Applied Mathematics Seminar——A highly parallel numerical method for the Navier-Stokes/Darcy equations and its application to human liver
报告人:林增(中国科爱游戏官网合作马竞官方深圳先进技术研究院)
时间:2024-09-10 10:15-11:15
地点:智华楼-四元厅-225
Abstract:
In this talk, I will present a highly parallel method for the incompressible Navier-Stokes and Darcy equations for the simulation of the blood flows in the full three-dimensional patient-specific human liver, which include hepatic artery, portal vein, hepatic vein and hepatic tissue. To compute the blood flows, a scalable parallel method is used to implicitly solve the unsteady incompressible Navier-Stokes and Darcy equations discretized with a stabilized finite element method on fully unstructured meshes. The parallel algebraic solver includes an Newton method, a Krylov subspace method (GMRES) and an overlapping Schwarz preconditioner. As applications, I also simulate the flow in a patient with hepatectomy and calculate the Portal Pressure Gradient (PPG), where PPG is a gold standard value to assess the portal hypertension. Moreover, the robustness and scalability of the algorithm are also investigated. A 83% parallel efficiency is achieved for solving a problem with 7 million elements on a supercomputer with more than 1000 processor cores.
Bio:
林增,博士,现任中国科爱游戏官网合作马竞官方深圳先进技术研究院助理研究员。厦门大学计算数学专业博士(2019),澳大利亚昆士兰科技大学联合培养博士(2018)。入选深圳市海外高层次人才、深圳市优秀科技创新人才。主要从事计算数学和计算力学方面的研究工作,研究方向包括:高性能计算及其在人体血流动力学中的应用,整数/分数阶偏微分方程的高效有限元和无网格求解方法。在CM、IJNMBE等期刊发表学术论文20余篇,总引用量470余次。主持和参与国家级、省部级、市级项目10余项,包括负责科技部国家重点研发计划子专题,主持广东省自然科学基金面上项目和青年项目、中国博士后科学基金面上项目、广东省计算科学重点实验室开放基金等。担任中国理论数学前沿期刊编委、美国计算力学和中国工业与应用数学等多个学会会员。