1. A picture of some parts of Spec Ains = “Spec Opw X SpecZy”.

We expect that without further inpui, the answer is no; in fact, Fargues’s equiv-
alence is not exact, and does manifestily not pass to the derived category. However,
in joint work with Bhatt and Morrow, [BMS16], we show that it is possible once a
proper smooth formal model X ot X iz given.

Theorem 8.1 ([BMS1€]}. Let X be a proper smooth formal scheme over Spf O¢
with generic fbre X. There is a perfect complex RT 4, , (%) of A;,s-modules together
with a @-linear map ¢ : R4, ,(X) — RTa4,,(X) that becomes an isomorphism
after inverting ¢ resp. ¢(§). Each H;‘w(ae) is a fnitely presented A;,s-module
that becomes ires aver Ainf[%] after inverting p. Moreover, one has the following
comparison resuits.

L
(i) Crystalline comparison: RI'a, (X) ®a,,, W(k) = R crys(Xi/W(k)), ©-
equivariantly, where k is the residue feld of O¢.

L
(x) @ A OC = RPdR(x/OC)
W(C") = RT(X,Z,) ®z, W(C”), ¢-

(i) De Rham comparison: RI 4, ,
(iii) Etale comparison: RI' 4, (X) ®4
equivariantly.
Moreover, if H! . (X/W (k)) is p-torsion freell, then H (%) is fnite free over
Aing, and agrees with Hgmf (X) as defned above.[a

inf

The theorem implies a similar_result for p-divisible groups, which is the key
input into the proof of Theorem . On the other hand, the theorem has direct
consequences for the behaviour of torsion under specialization from characteristic
0 to charateristic p.

5All of these results were recently extended to the case of semistable reduction by Cesnavicius-
Koshikawa, [CK17].

SEquivalently, Hip (%/Oc¢) is p-torsion free, cf. [BMS16, Remark 14.4].
In that situation, part (iii) implies that also Hét (X,Zyp) is p-torsion free.
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Corollary 8.2. For any i > 0, one has dimy Hjg (X)/k) > dimg, H (X,F,), and
lengthw(k)Hcirys(:{k/W(k))tor 2 lengchpHét (X, Zp)tor -

For example, for an Enriques surface X over C, so that it has a double cover by a
K3 surface, there is 2-torsion in the second étale conomology group. By the theorem,
this implies that for all Enriques surfaces in characteristic 2 (all of which deform
to characteristic 0), one has 2-torsion [T
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9. SHTUKAS FOR Spec 7Z

Roughly, the upshot of the A;,s-cohomology theory is that the “universal” p-
adic cohomology theory is given by a shtuka relative to SpfZ,. Currently, the
author is trying to understand to what extent it might be true that the “universal”
cohomology theory is given by a shtuka relative to SpecZ. It seems that this is a
very fruitful philosophy.

Let us phrase the question more precisely. Given a proper smooth scheme X over
a base scheme S, what is “the” cohomology of X? Experience in arithmetic and
algebraic geometry shows that there is no simple answer, and that in fact there are
many cohomology theories: singular, de Rham, étale, crystalline, etc.® It helps to
organize these cohomology theories according to two parameters: First, they may
only defned for certain (geometric) points s € S, and their coe¥cients may not be
Z but only Z/nZ or ZersregyfrerTdst TETTATdb focddddedbbbdcbbi TETfTdb X TFTfTds S{TFTTdbSb
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FIGURE 2. A picture of known cohomology theories.

If we zoom in near a point (p, p) in this picture, we arrive at a picture that looks
exactly like Figure EI depicting the A;,s-cohomology theory! And indeed, one can
use the Aj,e-cohomology theory to Fll in this part of the picture.

The picture bears a remarkable similarity with the following equal-characteristic
structure.

Defnition 9.1 (Anderson, Goss, |Rnd8a], [EOSQa]). For a scheme S = SpecR
over SpecF,[T] sending T to t € R, a t-motive is a Fnite projective R[T]-module
M together with an isomorphism

o : Frobp M[27] = M[27] .

Let us briefy discuss the similar specializations.

(i) If R = K is an algebraically closed feld mapping to the infnite point of
Spec F,[T] (which, strictly speaking, is not allowed — but we can compactify
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SpecF,[T7] into ]P’I}p) we get a vector bundle on P} together with an isomor-

phism with its Frobenius pullback.@ These are equivalent to vector bundles
on ]P’}Fp, and by restricting back to SpecF,[T], we get an F,,[T]-module.

(if) Restricting along R[T] — R sending T to t we get a fnite projective R-
module. Moreover, ¢ gives rise to a R[[t—T]]-lattice in M @ g R((t—T)),
which gives rise to a fltration of M ®@gi) R similarléto the discussion in
the case of BJ,-lattices or C[[t]]-lattices in Section E

(iii) Restricting modulo a power of T' (or T' — a, a € F)), the pair

(M, om,) = (M @piry RIE, TY/T™ o)
is equivalent to an étale F,[T]/T"-local system on Spec R[¢ | by taking
the étale sheaf Mo~

(iv) Restricting to the fbre t = 0 (or ¢ = a, a € Fp) and taking the T-adic
completion, M ®gir) (R/t)[[T]] with ¢y defnes a structure resembling
crystalline cohomology.

(v) Similarly, by the analogy between local shtukas and local p-adic shtukas,
the picture near (¢,7") = (0, 0) resembles the picture of the A;,s-cohomology
theory.

An interesting question is what happens in vertical fbres, i.e. for S = SpecF,.
In the function feld case, we get genericaliy tiie following structure.

Defnition 9.2. A (generic) shtuka over SpecTF,, relative to SpecF,(T) is a fnite-
dimensional F,(T')-vector space V together with a Frobﬁp—semilinear isomorphism
py V=V,

Amazingly, Kottwitz [Kccl14] was able to defne an analogue of this category for
number Felds.

Construction 9.3 (Kotwitz). For any local or global feld F', there is an F'-linear
®-category Kt r, constructed as the category of representations of a gerbe banded by
an explicit (pro-jtorus which is constructed using (local or global) class feld theory.
Moreover, cne tas the following identifcations.
(i) If & = F,((T)), then Kt is the category of fnite-dimensional F,((T))-
vector spaces V' with a semilinear isomorphism V = V.
() \§ F =TF,(T), then Ktp is the category of fnite-dimensional F,(T')-vector
spaces V with a semilinear isomorphism V = V.
(iii) If F = Q,, then Kt is the category of fnite-dimensional W (F,)|]-vector
spaces V with a semilinear isomorphism V = V.
(iv) If F =R, then Ktp is the category of fnite-dimensional C-vector spaces
V' together with a grading V' = ,., Vi and a graded antiholomorphic
isomorphism « : V = V such that o? = (—1)% on V;.

Remark 9.4. In the local cases (i) and (iii), one can replace F, with any alge-
braically closed feld of characteristic p without changing the category. However,
in the global case (ii), the equivalence holds only for F,; for this reason, we fx this
choice.

Hone might think that one has to allow a pole at 1, but the analogy seems to suggest that
it is in fact not there.

12 subtle point is that M g1} 7 R is the analogue of Hodge(-Tate) cohomology, and
de Rham cohomology corresponds to the specialization M g(1),7str R
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inspection that there is a surjective map from Kottwitz’ gerbe (which is independent
of p!) to Langlands-Rapoport’s gerbe. In particular, Ktg conjecturally contains the
category of motives over F, as a full subcategory, for all p.

It may be interesting to note how Serre’s objection to a 2-dimensional R-cohomology
theory is overcome by the R-linear cohomology theory Hf'(tw, in an essentially min-
imal way: For a supersingular elliptic curve E/F,, its associated H, (E) will be
given by a 2-dimensional C-vector space V = V; together with an antiholomorphic
isomorphism « : V = V such that a? = —1, so « does not give rise to a real
structure; instead, it gives rise to a quaternionic structure. But the endomcrgphism
algebra of E, which is a quaternion algebra over Q that is nonsplit over R, can of
course act on the Hamilton quaternions!

It is also interesting to note that there are functors from the category of isocrys-
tals Ktg, to the category of vector bundles on the Fargues-Fontaine curve, and
similarly from the category Ktr to the category of vector huridies on the twistor-
P!, which in both cases induce a bijection on isomoishism classes. This gives
another strong indication of the parallel between the Fargues-Fontaine curve and
the twistor-P!, and how Kottwitz’ categories play naturally into them.

In particular, one can also draw a horizontai iine at £ = oo, where for all s € S
one gets a vector bundle on the twistor-P* ({via the previous conjecture in fnite
characteristic, and via the twistor interpretation of Hodge theory in characteristic
0). In other words, the complex variation ¢t twistor structures must, in a suitable
sense, be defned over the scheme 5 (which is a general scheme over SpecZ, not
necessarily over C).

18. ¢-p¥ RHAM COHOMOLOGY

One may wonder wiiat th2 completion of “SpecZ x SpecZ” along the diagonal
looks like; in the picture of cohomology theories, this should combine p-adic Hodge
theory for all primes p with usual Hodge theory. One proposal for how this might
happen was maas in [Schl7a]. This paper builds on the following observation on the
Ajng-conomology theory. Namely, one can write down explicit complexes computing
this cohomaology on afFnes. For example, if R = O¢(T) is the p-adic completion of
Oc¢IT, then one looks at the following complex:

Ainf<T> &> Ainf<T> I vq(Tn) = [n]an71 9

wiere [n], =1+qg+...+¢" ! = ‘Iq_—‘ll is GauR’s g-integer, and ¢ = [¢] € Ains
is a certain element of A;,;. This is precisely the ¢g-de Rham complex studied by
Aomoto, [Aom9d]; it sends a general function f(T") to the Jackson g-derivative

_ fqT) - f(T)

Unfortunately, the ¢-de Rham complex depends heavily on the choice of coordinates,
and it is not clear how to see the independence of the A;,¢-cohomology from the
choice of coordinates using this picture.

However, in recent work with Bhatt, [BS], we were able to prove the following
theorem, proving a conjecture of [Sch174d].

Theorem 10.1 ([BS]). There is a Z[[g — 1]]-linear ¢-de Rham cohomology theory
for smooth schemes over Spec Z that for any smooth Z-algebra R with a choice of an
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étale map Z[T1,...,T,] — R is computed by a g-deformation ¢€23, of the de Rham
complex 2%,. For example,

0%y = 2[Tlg — 1] =5 Z[T)[lg = 1] = T" = Vo(T") = [l T .

After base change along Z[[q — 1]] — Aint Vvia ¢ — [e], this recovers the Aj.¢-
cohomology theory.

In particular, this suggests that the completion of “SpecZ x SpecZ” aionu the
diagonal is related to Spf Z[[¢ — 1]].

Previous progress towards this result was made by Pridham, [Pril8i, and Cha-
tzistamatiou, [Cha], and announced by Masullo. In particular, Chatzistamatiou
was able to write down explicitly the quasi-automorphism of R for an auto-
morphism of Z[T), like T — T + 1; this is_a highly nontrivial resuit%

Unfortunately, the proof of Theorem m proceeds by Trst constructing such
complexes after p-adic completion, and then patching theim tcgether in some slightly
artifcial way, so we believe that there is still much more to be understood about
what exactly happens along the diagonal.

In fact, the prismatic cohomology defned in [83] gives in the p-adic case a
Breuil-Kisin variant@ of the A;,¢-cohomology theory for varieties over O where
K is a Tnite extension of Q,. This Brzauil-Kisin module contains some slightly
fner information than the ¢g-de Rham cohcmology and is in some sense a Frobenius
descent of it, but it is not clear hicw 1o combine them for varying p. This is
related to the observation that in the analogy with t-motives, the diagonal 7' =
t corresponds to Hodge(-Tate) cohomology, while the Frobenius-twisted diagonal
T = tP corresponds to de Rham cohomology. In this picture, the ¢-de Rham
cohomology would sit at the completion at 7' = t?, while the prismatic picture
seems more adapted ¢ a nicture corresponding to the completion at the diagonal
T =1.
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