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Abstract

We describe in this survey several results relating Fractal Geometry, Dynamical
Systems and Diophantine Approximations, including a description of recent results
related to geometrical properties of the classical Markov and Lagrange spectra and
generalizations in Dynamical Systems and Di�erential Geometry.

1 Introduction

The theory of Dynamical Systems is concerned with the asymptotic behaviour of systems
which evolve over time, and gives models for many phenomena arising from natural sci-
ences, as Meteorology and Celestial Mechanics. The study of a number of these models
had a fundamental impact in the developement of the mathematical theory of Dynamical
Systems. An important initial stage of the theory of Dynamical Systems was the study
by Poincar�e of the restricted three-body problem in Celestial Mechanics in late nineteenth
century, during which he started to consider the qualitative theory of di�erential equations
and proved results which are also basic to Ergodic Theory, as the famous Poincar�e’s re-
currence lemma. He also discovered during this work the homoclinic behaviour of certain
orbits, which became very important in the study of the dynamics of a system. The exis-
tence of transverse homoclinic points implies that the dynamics is quite complicated, as
remarked already by Poincar�e: \Rien n’est plus propre �a nous donner une id�ee de la com-
plication du probl�eme des trois corps et en g�en�eral de tous les probl�emes de Dynamique...",
in his classic Les M�ethodes Nouvelles de la M�ecanique C�eleste ([57]), written in late 19th
century. This fact became clearer much decades later, as we will discuss below.

Poincar�e’s original work on the subject was awarded a famous prize in honour of the
60th birthday of King Oscar II of Sweden. There is an interesting history related to this
prize. In fact, there were two versions of Poincar�e’s work presented for the prize, whose
corresponding work was supposed to be published in the famous journal Acta Mathematica
- a mistake was detected by the Swedish mathematician Phragm�en in the �rst version.
When Poincar�e became aware of that, he rewrote the paper, including the quotation above
calling the attention to the great complexity of dynamical problems related to homoclinic
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intersections. We refer to the excellent paper [61] by Jean-Christophe Yoccoz describing
such an event.

We will focus our discussion of Dynamical Systems on the study of ows (autonomous
ordinary di�erential equations) and iterations of di�eomorphisms, with emphasis in the
second subject (many results for ows are similar to corresponding results for di�eomor-
phisms).

The �rst part of this work is related to the interface between Fractal Geometry and
Dynamical Systems. We will give particular attention to results related to dynamical
bifurcations, specially homoclinic bifurcations, perhaps the most important mechanism
that creates complicated dynamical systems from simple ones. We will see how the study
of the fractal geometry of hyperbolic sets has a central rôle in the study of dynamical
bifurcations. We shall discuss recent results and ongoing works on fractal geometry of
hyperbolic sets in arbitrary dimensions.

The second part is devoted to the study of the interface between Fractal Geometry
and Diophantine Approximations. The main topic of this section will be the study of
geometric properties of the classical Markov and Lagrange spectra - we will see how this
study is related to the study of sums of regular Cantor sets, a topic which also appears
naturally in the study of homoclinic bifurcations (which seems, at a �rst glance, to be a
very distant subject from Diophantine Approximations).

The third part is related to the study of natural generalizations of the classical Markov
and Lagrange spectra in Dynamical Systems and in Di�erential Geometry - for instance, we
will discuss properties of generalized Markov and Lagrange spectra associated to geodesic
ows in manifolds of negative curvature and to other hyperbolic dynamical systems. This
is a subject with much recent activity, and several ongoing relevant works.

Acknowledgements: We would like to warmly thank Jacob Palis for very valuable
discussions on this work.

2 Fractal Geometry and Dynamical Systems

2.1 Hyperbolic sets and Homoclinic Bifurcations

The notion of hyperbolic systems was introduced by Smale in the sixties, after a global
example provided by Anosov, namely the di�eomorphism f(x; y) = (2x+y; x+y) (mod 1)
of the torus T2 = R2=Z2 and a famous example, given by Smale himself, of a horseshoe,
that is a robust example of a dynamical system on the plane with a transverse homoclinic
point as above, which implies a rich dynamics - in particular the existence of in�nitely
many periodic orbits. The �gure below depicts a horseshoe.
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(the dynamics sends the square (ABCD) onto the domain bounded by (A′B′C ′D′)).
Let � �M be a compact subset of a manifold M . We say that � is a hyperbolic set for

a di�eomorphism ’ : M !M if ’(�) = � and there is a decomposition TΛM = Es � Eu
of the tangent bundle of M over � such that D’ jEs is uniformly contracting and D’ jEu
is uniformly expanding. We say that ’ is hyperbolic if the limit set of its dynamics is a
hyperbolic set.

It is important to notice that when a di�eomorphism has a transverse homoclinic point
then its dynamics contains an non-trivial invariant hyperbolic set which is (equivalent to)
a horseshoe - this explains the complicated situation discovered by Poincar�e as mentioned
above.

The importance of the notion of hyperbolicity is also related to the stability conjecture
by Palis and Smale, according to which structurally stable dynamical systems are essen-
tially the hyperbolic ones (i.e. the systems whose limit set is hyperbolic). After important
contributions by Anosov, Smale, Palis, de Melo, Robbin and Robinson, this conjecture
was proved in the C1 topology by Ma~n�e ([21]) for di�eomorphisms and, later, by Hayashi
([13]) for ows. The stablility conjecture (namely the statement that structural stability
implies hyperbolicity) is still open in the Ck topology for k � 2.

As mentioned in the introduction, homoclinic bifurcations are perhaps the most im-
portant mechanism that creates complicated dynamical systems from simple ones. This
phenomenon takes place when an element of a family of dynamics (di�eomorphisms or
ows) presents a hyperbolic periodic point whose stable and unstable manifolds have a
non-transverse intersection. When we connect, through a family, a dynamics with no
homoclinic points (namely, intersections of stable and unstable manifolds of a hyperbolic
periodic point) to another one with a transverse homoclinic point (a homoclinic point
where the intersection between the stable and unstable manifolds is transverse) by a fam-
ily of dynamics, we often go through a homoclinic bifurcation.

Homoclinic bifurcations become important when going beyond the hyperbolic theory.
In the late sixties, Sheldon Newhouse combined homoclinic bifurcations with the complex-
ity already available in the hyperbolic theory and some new concepts in Fractal Geometry
to obtain dynamical systems far more complicated than the hyperbolic ones. Ultimately
this led to his famous result on the coexistence of in�nitely many periodic attractors (which
we will discuss later). Later on, Mora and Viana ([38]) proved that any surface di�eo-
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morphism presenting a homoclinic tangency can be approximated by a di�eomorphism
exhibiting a H�enon-like strange attractor (and that such di�eomorphisms appear in any
typical family going through a homoclinic bifurcation).

Palis conjectured that any di�eomorphism of a surface can be approximated arbitrarily
well in the Ck topology by a hyperbolic di�eomorphism or by a di�eomorphism display-
ing a homoclinic tangency. This was proved by Pujals and Sambarino ([58]) in the C1

topology. Palis also proposed a general version of this conjecture: any di�eomorphism (in
arbitrary ambient dimension) can be approximated arbitrarily well in the Ck topology by
a hyperbolic di�eomorphism, by a di�eomorphism displaying a homoclinic tangency or by
a di�eomorphism displaying a heteroclinic cycle (a cycle given by intersections of stable
and unstable manifolds of periodic points of di�erent indexes). A major advance was done
by Crovisier and Pujals ([6]), who proved that any di�eomorphism can be approximated
arbitrarily well in the C1 topology by a di�eomorphism displaying a homoclinic tangency,
by a di�eomorphism displaying a heteroclinic cycle or by an essentially hyperbolic di�eo-
morphism: a di�eomorphism which displays a �nite number of attractors whose union of
basins is open and dense.

The �rst natural problem related to homoclinic bifurcations is the study of homoclinic
explosions on surfaces: We consider one-parameter families (’�), � 2 (�1; 1) of di�eo-
morphisms of a surface for which ’� is uniformly hyperbolic for � < 0, and ’0 presents a
quadratic homoclinic tangency associated to a hyperbolic periodic point (which may be-
long to a horseshoe - a compact, locally maximal, hyperbolic invariant set of saddle type).
It unfolds for � > 0 creating locally two transverse intersections between the stable and
unstable manifolds of (the continuation of) the periodic point. A main question is: what
happens for (most) positive values of �? The following �gure depicts such a situation for
� = 0.

Fractal sets appear naturally in Dynamical Systems and fractal dimensions when we
try to measure fractals. They are essential to describe most of the main results in this
presentation.

Given a metric space X, it is often true that the minimum number N(r) of balls of
radius r needed to cover X is roughly proportional to 1=rd, for some positive constant d,
when r becomes small. In this case, d will be the box dimension of X. More precisely, we
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de�ne the (upper) box dimension of X as

d(X) = lim sup
r→0

logN(r)

� log r
:

The notion of Hausdor� dimension of a set is more subtle, but more useful. The main
di�erence with the notion of box dimension is that, while the box dimension is related to
coverings of X by small balls of equal radius, the Hausdor� dimension deals with arbitrary
coverings of X by balls of small (but not necessarily equal) radius.

Given a countable covering U of X by balls, U = (B(xi; ri))i∈N, we de�ne its norm
jjUjj as jjUjj = maxfri; i 2 Ng (where ri is the radius of the ball B(xi; ri)). Given s 2 R+,
we de�ne Hs(U) =

∑
i∈N r

s
i .

The Hausdor� s-measure of X is

Hs(X) = lim
�→0

inf
U covers X

jjUjj<ε

Hs(U):

One can show that there is an unique real number, the Hausdor� dimension of X,
which we denote by HD(X), such that s < HD(X)) Hs(X) = +1 and s > HD(X))
Hs(X) = 0 (so HD(X) can be de�ned shortly as

HD(X) = inffs > 0; inf
X⊂∪B(xn;rn)

∑
rsn = 0g):

For \well-behaved" sets X - in particular for regular Cantor sets in ambient dimension
1 and horseshoes in ambient dimension 2, the box and Hausdor� dimensions of X coincide.

Regular Cantor sets on the line play a fundamental role in dynamical systems and
notably also in some problems in number theory. They are de�ned by expanding maps
and have some kind of self-similarity property: small parts of them are di�eomorphic to
big parts with uniformly bounded distortion (we will give a precise de�nition in a while).
In both settings, dynamics and number theory, a key question is whether the arithmetic
di�erence (see de�nition below) of two such sets has non-empty interior.

A horseshoe � in a surface is locally di�eomorphic to the Cartesian product of two
regular Cantor sets: the so-called stable and unstable Cantor sets Ks and Ku of �, given by
intersections of � with local stable and unstable manifolds of some points of the horseshoe.
The Hausdor� dimension of �, which is equal to the sum of the Hausdor� dimensions of Ks

and Ku, plays a fundamental role in several results on homoclinic bifurcations associated
to �.

From the dynamics side, in the eighties, Palis and Takens ([46], [47]) proved the fol-
lowing theorem about homoclinic bifurcations associated to a hyperbolic set:

Theorem 2.1. Let (’�), � 2 (�1; 1) be a family of di�eomorphisms of a surface presenting
a homoclinic explosion at � = 0 associated to a periodic point belonging to a horseshoe �.
Assume that HD(�) < 1. Then

lim
�→0

m(H \ [0; �])

�
= 1;

where H := f� > 0 j ’� is uniformly hyperbolicg.
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2.2 Regular Cantor sets - a conjecture by Palis

A central fact used in the proof of the above theorem by Palis and Takens is that if K1 and
K2 are regular Cantor sets on the real line such that the sum of their Hausdor� dimensions
is smaller than one, then K1 �K2 = fx� y j x 2 K1; y 2 K2g = ft 2 RjK1 \ (K2 + t) 6=
;g (the arithmetic di�erence between K1 and K2) is a set of zero Lebesgue measure
(indeed of Hausdor� dimension smaller than 1). On the occasion, looking for some kind
of characterization property for this phenomenon, Palis conjectured (see [44], [45]) that
for generic pairs of regular Cantor sets (K1;K2) of the real line either K1 �K2 has zero
measure or else it contains an interval (the last case should correspond in homoclinic
bifurcations to open sets of tangencies). A slightly stronger statement is that, if K1 and
K2 are generic regular Cantor sets and the sum of their Hausdor� dimensions is bigger
than 1, then K1 �K2 contains intervals.

Another motivation for the conjecture was Newhouse’s work in the seventies, when
he introduced the concept of thickness of a regular Cantor set, another fractal invariant
associated to Cantor sets on the real line. It was used in [41] to exhibit open sets of
di�eomorphisms with persistent homoclinic tangencies, therefore with no hyperbolicity. It
is possible ([42]) to prove that, under a dissipation hypothesis, in such an open set there is
a residual set of di�eomorphisms which present in�nitely many coexisting sinks. In [43],
it is proved that under generic hypotheses every family of surface di�eomorphisms that
unfold a homoclinic tangency goes through such an open set. It is to be noted that in the
case described above with HD(�) < 1 (as studied in [47]) these sets have zero density. See
[48] for a detailed presentation of these results. An important related question by Palis
is whether the sets of parameter values corresponding to in�nitely many coexisting sinks
have typically zero Lebesgue measure.

An earlier and totally independent development had taken place in number theory. In
1947, M. Hall ([12]) proved that any real number can be written as the sum of two numbers
whose continued fractions coe�cients (of positive index) are bounded by 4. More precisely,
if C(4) is the regular Cantor set (see general de�nition below) formed of such numbers in
[0; 1], then one has C(4) +C(4) = [

p
2� 1; 4(

p
2� 1)]. We will discuss generalizations and

consequences of this result in the next section.
A Cantor set K � R is a Ck-regular Cantor set, k � 1, if:

i) there are disjoint compact intervals I1; I2; : : : ; Ir such that K � I1 [ � � � [ Ir and the
boundary of each Ij is contained in K;

ii) there is a Ck expanding map  de�ned in a neighbourhood of I1 [ I2 [ � � � [ Ir such
that, for each j,  (Ij) is the convex hull of a �nite union of some of these intervals
Is. Moreover, we suppose that  satis�es:

ii.1) for each j, 1 � j � r and n su�ciently big,  n(K \ Ij) = K;

ii.2) K =
⋂
n∈N

 −n(I1 [ I2 [ � � � [ Ir).

Remark 2.2. If k is not an integer, say k = m + �, with m � 1 integer and 0 < � < 1
we assume that  is Cm and  (m) is �-H�older.
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We say that fI1; I2; : : : ; Irg is a Markov partition for K and that K is de�ned by  .

Remark 2.3. In general, we say that a set X � R is a Cantor set if X is compact,
without isolated points and with empty interior. Cantor sets in R are homeomorphic to
the classical ternary Cantor set K1=3 of the elements of [0; 1] which can be written in base
3 using only digits 0 and 2. The set K1=3 is itself a regular Cantor set, de�ned by the map
 : [0; 1=3] [ [2=3; 1]! R given by  [x] = 3x� b3xc.

An interval of the construction of the regular Cantor set K is a connected component
of  −n(Ij) for some n 2 N, j � r.

Given s 2 [1; k] and another regular Cantor set ~K, we say that ~K is close to K in
the Cs topology if ~K has a Markov partition f~I1; ~I2; : : : ; ~Irg such that the interval ~Ij has
endpoints close to the endpoints of Ij , for 1 � j � r and ~K is de�ned by a Cs map ~ 
which is close to  in the Cs topology.

The C1+-topology is such that a sequence  n converges to  if there is some � > 0
such that  n is C1+� for every n � 1 and  n converges to  in the C1+�-topology.

The concept of stable intersection of two regular Cantor sets was introduced in [25]: two
Cantor sets K1 and K2 have stable intersection if there is a neighbourhood V of (K1;K2)
in the set of pairs of C1+-regular Cantor sets such that (K̃1; K̃2) 2 V ) K̃1 \ K̃2 6= ;.



Jean-Christophe Yoccoz

The same result works if we replace stable intersection by d-stable intersection, which
is de�ned by asking that any pair (K̃1; K̃2) in some neighbourhood of (K1;K2) satis�es
HD(K̃1 \ K̃2) � d: most pairs of Cantor sets (K1;K2) 2 
∞ have d-stable intersection
for any d < HD(K1) +HD(K2)� 1.

The open set U mentioned in the above theorem is very large in 
∞ in the sense that
generic n-parameter families in 
∞ are actually contained in U .

The proof of this theorem depends on a su�cient condition for the existence of stable
intersections of two Cantor sets, related to a notion of renormalization, based on the fact
that small parts of regular Cantor sets are di�eomorphic to the whole set: the existence of
a recurrent compact set of relative positions of limit geometries of them. Roughly speaking,
it is a compact set of relative positions of regular Cantor sets such that, for any relative
position in such a set, there is a pair of (small) intervals of the construction of the Cantor
sets such that the renormalizations of the Cantor sets associated to these intervals belong
to the interior of the same compact set of relative positions.

The main result is reduced to prove the existence of recurrent compact sets of relative
positions for most pairs of regular Cantor sets whose sum of Hausdor� dimensions is larger
than one. A central argument in the proof of this fact is a probabilistic argument �a la
Erd}os: we construct a family of perturbations with a large number of parameters and
show the existence of such a compact recurrent set with large probability in the parameter
space (without exhibiting a speci�c perturbation which works).
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Another important ingredient in the proof is the Scale Recurrence Lemma, which,
under mild conditions on the Cantor sets (namely that at least one of them is not essentially
a�ne), there is a recurrent compact set for renormalizations at the level of relative scales of
limit geometries of the Cantor sets. This lemma is the fundamental tool in the paper [28],
in which it is proved that, under the same hypothesis above, if K and K ′ are C2-regular
Cantor sets, then HD(K +K ′) = minf1; HD(K) +HD(K ′)g.

An important result in fractal geometry which is used in [39] is the famous Marstrand’s
theorem ([23]), according to which, given a Borel set X � R2 with HD(X) > 1 then,
for almost every � 2 R, ��(X) has positive Lebesgue measure, where �� : R2 ! R is
given by ��(x; y) = x � �y. In particular, if K1 and K2 are regular Cantor sets with
HD(K1) + HD(K2) > 1 then, for almost every � 2 R, K1 � �K2 has positive Lebesgue
measure. Moreira and Yuri Lima gave combinatorial alternative proofs of Marstrand’s
theorem, �rst in the case of Cartesian products regular Cantor sets ([19]) and then in the
general case ([20]).

In [40], Moreira and Yoccoz proved the following fact concerning generic homoclinic
bifurcations associated to two dimensional saddle-type hyperbolic sets (horseshoes) with
Hausdor� dimension bigger than one: typically there are translations of the stable and
unstable Cantor sets having stable intersection, and so it yields open sets of stable tangen-
cies in the parameter line with positive density at the initial bifurcation value. Moreover,
the union of such a set with the hyperbolicity set in the parameter line generically has full
density at the initial bifurcation value. This extends the results of [52].

The situation is quite di�erent in the C1-topology, in which stable intersections do not
exist:

Theorem 2.5 ([26]). Given any pair (K;K ′) of regular Cantor sets, we can �nd, arbi-
trarily close to it in the C1 topology, pairs ( ~K; ~K ′) of regular Cantor sets with ~K\ ~K ′ = ;.

Moreover, for generic pairs (K;K ′) of C1-regular Cantor sets, the arithmetic di�erence
K �K ′ has empty interior (and so is a Cantor set).

The main technical di�erence between the C1 case and the C2 (or even C1+�) cases
is the lack of bounded distortion of the iterates of  in the C1 case, and this fact is
fundamental for the proof of the previous result.

The previous result may be used to show that there are no C1 robust tangencies
between leaves of the stable and unstable foliations of respectively two given hyperbolic
horseshoes �1;�2 of a di�eomorphism of a surface. This is also very di�erent from the
situation in the C∞ topology - for instance, in [40] it is proved that, in the unfolding
of a homoclinic or heteroclinic tangency associated to two horseshoes, when the sum of
the correspondent stable and unstable Hausdor� dimensions is larger than one, there are
generically stable tangencies associated to these two horseshoes. This result is done in the
following

Theorem 2.6 ([26]). Given a C1 di�eomorphism  of a surface M having two (non nec-
essarily disjoint) horseshoes �1;�2, we can �nd, arbitrarily close to it in the C1 topology,
a di�eomorphism ~ of the surface for which the horseshoes �1;�2 have hyperbolic con-
tinuations ~�1; ~�2, and there are no tangencies between leaves of the stable and unstable
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foliations of ~�1 and ~�2, respectively. Moreover, there is a generic set R of C1 di�eomor-
phisms of M such that, for every � 2 R, there are no tangencies between leaves of the
stable and unstable foliations of �1;�2, for any horseshoes �1;�2 of � .

Since stable intersections of Cantor sets are the main known obstructions to density
of hyperbolicity for di�eomorphisms of surfaces, the previous result gives some hope of
proving density of hyperbolicity in the C1 topology for di�eomorphisms of surfaces, a well-
known question by Smale. In particular in the work [32] on a family of two-dimensional
maps (the so-called Benedicks-Carleson toy model



so gt has no attractors nor repellors in W . Most small values of t, and thus most gt, here
means that t is taken in a set of parameter values with Lebesgue density one at t = 0.

The construction of non-uniformly hyperbolic horseshoes for most parameters is a
highly non-trivial counterpart of Yoccoz’ proof [62] (based on the so-called Yoccoz puzzles)
of the celebrated Jakobson’s theorem in the context of heteroclinic explosions.

Of course, Palis and Yoccoz do not consider their result as the end of the line. Indeed,
they expected the same results to be true for all cases 0 < HD(�) < 2. However, to
achieve that, it seems that their methods need to be considerably sharpened: it would be
necessary to study deeper the dynamical recurrence of points near tangencies of higher
order (cubic, quartic...) between stable and unstable curves. They also expected their
results to be true in higher dimensions.

Finally, they hoped that the ideas introduced in that work might be useful in broader
contexts. In the horizon lies a famous question concerning the standard family of area
preserving maps (which is the family (fk)k∈R of di�eomorphisms of the torus T2 = R2=Z2

given by fk(x; y) = (�y + 2x + k sin(2�x); x) (mod 1)): can we �nd sets of positive
Lebesgue measure in the parameter space such that the corresponding maps display non-
zero Lyapunov exponents in sets of positive Lebesgue probability in phase space?

In space?



tions are inspired in the a�nity dimensions, introduced by Falconer. We have analogous
de�nitions for upper unstable dimensions. We prove the following results about these
dimensions: given 1 � r � ‘ and " > 0 there is a "�small C∞ perturbation of the
original di�eomorphism for which the hyperbolic continuation of � has a subhorseshoe
~� which has strong-stable foliations of codimensions j for 1 � j � r and which satis�es

d
(r)
s (~�) > d

(r)
s (�)� ".

In the second work in progress, in collaboration with W. Silva (which extends a previous
joint work in codimension 1 - see [37]), we prove that if a horseshoe � has strong stable
foliations of codimensions j for 1 � j � r and satis�es d̂s(�) > r (which is equivalent to

d
(r)
s (�) > r) then it has a small C∞ perturbation which contains a blender of codimension
r: in particular C1 images of stable Cantor sets of it (of the type � \W s(x)) in Rr will
typically have persistently non-empty interior. We also expect to prove that the Hausdor�
dimension of these stable Cantor sets typically coincide with d̂s(�), and this dimension
depends continuously on � on these assumptions, which would imply typical continuity of
Hausdor� dimensions of stable and unstable Cantor sets of horseshoes.

Let us recall two main ingredients in the proof by Moreira and Yoccoz of Palis’ con-
jecture:

� A recurrent compact set criterion for stable intersections (which implies that arith-
metic di�erences persistently contain intervals).

� An application of Erd}os probabilistic method: a family of C∞ small perturbations
of a regular Cantor set (the second Cantor set is �xed) with a large number of
parameters such that for most parameters there is a recurrent compact set for the
corresponding pair of Cantor sets.

A variation of these ingredients is present in the proof of these results in collaboration
of W. Silva: we develop a recurrent compact set criterion which implies that a given
horseshoe (with a strong-stable foliation of codimension r) is a r-codimensional blender,
and we prove that, if a horseshoe has a strong-stable foliation of codimension r and satis�es

d̂s(�) > r (which is equivalent to d
(r)
s (�) > r), then there is a small C∞ perturbation of it

which has a recurrent compact set. In order to do this, we use the probabilistic method:
we construct a family of perturbations with a large number of parameters, and show that
for most parameters there is such a recurrent compact set.

An important geometrical tool in the proof of these results is the following generaliza-
tion of Marstrand’s theorem, which was proved in works by L�opez, Moreira, Roma~na and
Silva:

Theorem 2.8. Let X be a compact metric space, (�;P) a probability space and � :
� � X ! Rr a measurable function. Informally, one can think of ��(�) = �(�; �) as a
family of projections parameterized by �. We assume that for some positives real numbers
� and C the following transversality property is satis�ed:

P[� 2 � : d(��(x1); ��(x2)) � �d(x1; x2)�] � C�r (1)

for all � > 0 and all x1; x2 2 X. Assume that dimX > �r. Then Leb(��(X)) > 0 for a.e.
� 2 � and

∫
Λ Leb(��(X))−1dP < +1.
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3 Fractal Geometry and Diophantine Approximations

3.1 The classical Markov and Lagrange spectra

The results discussed in the previous section on regular Cantor sets have, somewhat sur-
prisingly, deep consequences in number theory, which we discuss below. We begin by
introducing the classical Lagrange spectrum.

Let � be an irrational number. According to Dirichlet’s theorem, the inequality
j� � p

q j <
1
q2 has in�nitely many rational solutions p

q . Hurwitz improved this result by

proving that j�� p
q j <

1√
5q2 also has in�nitely many rational solutions p

q for any irrational

�, and that
p

5 is the largest constant that works for any irrational �. However, for
particular values of � we can improve this constant.

More precisely, we de�ne k(�) := supfk > 0 j j� � p
q j <

1
kq2 has in�nitely many

rational solutions p
qg = lim supp;q→+∞ (qjq�� pj)−1. We have k(�) �

p
5, 8� 2 R nQ and

k
(

1+
√

5
2

)
=
p

5. We will consider the set L = fk(�) j � 2 R nQ, k(�) < +1g.
This set is called the Lagrange spectrum. Hurwitz’s theorem determines the smallest

element of L, which is
p

5. This set L encodes many diophantine properties of real num-
bers. It is a classical subject the study of the geometric structure of L. Markov proved in
1879 ([24]) that

L \ (�1; 3) = fk1 =
p

5 < k2 = 2
p

2 < k3 =

p
221

5
< : : : g

where kn is a sequence (of irrational numbers whose squares are rational) converging to 3.
The elements of the Lagrange spectrum which are smaller than 3 are exactly the

numbers of the form
√

9� 4
z2 where z is a positive integer for which there are other

positive integers x; y such that 1 � x � y � z and (x; y; z) is a solution of the Markov
equation

x2 + y2 + z2 = 3xyz:

Since this is a quadratic equation in x (resp. in y), whose sum of roots is 3yz (resp.
3xz), given a solution (x; y; z) with x � y � z, we also have the two other solutiuons
(y; z; 3yz � x) and (x; z; 3xz � y) - it is possible to prove that all solutions of the Markov
equation appear in the following tree:



An important open problem related to Markov’s equation is the Unicity Problem,
formulated by Frobenius about 100 years ago: for any positive integers x1; x2; y1; y2; z
with x1 � y1 � z and x2 � y2 � z such that (x1; y1; z) and (x2; y2; z) are solutions of
Markov’s equation we always have (x1; y1) = (x2; y2)?

If the Unicity Problem has an a�rmative answer then, for every real t < 3, its pre-
image k−1(t) by the function k above consists of a single GL2(Z)-equivalence class (this
equivalence relation is such that

� � a�+ b

c�+ d
;8a; b; c; d 2 Z; jad� bcj = 1:)

Despite the \beginning" of the set L is discrete, this is not true for the whole set L. As
we mentioned in the introduction, M. Hall proved in 1947 ([12]) that if C(4) is the regular
Cantor set formed by the numbers in [0; 1] whose coe�cients in the continued fractions
expansion are bounded by 4, then one has C(4)+C(4) = [

p
2�1; 4(

p
2�1)]. This implies

that L contains a whole half line (for instance [6;+1)), and G. Freiman determined in
1975 ([9]) the biggest half line that is contained in L, which is [cF ;+1), with

cF =
2221564096 + 283748

p
462

491993569
�= 4; 52782956616 : : : :

These last two results are based on the study of sums of regular Cantor sets, whose
relationship with the Lagrange spectrum will be explained below.

Sets of real numbers whose continued fraction representation has bounded coe�cients
with some combinatorial constraints, as C(4), are often regular Cantor sets, which we call
Gauss-Cantor sets (since they are de�ned by restrictions of the Gauss map g(x) = f1=xg
from (0; 1) to [0; 1) to some convenient union of intervals).

We represent below the graphics of the Gauss map g(x) = f 1
xg.

y = g(x) =
{

1
x

}

If the continued fraction of � is

� = [a0; a1; a2; : : : ]
def
= a0 +

1

a1 +
1

a2 + ...

:
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then we have the following formula for k(�):

k(�) = lim sup
n→∞

(�n + �n);

where �n = [an; an+1; an+2; : : : ] and �n = [0; an−1; an−2; : : : ; a1]:

The previous formula follows from the equality

j�� pn
qn
j = 1

(�n+1 + �n+1)q2
n

; 8n 2 N;

where

pn=qn = [a0; a1; a2; : : : ; an] = a0 +
1

a1 +
1

a2 + ...+ 1
an

; n 2 N

are the convergents of the continued fraction of �.
There are many results which relate the dynamics of the Gauss map with the behaviour

of continued fractions. For instance, the Khintchine-L�evy theorem, which follows from
techniques of Ergodic Theory, states that, for (Lebesgue) almost every � 2 R,

lim
n→∞

n
p
qn = e�

2=12 log 2:

Remark: The following elementary general facts on Diophantine approximations of
real numbers show that the best rational approximations of a given real number are given
by convergents of its continued fraction representation:
� For every n 2 N, ∣∣∣∣�� pn

qn

∣∣∣∣ < 1

2q2
n

or

∣∣∣∣�� pn+1

qn+1

∣∣∣∣ < 1

2q2
n+1

(moreover, for every positive integer n, there is k 2 fn�1; n; n+1g with j�� pk
qk
j < 1√

5q2
n

).

� If
∣∣�� p

q

∣∣ < 1
2q2 then p

q is a convergent of the continued fraction of �.

This formula for k(�) implies that we have the following alternative de�nition of the
Lagrange spectrum L:

Let � = (N∗)Z be the set of all bi-in�nite sequences of positive integers. If � =
(an)n∈Z 2 �, let �n = [an; an+1; an+2; : : : ] and �n = [0; an−1; an−2; : : : ];8n 2 Z. We de�ne
f(�) = �0 + �0 = [a0; a1; a2; : : : ] + [0; a−1; a−2; : : : ]. We have

L = flim sup
n→∞

f(�n�); � 2 �g;

where � : �! � is the shift de�ned by �((an)n∈Z) = (an+1)n∈Z.
Let us de�ne the Markov spectrum M by

M = fsup
n∈Z

f(�n�); � 2 �g:
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It also has an arithmetical interpretation, namely

M = f( inf
(x;y)∈Z2\(0;0)

jf(x; y)j)−1; f(x; y) = ax2 + bxy + cy2; b2 � 4ac = 1g:

It is well-known (see [3]) that M and L are closed sets of the real line and L �M .
We have the following result about the Markov and Lagrange spectra:

Theorem 3.1. ([27]; see also [22]) Given t 2 R we have

HD(L \ (�1; t)) = HD(M \ (�1; t)) =: d(t)

and d(t) is a continuous surjective function from R to [0; 1]. Moreover:
i) d(t) = minf1; 2D(t)g, where D(t) := HD(k−1(�1; t)) = HD(k−1(�1; t]) is a

continuous function from R to [0; 1).
ii) maxft 2 R j d(t) = 0g = 3
iii) d(

p
12) = 1.

A fundamental tool in the proof of this result is the theorem below.
We say that a C2-regular Cantor set on the real line is essentially a�ne if there is a

C2 change of coordinates for which the dynamics that de�nes the corresponding Cantor
set has zero second derivative on all points of that Cantor set. Typical C2-regular Cantor
sets are not essentially a�ne.

The scale recurrence lemma, which is the main technical lemma of [39], can be used in
order to prove the following

Theorem 3.2. ([28]) If K and K ′ are regular Cantor sets of class C2 and K is non
essentially a�ne, then HD(K +K ′) = minfHD(K) +HD(K ′); 1g:

Remark 3.3. There is a presentation of a version of this result (with a slightly di�erent
hypothesis) in [60]. That version is also proved by Hochman and Shmerkin in [15].

The results of Markov, Hall and Freiman mentioned above imply that the Lagrange
and Markov spectra coincide below 3 and above cF . Nevertheless, Freiman ([7]) showed
in 1968 that M n L 6= ; by exhibiting a number � ’ 3:1181 � � � 2M n L.

In 1973, Freiman [8] showed that

�∞ := �0(A∞) := [2; 12; 23; 1; 2] + [0; 1; 23; 12; 2; 1; 2] 2M n L

In a similar vein, Theorem 4 in Chapter 3 of Cusick-Flahive book [3] asserts that

�n := �0(An) := [2; 12; 23; 1; 2] + [0; 1; 23; 12; 2; 1; 2n; 1; 2; 12; 23] 2M n L

for all n � 4. In particular, �∞ is not isolated in M n L.
In collaboration with C. Matheus, we proved the following results about M n L:
Let X be the Cantor set

X := f[0; ] :  2 f1; 2gN not containing the subwords in Pg (2)
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where

P := f21212; 21213; 13212; 121212; 122121; 231212221; 122122123; 123121222; 221221231g

Also, let

b∞ := [2; 12; 23; 1; 2] + [0; 1; 23; 12; 2] =

p
18229

41
= 3:2930442439 : : :

and

B∞ := [2; 1; 1; 23; 1; 2; 12; 2; 12; 2] + [0; 1; 23; 12; 2; 1; 23; 12; 2; 1; 22; 1; 23; 1; 2; 12; 2; 12; 2]

= 3:2930444814 : : :

Theorem 3.4. ([30]) fb∞; B∞g � L, L \ (b∞; B∞) = ; and HD((M n L) \ (b∞; B∞)) =
HD(X).

We implemented the algorithm of Jenkinson-Pollicott (see [17]) and we obtained the
heuristic approximationHD(X) = 0:4816 � � � . We also we exhibited a Cantor setK(f1; 22g) �
X whose Hausdor� dimension can be easily (and rigorously) estimated as 0:353 < HD(K(f1; 22g)) <
0:35792 via some classical arguments explained in Palis-Takens book [47].

By exploiting the arguments establishing the above Theorem, we are able to exhibit
new numbers in M n L, including a constant c 2M n L with c > �4:

Proposition 3.5. The largest element of (M n L) \ (b∞; B∞) is

c =
77 +

p
18229

82
+

17633692�
p

151905

24923467
= 3:29304447990138 : : :

To our best knowledge, c is the largest known element of M n L.

We also proved ([31]) that M n L doesn’t have full Hausdor� dimension:

Theorem 3.6. HD(M n L) < 0:986927.

One can get better heuristic bounds forHD(MnL) thanks to the several methods in the
literature to numerically approximate the Hausdor� dimension of Cantor sets of numbers
with prescribed restrictions of their continued fraction expansions. By implementing the
\thermodynamical method" introduced by Jenkinson{Pollicott in [16], we obtained the
heuristic bound HD(M n L) < 0:888.

Our proof of Theorem 3.6 relies on the control of several portions of M n L in terms
of the sum-set of a Cantor set associated to continued fraction expansions prescribed by
a \symmetric block" and a Cantor set of irrational numbers whose continued fraction
expansions live in the \gaps" of a \symmetric block". As it turns out, such a control
is possible thanks to our key technical Lemma saying that a su�ciently large Markov
value given by the sum of two continued fraction expansions systematically meeting a
\symmetric block" must belong to the Lagrange spectrum.

It follows that M n L has empty interior, and so, since M and L are closed subsets of
R, int(M) = int(L) � L �M . In particular, we have the following

Corollary 3.7. int(M) = int(L).

As a consequence, we recover the fact, proved in [9], that the biggest half-line contained
in M coincides with the biggest half-line [cF ;1) contained in L.
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3.2 Other results on the fractal geometry of Diophantine approxima-
tions

In collaboration with Y. Bugeaud ([1]), we proved some results on sets of exact approxi-
mation order by rational numbers:

For a function 	 : (0;+1)! (0;+1), let

K(	) :=

{
� 2 R :

∣∣∣∣� � p

q

∣∣∣∣ < 	(q) for in�nitely many rational numbers
p

q

}
denote the set of 	-approximable real numbers and let

Exact(	) := K(	) n
⋃
m≥2

K
(
(1� 1=m)	

)
be the set of real numbers approximable to order 	 and to no better order.

The lower order at in�nity �(g) of a function g : (0;+1)! (0;+1) is de�ned by

�(g) = lim inf
x→+∞

log g(x)

log x
:

We say that a function 	 : (0;+1) ! (0;+1) satis�es assumption (�) if 	(x) =

o(x−2) and there exist real numbers c, ~c and n0 with 1 � ~c < 4 such that, if the positive
integers m, n satisfy m > n � n0, then 	(m)mc � ~c	(n)nc. We emphasize that the real

number c occurring in (�) may be negative.

Theorem 3.8. Let 	 : (0;+1)! (0;+1) be a function satisfying assumption (�). Then
the set Exact(	) is uncountable.

Theorem 3.9. Let 	 : (0;+1)! (0;+1) be a function satisfying assumption (�). If �
denotes the lower order at in�nity of the function 1=	, then

dim Exact(	) = dimK(	) =
2

�
:

In another work collaboration with Y. Bugeaud ([2]), we proved that there are no typi-
cal real numbers from the point of view of Diophantine approximations, in a sense that we
describe in what follows. Let 	 be an application from the set of positive integers into the
set of nonnegative real numbers. Khintchine established that, if the function q 7! q2	(q)
is non-increasing and the series

∑
q≥1 q	(q) diverges, then the set K(	) has full Lebesgue

measure (Beresnevich, Dickinson and Velani proved later the same result assuming that
	 is just non-increasing). We show that, for almost every real number �, there is a func-
tion 	 which satis�es good \regularity" conditions (on the speed of decreasing of 	) - for
instance q 7! q2	(q) is non-increasing, such that the series

∑
q≥1 q	(q) diverges but the

inequality j�� p=qj < 	(q) has no rational solution p=q.
Khintchine also showed that if the series

∑
q≥1 q	(q) converges, then the set K(	) has

zero Lebesgue measure. We show that, for almost every real number �, there is a function
	 which satis�es good \regularity" conditions (for instance q 7! q2	(q) is non-increasing),
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such that the series
∑

q≥1 q	(q) converges but the inequality j��p=qj < 	(q) has in�nitely
many rational solutions p=q.

We also compute Hausdor� dimensions of sets of exceptions to our results (in terms of
the regularity conditions on 	):

Theorem 3.10. Let � be a real number in the interval [1; 2]. We de�ne X� the set of
irrational numbers � such that, for every function 	 with q 7! q�	(q) non-increasing and
satisfying

∞∑
q=1

q	(q) = +1;

the inequality ∣∣∣∣� � p

q

∣∣∣∣ < 	(q)

has in�nitely many rational solutions. We proved that X1 is empty and that, for � 2 (1; 2],
the Hausdor� dimension of X� is �=2 (and so, when � varies, assume all values in the
interval (1=2; 1]).

Theorem 3.11. Let b be a positive real number. We de�ne Yb as the set of the irrational
numbers � such that, for every function 	 withq 7! q(log log q)b log log q	(q) non-increasing
and satisfying

∞∑
q=1

q	(q) = +1;

the inequality ∣∣∣∣� � p

q

∣∣∣∣ < 	(q)

has in�nitely many rational solutions. Then the Hausdor� dimension of Yb is 1
1+e1/b (and

so, when b varies, assume all values in the interval (0; 1=2)).

One of the tools we used in the proof of this last theorem is the results from [18]:
given b; c > 1 de�ne ~�(b; c) = f� = [0; a1; a2; :::] 2 [0; 1] : an � cb

n
for every n � 1g

and �(b; c) = f� = [0; a1; a2; :::] 2 [0; 1] : an � cb
n

for in�nitely many n � 1g. Then
HD(~�(b; c)) = HD(�(b; c)) = 1

1+b . In one direction, a more precise result is proved in
[10], according to which the Hausdor� dimension of the set

K := f� = [0; a1; a2; :::] 2 [0; 1] : exp(~bn) � an � 3 exp(~bn); for every n � 1g

is equal to 1
1+b̃

. We notice that an older result from [11] states that the Hausdor� dimension

of the set f� = [0; a1; a2; :::] 2 [0; 1] : lim an =1g is 1=2.

4 Back to Dynamical Systems (and Di�erential Geometry)

As we have seen, the sets M and L can be de�ned in terms of symbolic dynamics. Inspired
by these characterizations, we may associate to a dynamical system together with a real
function generalizations of the Markov and Lagrange spectra as follows:
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De�nition 4.1. Given a map  : X ! X and a function f : X ! R, we de�ne the
associated dynamical Markov and Lagrange spectra as
M(f;  ) = fsupn∈Nf( n(x)); x 2 Xg and
L(f;  ) = flimsupn→∞f( n(x)); x 2 Xg, respectively.

Given a ow (’t)t∈R in a manifold X, we de�ne the associated dynamical Markov and
Lagrange spectra as M(f; (’t)) = fsupt∈Rf(’t(x)); x 2 Xg and
L(f; (’t)) = flimsupt→∞f(’t(x)); x 2 Xg, respectively.

In a work in collaboration with A. Cerqueira and C. Matheus ([4]), we prove the
following result, which generalizes a corresponding fact in the context of the classical
Markov and Lagrange spectra:

Lemma 4.2. Let (’; f) be a generic pair, where ’ : M2 ! M2 is a di�eomorphism with
� � M2 a hyperbolic set for ’ and f : M ! R is C2. Let �s; �u be the projections of the
horseshoe � to the stable and unstable regular Cantor sets Ks;Ku associated to it (along
the unstable and stable foliations of �). Given t 2 R, we de�ne

�t =
⋂
m∈Z

’m(fp 2 �jf(p) � tg);

Ks
t = �s(�t);K

u
t = �u(�t):

Then the functions ds(t) = HD(Ks
t ) and du(t) = HD(Ku

t ) are continuous and coincide
with the corresponding box dimensions.

The following result is a consequence of the scale recurrence lemma of [39] (see [28]):

Lemma 4.3. Let (’; f) be a generic pair, where ’ : M2 ! M2 is a di�eomorphism with
� �M2 a hyperbolic set for ’ and f : M ! R is C2. Then

HD(f(�)) = min(HD(�); 1):

Moreover, if HD(�) > 1 then f(�) has persistently non-empty interior.

Using the previous lemmas we prove a generalization of the results on dimensions of
the dynamical spectra:

Theorem 4.4. ([4]) Let (’; f) be a generic pair, where ’ : M2 !M2 is a conservative
di�eomorphism with � �M2 a hyperbolic set for ’ and f : M ! R is C2. Then

HD(L(f;�) \ (�1; t)) = HD(M(f;�) \ (�1; t)) =: d(t)

is a continuous real function whose image is [0;min(HD(�); 1)].

(here we use the notation L(f;�) := L(f; ’jΛ)).
In [14], P. Hubert, L. Marchese and C. Ulcigrai introduced in a similar way to the above

generalizations the Lagrange spectra of closed-invariant loci for the action of SL(2;R) on
the moduli space of translation surfaces, in the context of Teichm�uller dynamics, and
proved that several of these spectra contain a Hall’s ray.

Moreira and Roma~na prove the following result on Markov and Lagrange spectra for
horseshoes:
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Theorem 4.5 ([34]). Let � be a horseshoe associated to a C2-di�eomorphism ’ such
that HD(�) > 1. Then there is, arbitrarily close to ’ a di�eomorphism ’0 and a C2-
neighborhood W of ’0 such that, if � denotes the continuation of � associated to  2W ,
there is an open and dense set H � C1(M;R) such that for all f 2 H , we have

int L(f;� ) 6= ; and int M(f;� ) 6= ;;

where intA denotes the interior of A.

Recently, D. Lima proved that, for typical pairs (f;�) as in the above theorem,

supft 2 RjHD(M(f;�) \ (�1; t) < 1g = infft 2 Rjint(L(f;�) \ (�1; t) 6= ;g;

and Moreira ([29]) proved that, for typical pairs (f;�) as above, the minima of the corre-
sponding Lagrange and Markov dynamical spectra coincide and are given by the image of
a periodic point of the dynamics by the real function, solving a question by Yoccoz.

The classical Markov and Lagrange spectra can also be characterized as sets of maxi-
mum heights and asymptotic maximum heights, respectively, of geodesics in the modular
surface N = H2=PSL(2;Z). Moreira and Roma~na extend in [35] the fact that these spec-
tra have non-empty interior to the context of negative, non necessarily constant curvature
as follows:

Theorem 4.6. ([35]) Let M provided with a metric g0 be a complete noncompact surface
M with �nite Gaussian volume and Gaussian curvature bounded between two negative
constants, i.e., if KM denotes the Gaussian curvature, then there are constants a; b > 0
such that

�a2 � KM � �b2 < 0:

Denote by SM its unitary tangent bundle and by � its geodesic ow.
Then there is a metric g close to g0 and a dense and C2-open subset H � C2(SM;R)

such that
int M(f; �g) 6= ; and int L(f; �g) 6= ;

for any f 2 H, where �g is the vector �eld de�ning the geodesic ow of the metric g.
Moreover, if X is a vector �eld su�ciently close to �g then

int M(f;X) 6= ; and int L(f;X) 6= ;

for any f 2 H.

Recently, in collaboration with Pac���co and Roma~na ([36]), we proved an analogous
result for Lorenz ows. Roma~na also proved ([59]) a corresponding result for Anosov ows
in compact 3-dimensional manifolds.

Combining the techniques of this result with those of the above results in collaboration
with A. Cerqueira and C. Matheus, Cerqueira, Moreira and Roma~na proved the following

Theorem 4.7. ([5]) Let (’; f) be a generic pair, where ’ : M2 !M2 is a conservative
di�eomorphism with � �M2 a hyperbolic set for ’ and f : M ! R is C2. Then

HD(L(f;�) \ (�1; t)) = HD(M(f;�) \ (�1; t)) =: d(t)

is a continuous real function whose image is [0;min(HD(�); 1)].

21



References

[1] Y. Bugeaud, C. G. Moreira Sets of exact approximation order by rational numbers
III. Acta Arithmetica 146 (2011), no. 2, pp. 177{193.

[2] Y. Bugeaud, C. G. Moreira Variations autour d’un thorme mtrique de Khintchine.
(French) [Variations on a metric theorem of Khintchine] Bull. Soc. Math. France 144
(2016), no. 3, pp. 507-538.

[3] T. Cusick and M. Flahive, The Marko� and Lagrange spectra, Mathematical Surveys
and Monographs, 30. American Mathematical Society, Providence, RI, 1989. x+97 pp.

[4] A. Cerqueira, C. Matheus and C. G. Moreira Continuity of Hausdor� dimension across
generic dynamical Lagrange and Markov spectra. https://arxiv.org/abs/1602.04649

[5] A. Cerqueira, C. G. Moreira, S. Roma~na Continuity of Hausdor� Di-
mension Across Generic Dynamical Lagrange and Markov Spectra II.
https://arxiv.org/abs/1711.03851

[6] S. Crovisier and E. Pujals Essential hyperbolicity and homoclinic bifurcations: a
dichotomy phenomenon/mechanism for di�eomorphisms. Invent. Math. 201 (2015),
no. 2, pp. 385-517.

[7] G. A. Freiman, Noncoincidence of the Marko� and Lagrange spectra, Mat. Zametki 3
(1968), 195{200; English transl., Math. Notes 3 (1968),125{128.

[8] G. A. Freiman, The initial point of Hall’s ray, Number-theoretic studies in the Markov
spectrum and in the structural theory of set addition, pp. 87{120, 121{125. Kalinin.
Gos. Univ., Moscow, 1973.

[9] G. A. Freiman, Diophantine approximation and geometry of numbers (The Marko�
spectrum), Kalinin. Gos. Univ., Moscow, 1975.

[10] D. J. Feng, J. Wu, J.-C. Liang and S. Tseng, Appendix to the paper by T.  Luczak -
a simple proof of the lower bound: \On the fractional dimension of sets of continued
fractions", Mathematika 44 (1997), pp. 54{55.

[11] I. G. Good, The fractional dimensional theory of continued fractions, Proc. Camb.
Phil. Soc. 37 (1941), pp. 199{228.

[12] M. Hall, On the sum and product of continued fractions, Annals of Math., Vol. 48
(1947), pp. 966{993.

[13] S. Hayashi. Connecting invariant manifolds and the solution of the C1 stability and

-stability conjectures for ows. Annals of Math., Vol. 145 (1997), pp. 81-137.

[14] P. Hubert, L. Marchese, C. Ulcigrai, Lagrange spectra in Teichmller dynamics via
renormalization. Geom. Funct. Anal. 25 (2015), no. 1, pp. 180-255.

22



[15] M. Hochman and P. Shmerkin, Local entropy averages and projections of fractal
measures. Annals of Math. 175(3):1001-1059 (2012).

[16] O. Jenkinson and M. Pollicott, Computing the dimension of dynamically de�ned sets:
E2 and bounded continued fractions, Ergodic Theory Dynam. Systems 21 (2001), no.
5, 1429{1445.

[17] O. Jenkinson and M. Pollicott, Rigorous e�ective bounds on the Hausdor� dimension
of continued fraction Cantor sets: a hundred decimal digits for the dimension of E2,
Preprint (2016) available at arXiv:1611.09276.

[18] T.  Luczak On the fractional dimension of sets of continued fractions, Mathematika
44 (1997), pp. 50{53.

[19] Y. Lima and C.G. Moreira, A combinatorial proof of Marstrand’s theorem for prod-
ucts of regular Cantor sets. Expo. Math. 29 (2011), no. 2, 231-239.

[20] Y. Lima and C.G. Moreira, Yet another proof of Marstrand’s theorem. Bulletin of
the Brazilian Mathematical Society 42 (2011), no. 2, 331-345.

[21] R. Ma~n�e, A proof of the C1 stability conjecture. Publ. Math. I.H.E.S. 66 (1988), pp.
161-210.

[22] C. Matheus, The Lagrange and Markov spectra from the dynamical point of view.
https://arxiv.org/abs/1703.01748

[23] J.M. Marstrand, Some fundamental geometrical properties of plane sets of fractional
dimensions, Proceedings of the London Mathematical Society 3 (1954), vol. 4, 257-302.

[24] A. Markov, Sur les formes quadratiques binaires ind�finies, Math. Ann. v. 15, p.
381-406, 1879.

[25] C.G. Moreira, Stable intersections of Cantor sets and homoclinic bifurcations, Ann.
Inst. H. Poincar�e Anal. Non Lin�eaire 13 (1996), no. 6, pp. 741{781.

[26] C.G. Moreira, There are no C1-stable intersections of regular Cantor sets. Acta
Mathematica 206 (2011), no. 2, 311-323 .

[27] C.G. Moreira, Geometric properties of the Markov and Lagrange spectra.
https://arxiv.org/abs/1612.05782

[28] C.G. Moreira, Geometric properties of images of cartesian products of regular Cantor
sets by di�erentiable real maps. https://arxiv.org/abs/1611.00933

[29] C.G. Moreira, On the minima of Markov and Lagrange Dynamical Spectra.
https://arxiv.org/abs/1711.01565

[30] C. Matheus, C.G. Moreira, HD(M n L) > 0:353. https://arxiv.org/abs/1703.04302

23

http://arxiv.org/abs/1611.09276


[31] C. Matheus, C.G. Moreira, HD(M n L) < 0:986927.
https://arxiv.org/abs/1708.06258

[32] C. Matheus, C.G. Moreira, E. Pujals, Axiom A versus Newhouse phenomena for
Benedicks-Carleson toy models. Annales Scienti�ques de l’�Ecole Normale Sup�erieure
46 (2013), fascicule 6, p. 857-878, 2013.

[33] C.G. Moreira, J. Palis, M. Viana Homoclinic tangencies and fractal invariants in
arbitrary dimension/Tangences homoclines et invariants fractaux en dimension arbi-
traire. Comptes Rendus de l’Acad�emie des Sciences. S�erie 1, Math�ematique, v. 333, p.
475-480, 2001.

[34] C.G. Moreira, S. Roma~na, On the Lagrange and Markov Dynamical Spectra. Ergodic
Theory and Dynamical Systems, pp. 1{22. doi: 10.1017/etds.2015.121.

[35] C.G. Moreira, S. Roma~na, On the Lagrange and Markov Dynamical Spectra for
Geodesic Flows in Surfaces with Negative Curvature. http://arxiv.org/abs/1505.05178

[36] C.G. Moreira, M. J. Pac���co, S. Roma~na, Hausdor� Dimension, La-
grange and Markov Dynamical Spectra for Geometric Lorenz Attractors.
https://arxiv.org/abs/1611.01174

[37] C.G. Moreira, W. Silva, On the geometry of horseshoes in higher dimensions,
http://arxiv.org/abs/1210.2623

[38] L. Mora and M. Viana, Abundance of strange attractors. Acta Math. 171 (1993), no.
1, pp. 1-71.

[39] C.G. Moreira and J.-C. Yoccoz Stable intersections of regular Cantor sets with large
Hausdor� dimensions. Annals Of Mathematics, v. 154, n. 1, p. 45-96, 2001.

[40] C.G. Moreira and J.-C. Yoccoz Tangences homoclines stables pour des ensembles
hyperboliques de grande dimension fractale. Annales Scienti�ques de l’�Ecole Normale
Sup�erieure, 43, fascicule 1, p. 1-68, 2010.

[41] S. Newhouse, Non density of Axiom A(a) on S2, Proc. A.M.S. Symp. Pure Math.,
Vol. 14, (1970), pp. 191{202.

[42] S. Newhouse, Di�eomorphisms with in�nitely many sinks, Topology, Vol. 13, (1974),
pp. 9{18.

[43] S. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets for
di�eomorphisms, Publ. Math. IHES, Vol. 50, (1979), pp. 101{151.

[44] J. Palis, Homoclinic orbits, hyperbolic dynamics and fractional dimension of Cantor
sets, Contemporary Mathematics 58, (1987), pp. 203{216.

[45] J. Palis, Homoclinic bifurcations, sensitive chaotic dynamics and strange attractors,
Dynamical Syst. and Related Topics. World Scienti�c, (1991), pp. 466-473.

24

http://arxiv.org/abs/1505.05178
http://arxiv.org/abs/1210.2623


[46] J. Palis and F. Takens, Cycles and measure of bifurcation sets for two-dimensional
di�eomorphisms, Invent. Math., Vol. 82, (1985), pp. 379{442.

[47] J. Palis and F. Takens, Hyperbolicity and the creation of homoclinic orbits, Annals
of Math., Vol. 125, (1987), pp. 337{374.

[48] J. Palis and F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic
bifurcations: fractal dimensions and in�nitely many attractors, Cambridge Univ. Press,
1992.

[49] J. Palis and J.C. Yoccoz, Rigidity of centralizers of di�eomorphisms, Ann. Sci. cole
Norm. Sup., Vol. 22 (1989), pp. 81{98.

[50] J. Palis and J.C. Yoccoz, Centralizers of Anosov di�eomorphisms on tori, Acta
Mathematica, Vol. 22 (1989), pp. 99{108.

[51] J. Palis and J.C. Yoccoz, Di�erentiable conjugacies of Morse-Smale di�eomorphisms,
Bol. Soc. Brasil. Mat., Vol. 20 (1990), pp. 25{48.

[52] J. Palis and J.C. Yoccoz, Homoclinic Tangencies for Hyperbolic sets of large Hausdor�
Dimension Bifurcations, Acta Mathematica, Vol. 172 (1994), pp. 91{136.

[53] J. Palis and J.C. Yoccoz, On the arithmetic sum of regular Cantor sets, Ann. Inst.
H. Poincar�e Anal. Non Lin�eaire, Vol. 14 (1997), no.4, pp. 439{456.

[54] J. Palis and J.C. Yoccoz, Implicit formalism for a�ne-like maps and parabolic com-
position. Global analysis of dynamical systems, Inst. Phys., Bristol (2001), pp. 67{87.

[55] J. Palis and J.C. Yoccoz, Fers �a cheval non uniform�ement hyperboliques engendr�es par
une bifurcation homocline et densit�e nulle des attracteurs / Non-uniformly hyperbolic
horseshoes generated by homoclinic bifurcations and zero density of attractors, C. R.
Acad. Sci. Paris Sr. I Math., Vol. 333 (2001), no. 9, pp. 867-871.

[56] J. Palis and J.C. Yoccoz, Non-uniformly hyperbolic horseshoes arising from bifur-
cations of Poincar heteroclinic cycles, Publ. Math. Inst. Hautes tudes Sci., Vol. 110
(2009), pp. 1-217.

[57] H. Poincar�e, Les M�ethodes Nouvelles de la M�ecanique C�eleste, III, Gauthiers-Villars,
1899.

[58] E. Pujals and M. Sambarino, Homoclinic tangencies and hyperbolicity for surface
di�eomorphisms. Annals of Math. (2) 151 (2000), no. 3, pp. 961-1023.

[59] S. Roma~na, On the Lagrange and Markov Dynamical Spectra for Anosov Flows in
dimension 3, https://arxiv.org/abs/1605.01783

[60] P. Shmerkin, Moreira’s Theorem on the arithmetic sum of dynamically de�ned Can-
tor sets, http://arxiv.org/abs/0807.3709

25

http://arxiv.org/abs/0807.3709


[61] J.C. Yoccoz, Une erreur f�econde du math�ematicien Henri Poincar�e, Gaz. Math., Vol.
107 (2006), pp. 19-26.

[62] J.C. Yoccoz, A proof of Jakobson’s theorem. https://www.college-de-france.

fr/media/jean-christophe-yoccoz/UPL7416254474776698194_Jakobson_jcy.pdf

26

https://www.college-de-france.fr/media/jean-christophe-yoccoz/UPL7416254474776698194_Jakobson_jcy.pdf
https://www.college-de-france.fr/media/jean-christophe-yoccoz/UPL7416254474776698194_Jakobson_jcy.pdf

	1 Introduction
	2 Fractal Geometry and Dynamical Systems
	2.1 Hyperbolic sets and Homoclinic Bifurcations
	2.2 Regular Cantor sets - a conjecture by Palis
	2.3 Palis-Yoccoz theorem on non-uniformly hyperbolic horseshoes
	2.4 Hyperbolic sets in higher dimensions

	3 Fractal Geometry and Diophantine Approximations
	3.1 The classical Markov and Lagrange spectra
	3.2 Other results on the fractal geometry of Diophantine approximations

	4 Back to Dynamical Systems (and Differential Geometry)

