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Andrei Okounkov

The subjects in the title are interwoven in many different and very deep ways.
I recently wrote several expository accounts [64, 66, 67] that reflect a certain
range of developments, but even in their totality they cannot be taken as a
comprehensive survey. In the format of a 30-page contribution aimed at a
general mathematical audience, I have decided to illustrate some of the basic
ideas in one very interesting example — that of HilbpC2, nq, hoping to spark
the curiosity of colleagues in those numerous fields of study where one should
expect applications.

1 The Hilbert scheme of points in C2

1.1 Classical geometry
1.1.1

An unordered collection P “ tp1, . . . , pnu of distinct points in the plane C2

is uniquely specified by the corresponding ideal

IP “ tfpp1q “ ¨ ¨ ¨ “ fppnq “ 0u Ă Crx1, x2s

in the coordinate ring C2. The codimension of this ideal, i.e. the dimension
of the quotient

Crx1, x2s{IP “ functions on P
def
“ OP ,
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M. Aganagic, R. Bezrukavnikov, P. Etingof, I. Loseu, D. Maulik, N. Nekrasov, R. Pand-
haripande on the thoughts and ideas presented here. I am very grateful to the Simons
Foundation Simons Investigator program, the Russian Academic Excellence Project ’5-
100’, and the RSF grant 16-11-10160 for their support of my research.
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clearly equals n.
If the points tpiu merge, the limit of IP stores more information than

just the location of points. For instance, for two points, it remembers the
direction along which they came together. One defines

HilbpC2, nq “ tideals I Ă Crx1, x2s of codimension nu ,

and with its natural scheme structure [27, 39] this turns out to be a smooth
irreducible algebraic variety — a special feature of the Hilbert schemes of
surfaces that fails very badly in higher dimensions.

The map IP ÞÑ P extends to a natural map

πHilb : HilbpC2, nq Ñ pC2qn{Spnq (1)

which is proper and birational, in other words, a resolution of singularities of
pC2qn{Spnq. This makes HilbpC2, nq an instance of an equivariant symplectic
resolution — a very special class of algebraic varieties [37, 6] that plays a
central role in the current development of both enumerative geometry and
geometric representation theory. This general notion axiomatizes two key
features of πHilb:

• the source of π is an algebraic symplectic variety (here, with the sym-
plectic form induced from that of C2),

• the map is equivariant for an action of a torus T that contracts the
target to a point (here, T are the diagonal matrices in GLp2q and the
special point is the origin in pC2qn).

1.1.2

Both enumerative geometry and geometric representation theory really work
with algebraic varieties X and correspondences, that is, cycles (or sheaves,
etc.) in X1 ˆ X2, considered up to a certain equivalence. These one can
compose geometrically and they form a nonlinear analog of matrices of linear
algebra and classical representation theory. To get to vector spaces and
matrices, one considers functors like the equivariant cohomology H‚

TpXq, the
equivariant K-theory etc., with the induced action of the correspondences.

Working with equivariant cohomology whenever there is a torus action
available is highly recommended, in particular, because:
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• equivariant cohomology is in many ways simpler than the ordinary,
while also more general. E.g. the spectrum of the ring H‚

TpHilbpC2, nqq

is a union of explicit essentially linear subvarieties over all partitions
of n.

• the base ring H‚

Tppt,Qq “ QrLieTs of equivariant cohomology intro-
duces parameters in the theory, on which everything depends in a very
rich and informative way,

• equivariance is a way to trade global geometry for local parameters. For
instance, all formulas in the classical (that is, not quantum) geometry
of Hilbert schemes of points generalize [22] to the general surface S



where the intersection pairing pγ, γ1q for S “ C2 is pr0s, rC2sq “ 1. One rec-
ognizes in (2) the commutation relation for the Heisenberg Lie algebra pglp1q

— a central extension of the commutative Lie algebra of Laurent polynomials
with values in glp1q. The representation theory of this Lie algebra is very
simple, yet very constraining, and one deduces the identification

à

ně0

H
‚

TpHilbpS , nqq – S
‚

pspan of tα´kpγquką0q (3)

with the Fock module generated by the vacuum H‚

TpHilbpS , 0qq “ H‚

Tpptq.
Fock spaces (equivalently, symmetric functions) are everywhere in math-

ematics and mathematical physics and many remarkable computations and
phenomena are naturally expressed in this language. My firm belief is that
geometric construction, in particular the DT theory of 3-folds to be discussed
below, are the best known way to think about them.

1.1.4

The identification (3) is a good example to illustrate the general idea that
the best way to understand an algebraic variety X and, in particular, its
equivariant cohomology H‚

TpXq, is to construct interesting correspondences
acting on it.

For a general symplectic resolution

π : X Ñ X0 (4)

the irreducible components of the Steinberg variety X ˆX0 X give important
correspondences. For X “ HilbpC2, nq, these will be quadratic in Nakajima
correspondences, and hence not as fundamental. In Section 2 we will see one
general mechanism into which αkpγq fit.

1.1.5

Since pglp1q acts irreducibly in (3), it is natural to express all other geomet-
rically defined operators in terms of αkpγq. Of special importance in what
follows will be the operator of cup product (and also of the quantum prod-
uct) by Chern classes of the tautological bundle Taut “ Crx1, x2s{I over the
Hilbert scheme.
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The operator of multiplication by the divisor c1pTautq was computed by
M. Lehn in [40] as follows

c1pTautqY “ ´ 1
2

ÿ

n;mą0

`

α´n α´m αn`m ` α´n´m αn αm

˘

` pt1 ` t2q
ÿ

ną0

n ´ 1

2
α´n αn (5)

with the following convention2 about the arguments of the α’s. If, say, we
have 3 alphas, and hence need 3 arguments, we take the Künneth decompo-
sition of

rsmall diagonals “ r0s ˆ r0s ˆ rC2s P H
‚

TppC2q3q .

Similarly, α´n αn is short for α´npr0sqαnprC2sq. With this convention, (5) is
clearly an operator of cohomological degree 2. There is a systematic way to
prove formulas like (5) in the framework of Section 2, see [75].

1.1.6

A remarkable observation, made independently by several people, is that
the operator (5) is identical to the second-quantized trigonometric Calogero-
Sutherland operator — an classical object in many-body systems and sym-



Another interpretation of the same equation (5) is an integrable quantum
version of the Benjamin-Ono equation of 1-dimensional hydrodynamics, see
in particular [1]. The BO equation describes waves on a 1-dimensional surface
of a fluid of infinite depth, and it involves the Hilbert transform — a nonlo-
cal operation. This nonlocal operation is precisely responsible for the term
ř

ną0 nα´n αn which is present in (5) and looks a bit unconventional when
expressed in terms of the field αpζq “

ř

α´nζ
n. Note that other terms in (5)

are the normally ordered constant terms in αpζq3 and αpζq2, respectively.
These by now classical connections are only a preview of the kind of con-

nections that exists between enumerative problems and quantum integrable
systems in the full unfolding of the theory. Crucial insights into this connec-
tion were made in the pioneering work of Nekrasov and Shatashvili [60, 61].

1.2 Counting curves in HilbpC2, nq

1.2.1

Enumerative geometry of curves in an algebraic variety Y is a very old subject
in mathematics, with the counts like the 27 lines on a smooth cubic surface
going as far back as the work of Cayley from 1849. While superficially the
subject may be likened to counting points of Y over some field k, the actual
framework that the geometers have to construct to do the counts looks very
different from the number-theoretic constructions. In particular, the counts
are defined treating curves in Y as an excess intersection problem, with the
result that the counts are invariant under deformation even though there
may be no way to deform actual curves.

Also, the subject draws a lot of inspiration from mathematical physics,
where various curve counts are interpreted as counts (more precisely, indices)
of supersymmetric states in certain gauge or string theories. This leaves a
very visible imprint on the field, ranging from how one organizes the enu-
merative data to what is viewed as an important goal/result in the subject.
In particular, any given count, unless it is something as beautiful as 27 lines,
is viewed as only an intermediate step in the quest to uncover universal
structures that govern a certain totality of the counts.
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Figure 1: A fundamental object to count in DT
theory are algebraic curves, or more precisely, sub-
schemes C Ă Y of given pβ, χq constrained by how
they meet a fixed divisor D Ă Y .

1.2.3

Since the virtual dimension does not depend on n, it is convenient to organize
the DT counts by summing over all n with a weight zn, where z is a new
variable. These are conjectured to be rational functions of z with poles at
roots of unity [47, 48]. This is known in many important cases [49, 69, 76, 78]
and may be put into a larger conjectural framework as in [58], see Section
3.1.

1.2.4

An algebraic analog of cutting Y into pieces is a degeneration of Y to a
transverse union of Y1 and Y2 along a smooth divisor D0 as in Figure 2.
A powerful result of Levine and Pandharipande [41] shows that any smooth
projective 3-fold can be linked to a product of projective spaces (or any other
basis in algebraic cobordism) by a sequence of such moves. The DT counts
satisfy a certain gluing formula for such degeneration [42] in which the divisor
D0 is added to the divisors from Figure 1. This highlights the importance of
understanding the DT counts in certain basic geometries which can serve as
building blocks for arbitrary 3-folds.
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One set of basic geometries is formed by S -bundles over a curve B

S � � // Y

g

��
B ,

(8)

where S is a smooth surface4. One take D “
Ť

g´1pbiq for tbiu Ă B
and, by degeneration, this defines a TQFT on B with the space of states
H‚

TpHilbpS qq, where T Ă AutpS q is a maximal torus. This TQFT structure
is captured by the counts for B “ P1 Ą tb1, b2, b3u, which define a new, z-
and β-dependent supercommutative multiplication in this Fock space. It is
a very interesting question to describe this multiplication explicitly5.

Figure 2: Basic building blocks of DT theory are S
bundles over a curve B as in (8). As B degener-
ates to a nodal curve B1 Y B2, Y degenerates to a
transverse union of Y1 and Y2 along a smooth divi-
sor D0 – S . DT counts satisfy a gluing formula for
such degenerations.

Geometric representation theory provides an answer when S itself is a
symplectic resolution, which concretely means an ADE surface — a min-
imal resolution of the corresponding surface singularity S0. In this case,

4It suffices to take S P tA0 “ C2, A1, A2u, where An is the minimal resolution of the
corresponding surface singularity, to generate a basic set of counts.

5In particular, there are very interesting results and conjectures for K3 surface fibra-
tions, see [62]. Note that the dimension counts work out best when c1pS q “ 0.
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HilbpS , nq is a symplectic resolution of pS0q
n{Spnq, just like (1), and the

multiplication above is nothing but the quantum multiplication in H‚

TpHilbpS qq,
see [50, 65].

1.2.5

Recall that the quantum product ‹ is a supercommutative, associative defor-
mation of the classical Y-product in H‚

TpXq whose structure constants are
the counts of 3-pointed rational curves in X

pα ‹ β, γq “
ÿ

dPH2pX;Zqeff

zd # of degree d rational curves
meeting cycles dual to α, β, γ .

(9)

This is made mathematically precise using the correspondence
ÿ

d

zd ev˚

`“

M 0;3pX, dq
‰

vir

˘

P H‚pX ˆ X ˆ Xqrrzss (10)

obtained from the virtual fundamental cycle of the moduli space of 3-pointed
stable rational maps to X, see [33] for an introduction.

A closely related structure is the quantum differential equation, or Dubrovin
connection ∇X , which is a flat connection on trivial bundle over H2pX,Cq Q λ
with fiber H‚

TpX,Cq. Its flat sections satisfy

d

dλ
Ψpzq “ λ ‹ Ψpzq ,

d

dλ
zd “ pλ, dq zd , (11)

and contain very important enumerative information. For X “ HilbpC2q, the
quantum multiplication ring is generated by the divisor, so the two structures
are really the same.

1.2.6

With the z ÞÑ ´z substitution, the ‹-deformation of (5) for X “ HilbpC2q

was computed in [65] as follows

c1pTautq‹ “ c1pTautq Y `pt1 ` t2q
ÿ

dą0

d
zd

1 ´ zd
α´d αd ` . . . , (12)
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with the same convention about the arguments of αn as in (5) and with dots
denoting a scalar operator of no importance for us now. Note the simplicity
of the purely quantum terms6.

The largest and the richest class of equivariant symplectic resolutions
known to date is formed by the Nakajima quiver varieties [52], of which
HilbpC2q is an example. Formula (12) illustrates many general features of
the quantum cohomology of Nakajima quiver varieties proven in [51], such
as:

• the purely quantum terms are given by a rational function with values
in Steinberg correspondences

purely quantum P ℏHtoppX ˆX0 Xq b Qpzq , (13)

where
ℏ “ ´pt1 ` t2q

is the equivariant weight of the symplectic form.

• the shift z ÞÑ ´z is an example of the shift by a canonical element of
H2pX,Z{2q, called the theta-characteristic in [51].

• there is a certain Lie algebra gQ associated to an arbitrary quiver Q
in [51], whose positive roots are represented by effective curve classes
d P H2pX,Zq. Among these, there is a finite set of Kähler roots of X
such that

λ‹ “ λ Y ´ ℏ
ÿ

dPtpositive rootsu

pλ, dq
zd

1 ´ zd
Cd , (14)

where Cd P g´d gd is the corresponding root components of the Casimir
element, that is, the image of the invariant bilinear form on g´d b gd.
For X “ HilbpC2, nq, the quiver is the quiver with one vertex and one
loop with gQ “ pglp1q, Cd “ α´d αd, and

positive Kähler roots “ t1, . . . , nu Ă Z . (15)
6 If one interprets (5) as a quantum version of the Benjamin-Ono equation then the

new terms deform it to a quantization of the intermediate long wave (ILW) equation. This
observation has been rediscovered by many authors.
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• the Cartan subalgebra h Ă gQ acts by central elements and by the
ranks of the tautological bundles. The operator of cup products by
other characteristic classes of the tautological bundles, together with
g, generate a Hopf algebra deformation Y pgQq of U pgQrtsq known as
the Yangian.
The operators of quantum multiplication form a remarkable family
of maximal commutative subalgebras of Y pgQq known as the Baxter
subalgebras in the theory of quantum integrable systems, see Section
2.1.4. They are parametrized by z and, as z Ñ 0, they become the
algebra Y phq Ă Y pgQq of cup products by tautological classes.
The identification between the ‹-product ring and Baxter’s quantum
integrals of motion was predicted by Nekrasov and Shatashvili based
on their computation of the spectra of the operators. This served as
very important inspiration for [51].

• The Yangian description identifies the quantum differential equation
with the Casimir connection for the Lie algebra gQ, as studied (in the
finite-dimensional case) in [79]. This fits very nicely with the conjecture
of Bezrukavnikov and collaborators about the monodromy ∇X , see
below, and was another important inspiration for [51], see the historical
notes there.

For general symplectic resolutions, there is a definite gap between what
is known abstractly, and what can be seen in known examples. I expect
that a complete classification of the equivariant symplectic resolutions is
within the reach of the current generation of algebraic geometers, and we
will see how representative the known examples are. For general symplectic
resolutions, the Steinberg correspondence in (13) are constructed in [12],
while the rationality in z remains abstractly a conjecture that can be checked
in all known cases.

1.2.7

A generalization of these structures appears In enumerative K-theory. There,
instead of pairing virtual cycles with cohomology classes, we compute the
Euler characteristics of natural sheaves, including the virtual structure sheaf
Ovir, on the moduli spaces in question (here, the Hilbert scheme of curves in
Y ).
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From its very beginning, K-theory has been inseparable from the in-
dices of differential operators and related questions in mathematical physics.
Equivariant K-theoretic DT counts represent a Hamiltonian approach to su-
persymmetric indices in a certain physical theory (namely, the theory on a
D6 brane), in which the space is Y and the time is periodic7. Morally, what
one computes is the index of a certain infinite-dimensional Dirac operator as
a representation of AutpY q which is additionally graded by pβ, nq. Because
this is the index of a Dirac operator, the right analog of the virtual cycle is
the symmetrized virtual structure sheaf

pOvir “ Ovir b K 1{2
vir b . . . (16)

where K 1{2
vir is a square root of the virtual canonical bundle Kvir, the im-

portance of which was emphasized by Nekrasov [59], and the existence of
which is shown in [58]. The dots in (16) denote a certain further twist by a
tautological line bundle of lesser importance, see [58].

1.2.8

While it is not uncommon for different moduli spaces to give the same or
equivalent cohomological counts, the K-theoretic counts really feel every
point in the moduli space and are very sensitive to the exact enumerative
setup. In particular, for both the existence of (16) and the computations
with this sheaf, certain self-duality features of the DT deformation theory
are crucial. It remains to be seen whether computations with moduli spaces
like M 0;3pXq, that lack such self-duality, can really reproduce the K-theoretic
DT counts.

In K-theory, the best setup for counting curves in X “ HilbpC2, nq is the
moduli space of stable quasimaps to X, see [17]. Recall that

X “
␣

x1, x2 P EndpCnq, v P Cn
ˇ

ˇrx1, x2s “ 0
(

{{GLpnq ,

where the stability condition in the GIT quotient is equivalent to Crx1, x2sv
spanning Cn. By definition [17], a stable quasimap from B to a GIT quotient
is a map to the quotient stack8 that evaluates to a stable point away from a

7Or, more precisely, quasiperiodic, with a twist by an element of T Ă AutpY q after a
full circle of time.

8i.e. a principal G-bundle on B together with a section of the associated bundle of
prequotients, where G is the group by which we quotient. For G “ GLpnq, a principal
G-bundle is the same as a vector bundle on B of rank n.
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finite set of point in B. In return for allowing such singularities, quasimaps
offer many technical advantages.

If Y in (8) is a fibration in S “ C2, one can consider quasimap sections of
the corresponding X-bundle over B, and these are easily seen to be identical
to the Pandharipande–Thomas stable pairs for Y . Recall that by definition
[70], a stable pair is a complex of the form

OY
s

ÝÝÝÝÑ F

where F is a pure 1-dimensional sheaf and dimCoker s “ 0. For our Y ,
g˚F is a vector bundle on B, the section s gives v, while x1, x2 come from
multiplication by the coordinates in the fiber. If the fiber S contains curve,
the picture becomes modified and the PT spaces for the An-fibrations, n ą 0,
are related to quasimaps via a certain sequence of wall crossings.

1.2.9

The K-theoretic quasimap counts to HilbpC2q and, in fact, to all Nakajima
varieties have been computed in [64, 68], and their structure is a certain q-
difference deformation of what we have seen for the cohomological counts. In
particular, the Yangian Y pgq is replaced by a quantum loop algebra Uℏppgq

formed by K-theoretic analogs of the correspondences that define the action
of Y pgq, see Sections 2.2 and 3.1.4.

2 Geometric actions of quantum groups
Geometric representation theory in the sense of making interesting algebras
act by correspondences is a mature subject and its exposition in [16] is a
classic. Geometric construction of representation of quantum groups has
been a very important stimulus in the development of the theory of Nakajima
quiver varieties [54, 56].

Below we discuss a complementary approach of [51], which mixes geome-
try and algebra in a different proportion. It has certain convenient hands-off
features, in the sense that it constructs a certain category of representations
without, for example, a complete description of the algebra by generators
and relations. In algebraic geometry, one certainly prefers having a handle
on the category CohpXq to a complete list of equation that cut out X inside
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some ambient variety, so the construction should be of some appeal to alge-
braic geometers. It also interact very nicely with the enumerative question,
as it has certain basic compatibilities built in by design.

2.1 Braiding
2.1.1

If G is a group then the category of G-modules over a field k has a tensor
product — the usual tensor product M1 b M2 of vector spaces in which an
element g P G acts by g b g. There is also a trivial representation g ÞÑ 1 P

Endpkq, which is the identity for b. This reflects the existence of a coproduct,
that is, of an algebra homomorphism

kG Q g
∆

ÝÝÝÝÝÑ g b g P kG b kG , (17)

where kG is the group algebra of G, with the counit

kG Q g
"

ÝÝÝÝÑ 1 P k .

There are also dual module M˚ “ HomkpM,kq in which g acts by pg´1qT ,
reflecting the antiautomorphism

kG Q g
antipode

ÝÝÝÝÝÝÝÝÑ g´1 P kG .

Just like the inverse in the group, the antipode is unique if it exist, and so it
will be outside of our focus in what follows, see [26].

An infinitesimal version of this for a Lie or algebraic group G is to replace
kG by the universal enveloping algebra U pgq, g “ LieG, with the coproduct
obtained from (17) by Leibniz rule

∆pξq “ ξ b 1 ` 1 b ξ , ξ P g .

The multiplication, comultiplication, unit, counit, and the antipode form an
beautiful algebraic structure known as a Hopf algebra, see e.g. [26]. Another
classical example is the algebra krGs of regular functions on an algebraic
group. Remarkably, the axioms of a Hopf algebra are self-dual under taking
duals and reversing all arrows. Observe that all of the above examples are
either commutative, or cocommutative.
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2.1.2

Broadly, a quantum group is a deformation of the above examples in the
class of Hopf algebras. Our main interests is in Yangians and quantum loop
algebras that are deformations of

U pgrtsq ù Y pgq , U pgrt˘1sq ù Uℏppgq , (18)

respectively. Their main feature is the loss of cocommutativity. In other
words, the order of tensor factors now matters and

M1 b M2 fl M2 b M1 ,

in general, or at least the permutation of the tensor factors is no longer an
intertwining operator. While tensor categories are very familiar to algebraic
geometers, this may be an unfamiliar feature. But, as the representation-
theorists know, a mild noncommutativity of the tensor product makes the
theory richer and more constrained.

The Lie algebras grts and grt˘1s in (18) are g-valued functions on the
additive, respectively multiplicative, group of the field and they have natural
automorphisms

t ÞÑ t ` a , resp. t ÞÑ at , a P G ,

where we use G as a generic symbol for either an additive or multiplicative
group. The action of G will deform to an automorphism of the quantum
group9 and we denote by Mpaq the module M , with the action precomposed
by an automorphism from G.

The main feature of the theory is the existence of intertwiner (known as
the braiding, or the R-matrix)

R_pa1 ´ a2q : M1pa1q b M2pa2q Ñ M2pa2q b M1pa1q (19)

which is invertible as a rational function of a1 ´ a2 P G and develops a kernel
and cokernel for those values of the parameters where the two tensor products
are really not isomorphic. One often works with the operator R “ p12q ˝ R_

that intertwines two different actions on the same vector space

Rpa1 ´ a2q : M1pa1q b M2pa2q Ñ M1pa1q bopp M2pa2q . (20)
9In fact, for Uℏppgq, it is natural to view this loop rotation automorphism as part of the

Cartan torus.
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As the word braiding suggest, there is a constraint on the R-matrices coming
from two different ways to put three tensor factors in the opposite order. In
our situation, the corresponding products of intertwiners will be simply be
equal, corresponding to the Yang-Baxter equation

RM1;M2pa1 ´ a2qRM1;M3pa1 ´ a3qRM2;M3pa2 ´ a3q “

“ RM2;M3pa2 ´ a3qRM1;M3pa1 ´ a3qRM1;M2pa1 ´ a2q , (21)

satisfied by the R-matrices.

2.1.3

There exists general reconstruction theorem that describe tensor categories
of a certain shape and equipped with a fiber functor to vector spaces as repre-
sentation categories of quantum groups, see [25, 26]. For practical purposes,
however, one may be satisfied by the following simple-minded approach that
may be traced back to the work of the Leningrad school of quantum inte-
grable systems [71].

Let tMiu be a collection of vector spaces over a field k and

RMi;Mj
paq P GLpM1 b M2, kpaqq

a collection of operators satisfying the YB equation (21). From this data,
one constructs a certain category C of representation of a Hopf algebra Y as
follows. We first extend the R-matrices to tensor products by the rule

RM1pa1q;M2pa2qbM3pa3q “ RM1;M3pa1 ´ a3qRM1;M2pa1 ´ a2q , etc.

It is clear that these also satisfy the YB equation. One further extends R-
matrices to dual vector spaces using inversions and transpositions, see [71].
Note that in the noncocommutative situation, one has to distinguish between
left and right dual modules. For simplicity, we may assume that the set tMiu

is already closed under duals.
The objects of the category C are thus M “

Â

Mipaiq and we define
the quantum group operators in M as the as the matrix coefficients of the
R-matrices. Concretely, we have

TM0;m0puq
def
“ trM0pm0 b 1qRM0puq;M P EndpMq b kpuq (22)

17



for any operator m0 of finite rank in an auxiliary space M0 P ObpC q. The
coefficients of u in (22) give us a supply of operators

Y Ă
ź

M

EndpMq .

The YB equation (21) can now be read in two different ways, depending
on whether we designate one or two factors as auxiliary. With these two
interpretations, it gives either:

• a commutation relation between the generators (22) of Y , or

• a braiding of two Y modules.

Further, any morphism in C , that is, any operator that commutes with Y
gives us relations in Y when used in the auxiliary space. This is a generaliza-
tion of the following classical fact: if G Ă

ś

GLpMiq is a reductive algebraic
group, then to know the equations of G is equivalent to knowing how bMki

decompose as G-modules.
The construction explained below gives geometric R-matrices, that is,

geometric solutions of the YB equation acting in spaces like (3) in the Yangian
situation, or in the corresponding equivariant K-theories for Uℏppgq. This gives
a quantum group Y which is precisely of the right size for the enumerative
application. With certain care, see [51], the above construction works over a
ring like k “ H‚

Tpptq.
The construction of R-matrices uses stable envelopes, which is a certain

technical notion that continues to find applications in both in enumerative
and representation-theoretic contexts.

2.1.4

Let z be an operator in each Mi such that

rz b z, RM1;M2s “ 0 .

A supply of such is provided by the Cartan torus expphq where, in geometric
situations, h acts by the ranks of the universal bundles. A classical observa-
tion of Baxter then implies that

“

TM0;zpuq,TM 1
0;zpu1q

‰

“ 0
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for fixed z and any M0puq and M 1
0pu

1q. In general, these depend rationally
on the entries of z as it is not, usually, an operator of finite rank. The corre-
sponding commutative subalgebras of Y are known as the Baxter, or Bethe
subalgebras. They have a direct geometric interpretation as the operators of
quantum multiplication, see below.

2.2 Stable envelopes
2.2.1

There are two ways in which a symplectic resolution X
�

ÝÑ X0 may break up
into simpler symplectic resolutions. One of them is deformation. There is a
stratification of the deformation space DefpX,ωq “ PicpXq bZ C by the dif-
ferent singularities that occur, the open stratum corresponding to smooth X0

or, equivalently, affine X, see [37]. In codimension 1, one sees the simplest
singularities into which X can break, and this is related to the decompo-
sitions (13) and (14), see [12], and so to the notion of the Kähler roots of
X introduced above. In the context of Section 3.2, the hyperplanes of the
quantum dynamical Weyl group may be interpreted as a further refinement
of this stratification that records singular noncommutative deformations of
X0.

2.2.2

A different way to break up X into simpler pieces is to consider the fixed
points XA of a symplectic torus A Ă AutpX,ωq. The first order information
about the geometry of X around XA is given by the A-weights in the normal
bundle NX{XA . These are called the equivariant roots for the action of A, or
just the equivariant roots of X if A is a maximal torus in AutpX,ωq.

There is a certain deep Langlands-like (partial) duality for equivariant
symplectic resolutions that interchanges the roles of equivariant and Käh-
ler variables. The origin of this duality, sometimes called the 3-dimensional
mirror symmetry, is in 3-dimensional supersymmetric gauge theories, see
[34, 19] and also e.g. [13, 14, 11] for a thin sample of references. As this
duality interchanges K-theoretic enumerative information, the quantum dif-
ference equation for X becomes the shift operators for its dual X_, see [64]
for an introduction to these notions. Among other things, the Kähler and
equivariant roots control the poles in these difference equations, which makes
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it clear that they should be exchanges by the duality.
For the development of the theory, it is very important to be able to both

break X into simpler piece and also to find X as such a piece in a more
complex ambient geometry.

2.2.3

For instance for X “ HilbpC2, nq, we can take the maximal torus A Ă SLp2q,
in which case XA is a finite set of monomial ideals

I� Ă Crx1, x2s , |λ| “ n ,

indexed by partitions λ of the number n. At I�, the normal weights are
t˘hookp˝qu˝P�, with the result that

equivariant roots of HilbpC2, nq “ t˘1, . . . ,˘nu . (23)

Notice the parallel with (15). It just happens that HilbpC2, nq is self-dual,
we will see other manifestations of this below.

2.2.4

More importantly, products
śr

i“1HilbpC2, niq may be realized in a very non-
trivial way as fixed loci of a certain torus A on an ambient variety M pr,

ř

niq.
Here M pr, nq is the moduli space of framed torsion free sheaves F on P2 of
rank r and c2pF q “ n. A framing is a choice of an isomorphism

ϕ : F
ˇ

ˇ

L

„
ÝÝÑ O‘r

L , L “ P2zC2 ,

on which the automorphism group GLprq acts by postcomposition. The
spaces M pr, nq are the general Nakajima varieties associated to the quiver
with one vertex and one loop. They play a central role in supersymmetric
gauge theories as symplectic resolutions of the Uhlenbeck spaces of framed
instantons, see [55]. It is easy to see that M p1, nq “ HilbpC2, nq and

M pr, nqA “
ğ

ř

ni“n

r
ź

i“1

HilbpC2, niq ,

where A Ă GLprq is the maximal torus. For general Nakajima varieties, there
is a similar decomposition for the maximal torus A of framing automorphisms.
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2.2.5

The cohomological stable envelope is a certain Lagrangian correspondence

Stab Ă X ˆ XA , (24)

which may be seen as an improved version of the attracting manifold

Attr “

!

px, yq
ˇ

ˇ lim
aÑ0

a ¨ x “ y
)

Ă X ˆ XA .

The support of (24) is the full attracting set Attrf Ă X ˆ XA, which is the
smallest closed subset that contains the diagonal and is closed under taking
Attrp ¨ q.

To define attracting and repelling manifolds, we need to separate the
roots for A-weights into positive and negative, that is, we need to choose a
chamber C Ă LieA in the complement of the root hyperplanes. Note this
gives an ordering on the set of components

Ů

Fi “ XA of the fixed locus:
F1 ą F2 if Attrf pF1q meets F2.

For
LieA “ tdiagpa1, . . . , arqu Ă glprq (25)

as in Section 2.2.4, the roots are tai ´ aju, and so a choice of C is the usual
choice of a Weyl chamber. As we will see, it will correspond to an ordering
of tensor factors as in Section 2.1.2.

The stable envelope is characterized by:

• it is supported on Attrf ,

• it equals10 ˘Attr near the diagonal in XA ˆ XA Ă X ˆ XA,

• for an off-diagonal component F2 ˆ F1 of XA ˆ XA, we have

degLiepAq Stab
ˇ

ˇ

ˇ

F2ˆF1

ă 1
2
codimF2 “ degLiepAq Attr

ˇ

ˇ

ˇ

F2ˆF2

, (26)

where the degree is the usual degree of polynomials for H‚

ApXA,Zq –

H‚
pXAq b ZrLieAs.

10The ˘ a choice here, reflecting a choice of a polarization of X, which is a certain
auxiliary piece of data that one needs to fix in the full development of the theory.
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Condition (26) is a way to quantify the idea that Stab
ˇ

ˇ

F2ˆF1
is smaller

than AttrpF2q. This makes the stable envelope a canonical representative of
AttrpF1q modulo cycles supported on the lower strata of Attrf .

The existence and uniqueness of stable envelopes are proven, under very
general assumptions on X in [51]. As these correspondences are canonical,
they are invariant under the centralizer of A and, in particular, act in T-
equivariant cohomology for any ambient torus T.

2.2.6

To put ourselves in the situation of Section 2.1.3, we define a category in
which the objects are

Fpa1, . . . , arq “
à

ně0

H
‚

TpM pr, nqq (27)

and the maps defined by stable envelopes, like

Fpa1q b Fpa2q

Stab`

,,

Stab´

33 Fpa1, a2q , (28)

where C˘ “ ta1 ż a2u, are declared to be morphisms. Since both maps
in (28) are isomorphisms after A-equivariant localization, we get a rational
matrix

Rpa1 ´ a2q “ Stab´1
´ ˝ Stab` P EndpFpa1q b Fpa2qq b Qpa1 ´ a2q . (29)

Its basic properties are summarized in the following

Theorem 1 ([51]). The R-matrix (29) satisfies the YB equation and de-
fines, as in Section 2.1.3, an action of Y ppglp1qq in equivariant cohomology of
M pr, nq. The Baxter subalgebras in Y ppglp1qq are the algebras of operators of
quantum multiplication. In particular, the vacuum-vacuum elements of the
R-matrix are the operators of classical multiplication in M pr, nq.

Here z in the Cartan torus of pglp1q acts by zn in the nth term of (27),
which clearly commutes with R-matrices. The vacuum in (27) is the n “ 0
term.
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2.2.7

For a general Nakajima variety, it is proven in [51] that the corresponding
R-matrices define an action of Y pgq for a certain Borcherds-Kac-Moody Lie
algebra

g “ h ‘
à

�‰0

g� ,

with finite-dimensional root spaces g�. This Lie algebra is additionally
graded by the cohomological degree and it has been conjectured in [63] that
graded dimensions of g� are given by the Kac polynomial for the dimension
vector α. A slightly weaker version of this conjecture is proven in [73, 74].

Again, the operators of classical multiplication are given by the vacuum-
vacuum matrix elements of the R-matrix, while for the quantum multiplica-
tion we have the formula already announced in Section 1.2.6

Theorem 2 ([51]). For a general Nakajima variety, quantum multiplication
by divisors is given by the formula (14) and hence the quantum differential
equation is the Casimir connection for Y pgq.

2.2.8

Back to the Hilbert scheme case, the R-matrix (29) acting in the tensor prod-
uct of two Fock spaces is a very important object for which various formulas
and descriptions are available. The following description was obtained in
[51].

The operators
α˘

n “ αn b 1 ˘ 1 b αn

act in the tensor product of two Fock spaces, and form two commuting
Heisenberg subalgebras. They are analogous to the center of mass and sepa-
ration coordinates in a system of two bosons, and we can similarly decompose

Fpa1q b Fpa2q “ F`pa1 ` a2q b F´pa1 ´ a2q , (30)

where to justify the labels we introduce the zero modes α0pγq that act on Fpaiq

by ´ai

ş

γ. Here integral denotes the equivariant integration of γ P H‚

TpC2q.
Consider the operators Ln defined by

ÿ

Lnζ
´n “

1

4
:α´pζq2: ˘

1

2
ℏ Bα´pζq ´

1

4

ż

ℏ2 , (31)
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where :α´pζq2: is the normally ordered square of the operator α´pζq “
ř

α´
n ζ

n, which now has a constant term in ζ, and B stands for ζ B
B�

. For
the cohomology arguments of α´

n , we use the conventions of Section 1.1.5.
ူ㍔䨠⽆㐠ㅌ〱⁔映〷㘠ⴷ⸲㤴⁔㘠ⴶ㔰



appear as strings or even point particles to a low-resolution observer, see
[5] for a recent review. The supersymmetric index for membranes of the
form

C ˆ S1 Ă Z ˆ S1 ,

where C is a complex curve in a complex Calabi-Yau 5-fold Z, should be
a virtual representation of the automorphisms AutpZ,Ω5

Zq that preserve the
5-form, so a certain K-theoretic curve count in Z. See [58] for what it might
look like and a conjectural equivalence with K-theoretic DT counts for

Y “ ZCˆ
z ,

for any Cˆ
z Ă AutpZ,Ω5

Zq with a purely 3-dimensional fixed locus. The most
striking feature of this equivalence is the interpretation of the variable z

z “ degree-counting variable in (12)
“ the χpOCq-counting variable in DT theory, see Section 1.2.3
!

“ equivariant variable z P Cˆ
z in M-theory . (33)

Note that in cohomology equivariant variables take values in a Lie algebra,
and so cannot be literally on the same footing as Kähler variables.

3.1.2

As a local model, one can take the total space

Z “

L1 ‘ L2 ‘ L3 ‘ L4

Ó

B
,

4
â

i“1

Li “ KB , (34)

of 4 line bundles over a smooth curve B. In this geometry, one can designate
any two Li to form Y by making z scale the other two line bundles with
opposite weights. Thus the counting of Section 1.2.4 with S “ C2, when
properly set up in K-theory, has a conjectural Sp4q-symmetry that permutes
the weights

pt1, t2,
z

?
qt1t2

,
1

z
?
qt1t2

q ,

ˆ

t1
t2

˙

P AutpC2q ,

where q´1 is the Chern root of KB.
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3.1.3

This theory is described by certain q-difference equation that describes the
change of the counts as the degrees of tLiu change, and correspondingly
the variables t1, t2, z are shifted by powers of q. In fact, similar q-difference
equations can be defined for any Nakajima variety including M pr, nq from
Section 2.2.4. For those, there are also difference equations in the framing
equivariant variables ai.

Theorem 4 ([64, 68]). The q-difference equations in variables ai are the
quantum Knizhnik-Zamolodchikov (qKZ) equations for Uℏp

p

pglp1qq and the q-
difference equation in z is the lattice part of the dynamical Weyl group of
this quantum group. Same is true for a general Nakajima variety and the
corresponding quantum loop algebra Uℏpgq.

The qKZ equations, introduced in [30], have the form

Ψpqa1, a2, . . . , anq “ pz b 1 b ¨ ¨ ¨ b 1qR1;npa1{anq . . . R1;2pa1{a2qΨ (35)

with similar equations in other variables ai, where z is as in (25). For the
R-matrices of Uℏppgq, where dim g ă 8, these play the same role in inte-
grable 2-dimensional lattice models as the classical KZ equations play for
their conformal limits, see e.g. [36].

For Uℏp
p

pglp1qq, the R-matrix is a generalization of the R-matrix of The-
orem 3 constructed using the K-theoretic stable envelopes. The algebra
Uℏp

p

pglp1qq is constructed from this R-matrix using the general procedure of
Section 2.1.3. For this particular geometry, it also coincides with the al-
gebras constructed by many authors by different means, including explicit
presentations see e.g. [15, 28, 57, 72] for a sample of references where the
same algebra appears.

It takes a certain development of the theory to define and make con-
crete the operators from the quantum dynamical Weyl group of an algebra
like Uℏppgq. They crucially depend on certain features of K-theoretic stable
envelopes that are not visible in cohomology.

3.1.4

In the search for the right K-theoretic generalization of (26), one should
keep in mind that the correct notion of the degree of a multivariate Laurent

26





For finite-dimensional g, we have gwall “ slp2q for every wall and the con-
struction specializes to the classical construction of Etingof and Varchenko
[23]. The operators Bwall satisfy the braid relations of the wall arrangement.
Because each Bwall depends on (38) through the equation of the correspond-
ing wall, these relations look like the Yang-Baxter equations (21), in which
each term depends on a “ pa1, a2, a3q through the equation ai ´aj “ 0 of the
hyperplane being crossed in LieA.

3.2 Monodromy and derived equivalences
3.2.1

As a special pz-independent case, the dynamical Weyl group contains the
so-called:

(w) quantum Weyl group of Uℏppgq, which plays many roles, including

(m) this is the monodromy group of the quantum differential equation (11),
and

(p) this group describes the action on KTpXq of the derived automorphisms
of X constructed by Bezrukavnikov and Kaledin using quantizations
pXc of X in characteristic p " 0, see [9, 7, 10, 38, 43, 45, 44, 46]. It
thus plays the same role in modular representation theory of pXc as the
Hecke algebra plays in the classical Kazhdan-Lusztig theory.

Theorem 5 ([8]). We have (w) “ (m) “ (p) for all Nakajima varieties.

Other known infinite series of equivariant symplectic resolutions are also
considered in [8]. For finite-dimensional g, the description of the monodromy
of the Casimir connection via the quantum Weyl group is a conjecture of
V. Toledano-Laredo [79]. The equality (m) “ (p) for all equivariant sym-
plectic resolutions is a conjecture of Bezrukavnikov and the author, see the
discussion in [4, 66].

Here pXc is an associative algebra deformation of the Poisson algebra of
functions on X or X0. While it may be studied abstractly, quantizations
of Nakajima varieties may be described concretely as quantum Hamiltonian
reductions, see [24, 31]. For X “ HilbpC2, nq, pXc is the algebra generated
by symmetric polynomials in tw1, . . . , wnu, and the operators of the rational
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Calogero quantum integrable systems — a commutative algebra of differential
operators that includes the following rational analog of (6)

HC,rat “ 1
2

N
ÿ

i“1

B2

Bw2
i

´ cpc ` 1q
ÿ

iăjďN

1

pwi ´ wjq2
. (40)

The kinship between (6) and (40) is closer than normal because of the self-
duality of HilbpC2, nq. Recall that duality swaps equivariant and Kähler
variables and instead of an equivariant variable θ in (6) we have a Kähler
variable c in (40). It parametrizes deformations of pXc in the same way as
PicpXq bZ k parametrizes deformations of X over a field k.

For p " 0, the BK theory produces derived equivalences

Db CohXp1q „
ÐÝÝÝÑ Db

pXc-mod „
ÐÝÝÝÑ DbCohX

p1q

flop (41)

for every nonsingular value of c P Z. A shift c ÞÑ c ` p twists (41) by Op1q.
Here Xp1q denotes the Frobenius twist of X and Xflop refers to a change of
stability condition in the GIT construction of X.

In the (m) “ (p) interpretation, the composed equivalence in (41) be-
comes the transport of the QDE from the point z “ 0, that corresponds to
X, to the point z “ 8, that corresponds to Xflop, along the ray with

arg z “ ´2π
c

p
.

In particular, this identifies the singularities of the QDE, given by the Kähler
roots of X, with the limit limpÑ8

1
p
tcsingu of the singular parameters of the

quantization. See [8] for details.

3.2.2

Monodromy of a flat connection with regular singularities is an analytic map
between algebraic varieties that may be seen as a generalization of the expo-
nential map of a Lie group. There is a long tradition, going back to at least
the work of Kohno and Drinfeld of computing the monodromy of connec-
tions of representation-theoretic origin in terms of closely related algebraic
structures. Just like for the exponential map, there is a certain progression
in this, as one goes from additive variables to multiplicative, and also from
multiplicative — to elliptic. E.g. in the case at hand the QDE (= the Casimir
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connection) is defined for modules M over the Yangian Y pgq, and is com-
puted in terms of the action of Uℏppgq in a closely related representation11,
see in particular [32].

A key step in capturing the monodromy algebraically is typically a certain
compatibility constraint between the monodromy for M “ M1 bM2 and the
monodromy for the tensor factors. The framework introduced above gives
a very conceptual and powerful way to prove such statements. Recall that,
geometrically, b arises as a special correspondence between XA and X, where
A is a torus that acts on X preserving the symplectic form. Therefore, it is
natural to ask, more generally, for a compatibility between the monodromy
of the QDE for X and XA.

In fact, one can ask a more general question about the compatibility of
the corresponding q-difference equations as in Theorem 4. Let

Z “ PicpXq bZ Cˆ

be the Kahler torus of X and Z be the toric compactification of Z correspond-
ing to the fan of ample cones of flops of X. Its torus-fixed points 0Xflop P Z
correspond to all possible flops of X. A regular q-difference connection on a
smooth toric variety is an action of the the cocharacter lattice

PicpXq Q λ Ñ q� P Z , q P Cˆ ,

on a (trivial) vector bundle over Z. Shift operators define a commuting
regular q-difference connections in the variables a P A Ă A, where A is the
toric variety given by the fan of the chambers C. The q-difference connection
for XA sits overs the torus fixed points 0C P A.

The most interesting analytic feature here is that the connections in z
and a, while compatible and separately regular, are not regular jointly. This
can never happen for differential equations, see [20], but is commonplace for
q-difference equations as illustrated by the system:

fpqz, aq “ afpz, aq , fpz, qaq “ zfpz, aq .

As a result, near any point p0X , 0Cq P Z ˆ A, we get two kinds of solutions.
Those naturally arising enumeratively are holomorphic in z in a punctured

11geometrically, the right relation between HTpXq, where the Yangian acts, and KTpXq

of X, where Uℏppgq acts, is given by a certain Γ-function analog of the Mukai vector, as in
the work of Iritani [35]
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neighborhood of 0X and meromorphic in a with poles accumulating to 0C.
These may be called the z-solutions. For a-solutions, the roles of z and a
are exchanged. These naturally appear in the Langlands dual setup and the
initial conditions at a “ 0C for them are the z-solutions for XA.

Transition matrices between the a-solutions and the z-solutions, which is
by construction elliptic, intertwine the monodromy for XA and X, and vice
versa. Note these transition matrices may, in principle, be computed from the
series expansions near p0X , 0Cq, which differentiates them from more analytic
objects like monodromy or Stokes matrices.

Figure 3: z-solutions are convergent power series in
z with coefficients in Qpaq, and the poles (solid lines
in the picture) of these coefficients accumulate to
a “ 0C. The poles of a-solutions, the dashed lines
in the figure, similarly accumulate to z “ 0X .

Theorem 6 ([3]). The transformation from the a-solutions to z-solutions is
given by elliptic stable envelopes, a certain elliptic analog of Stab constructed
in [3].

3.2.3

To complete the picture, one can give Mellin-Barnes-type integral solutions to
the quantum q-difference equations, and so, in particular to the qKZ and dy-
namical equations for Uℏppgq in tensor products of evaluation representations
[2]. It is well-known that the stationary phase q Ñ 1 limit in such integrals
diagonalizes the Baxter subalgebra and hence generalizes the classical ideas
of Bethe Ansatz.
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