Optimal Estimation of Large Toeplitz Covariance Matrices

Harrison H. Zhou
Department of Statistics
Yale University

Joint work with T. Tony Cai and Zhao Ren

Outline

- Introduction
- Motivation from Asymptotic Equivalence Theory
- Main Results
- Summary

Introduction

Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be i.i.d. p-variate Gaussian with an unkown Toeplitz covariance matrix $\Sigma_{p \times p}$,

$$\begin{pmatrix} \sigma_0 & \sigma_1 & \cdots & \sigma_{p-2} & \sigma_{p-1} \\ \sigma_1 & \sigma_0 & & \sigma_{p-2} \\ \vdots & \ddots & \vdots \\ \sigma_{p-2} & & \sigma_0 & \sigma_1 \\ \sigma_{p-1} & \sigma_{p-2} & \cdots & \sigma_1 & \sigma_0 \end{pmatrix}$$

Goal: Estimate $\Sigma_{p \times p}$ based on the sample $\mathbf{X}_i : 1 \leq i \leq n$.

Introduction – Spectral Density Estimation

The model given by observing

$$\mathbf{X}_1 \quad N\left(0, \Sigma_{\boldsymbol{p} \times \boldsymbol{p}}\right)$$

with $\Sigma_{p\times p}$ Toeplitz is commonly called

Spectral Density Estimation

 \mathbf{X}_1 , a stationary centered Gaussian sequence with spectral density f where

$$f(t) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} \sigma_{m} \exp(imt) = \frac{1}{2\pi} [\sigma_{0} + 2\sum_{m=1}^{\infty} \sigma_{m} \cos(mt)], t \quad [-\pi, \pi].$$

Here we have $\sigma_{-m} = \sigma_m$.

Remark: there is a one-to-one correspondence between f and $\Sigma_{\infty \times \infty}$.

<u>Introduction – Problem of Interest</u>

We want to understand the minimax risk:

$$\inf_{\hat{\Sigma}} \sup_{\mathcal{F}} \mathbb{E} ||\hat{\Sigma} - \Sigma||^2$$

where $\|\cdot\|$ denotes the spectral norm and — is some parameter space for f.

Motivation from Asymptotic Equivalence Theory

Golubev, Nussbaum and Z. (2010, AoS)

The **Spectral Density Estimation** given by observing each X_i is asymptotically equivalent to the **Gaussian white noise**

$$dy_i(t) = \log f(t)dt + 2\pi^{1=2}p^{-1=2}dW_i(t), t \quad [-\pi, \pi]$$

under some assumptions on the unknown f.

For example,

$$(M, \epsilon) = f : |f(t_1) - f(t_2)| \le M |t_1 - t_2|$$
 and $f(t) = \epsilon$.

We need $\alpha > 1/2$ to establish the asymptotic equivalence.

Intuitively, the model

$$\mathbf{X}_{i}$$
 $N\left(0, \Sigma_{\boldsymbol{p} \times \boldsymbol{p}}\right), i = 1, 2, \dots, n$

is asymptotically equivalent to

$$dy(t) = \log f(t)dt + 2\pi^{1=2} (np)^{-1=2} dW(t), t \quad [-\pi, \pi]$$

possibly under some strong assumptions on the unknown f.

"Equivalent" Losses

Let $\hat{\Sigma}_{\infty \times \infty}$ be a Toeplitz matrix and \hat{f} be the corresponding spectral density.

We know

$$\left\|\hat{\Sigma}_{\infty\times\infty} - \Sigma_{\infty\times\infty}\right\| = 2\pi \left\|\hat{f} - f\right\|_{\infty}$$

based on a well known result

$$\|\Sigma_{\infty\times\infty}\| = 2\pi \|f\|_{\infty}$$

where

$$\|\Sigma_{\infty\times\infty}\| = \sup_{\|\mathbf{v}\|_2=1} \|\Sigma_{\infty\times\infty}\mathbf{v}\|_2$$
, and $\|f\|_{\infty} = \sup_{\mathbf{x}} |f(\mathbf{x})|$.

Intuitively

$$\left\|\hat{\Sigma}_{p\times p} - \Sigma_{p\times p}\right\| \left\|\hat{\Sigma}_{\infty\times\infty} - \Sigma_{\infty\times\infty}\right\|?$$

Thus optimal estimation on f may imply optimal estimation on Σ .

Question

Can we show

$$\inf_{\stackrel{\wedge}{p} = p} \sup_{F} E \stackrel{\wedge}{p}_{p} = \frac{2}{p} = \frac{np}{\log(pn)} = \frac{\frac{2}{2}+1}{?}$$

Remark: Classical result on nonparametric function estimation under the sup norm:

$$\inf_{\stackrel{\wedge}{p}=p} \sup_{F} E \quad f^{\stackrel{\wedge}{f}} \quad f \quad \frac{2}{1} \quad \frac{np}{\log(pn)} \quad \frac{\frac{2}{2+1}}{1}.$$

Again,

- We don't really have the asymptotic equivalence.
- The following claim is very intuitive

$$\left\|\hat{\Sigma}_{p\times p} - \Sigma_{p\times p}\right\| \searrow \left\|\hat{\Sigma}_{\infty\times\infty} - \Sigma_{\infty\times\infty}\right\|.$$

Main Results -Lower bound

Show that

$$\inf_{\hat{\Sigma}_{p \times p}} \sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{\Sigma}_{p \times p} - \Sigma_{p \times p} \right\|^{2} \quad c \left(\frac{np}{\log (pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}$$

for some c > 0.

Main Results –Lower bound

A more informative model

Observe $\mathbf{Y}_1 = (\mathbf{X}_1, \mathbf{W}_1)$ with a circulant covariance matrix $\tilde{\Sigma}_{(2p-1)\times(2p-1)}$

Define

$$\omega_j = \frac{2\pi j}{2p-1}, \ |j| \le p-1$$

and where

$$f_p(t) = \frac{1}{2\pi} \left(\sigma_0 + 2 \sum_{m=1}^{p-1} \sigma_m \cos(mt) \right).$$

It is well known that the spectral decomposition of $\tilde{\Sigma}_{(2p-1)\times(2p-1)}$ can be described as follows:

$$\tilde{\Sigma}_{(2p-1)\times(2p-1)} = \sum_{|j|\leq p-1} \lambda_j \mathbf{u}_j \mathbf{u}_j'$$

where

$$\lambda_j = f_p(\omega_j), \ |j| \le p - 1$$

and the eigenvector \mathbf{u}_j doesn't depend on $\sigma_m: 0 \leq m \leq p-1$.

Main Results -Lower bound

The more informative model is *exactly* equivalent to

$$Z_j = f_p(\omega_j) \xi_j, \ |j| \leqslant p - 1, Var(\xi_j) \approx 1/n.$$

For this model it is easy to show

$$\sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{f} - f \right\|_{\infty}^{2} \quad c \left(\frac{np}{\log (pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}.$$

Main Results –Lower bound

We have

$$\left\| \hat{\Sigma}_{p \times p} - \Sigma_{p \times p} \right\| \qquad \sup_{t \in [-;]} \left| (\sigma_0 - \hat{\sigma}_0) + 2 \sum_{m=1}^{p} (1 - \frac{m}{p}) \left(\hat{\sigma}_m - \sigma_m \right) e^{imt} \right|$$

$$= \sup_{t \in [-;]} \left| \hat{f}(t) - f(t) \right| + \text{negligible term}$$

based on a fact

$$\|\Sigma_{p \times p}\| \geqslant \sup_{t \in [-;]} \frac{1}{p} \sum_{p \times p} v_t, v_t = \sup_{t \in [-;]} \left| \sigma_0 + 2 \sum_{m=1}^p (1 - \frac{m}{p}) \sigma_m e^{imt} \right|$$

where $v_t = (e^{it}, e^{i2t}, \cdots, e^{ipt})$. Thus

$$\sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{\Sigma}_{p \times p} - \Sigma_{p \times p} \right\|^{2} \quad c \left(\frac{np}{\log (pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}.$$

Remark: Need to have some assumptions on (n, p, α) such that the "negligible term" is truly negligible.

Main Results – Upper bound

Show that there is a $\hat{\Sigma}_{p \times p}$ such that

$$\sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{\Sigma}_{p \times p} - \Sigma_{p \times p} \right\|^{2} \leq C \left(\frac{np}{\log (pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}$$

for some C > 0.

Main Results – Upper bound

Let $\Sigma_k = [\sigma_m 1_{\{m \leqslant k-1\}}]$ be a banding approximation of $\Sigma_{p \times p}$,, and $\tilde{\Sigma}_k$ be a banding approximation of the sample covariance matrix $\hat{\Sigma}_{p \times p}$. Note that $\mathbb{E}\tilde{\Sigma}_k = \Sigma_k$. Let $\hat{\Sigma}_k$ be a Toeplitz version of $\tilde{\Sigma}_k$ by taking the average of elements along the diagonal.

We have

$$\left\| \hat{\Sigma}_{k} - \Sigma_{p} \right\|^{2} \leq 2 \left\| \hat{\Sigma}_{k} - \Sigma_{k} \right\|^{2} + 2 \left\| \Sigma_{k} - \Sigma_{p} \right\|^{2} \leq 8\pi^{2} \left(\| \hat{f}_{k} - f_{k} \|_{\infty}^{2} + \| f_{k} - f_{p} \|_{\infty}^{2} \right)$$

since

$$\|\Sigma_{k}\| \leq 2\pi \|f_{k}\|_{\infty} = \sup_{[-;]} |\sigma_{0} + 2\sum_{m=1}^{k-1} \sigma_{m} \cos(mt)|.$$

Main Results – Upper bound

Variance-bias trade-off

Variance part:

$$\mathbb{E} \parallel \hat{f}_{k} - f_{k} \parallel_{\infty}^{2} \leq C \frac{k}{np} \log (np).$$

Bias part:

$$|| f_k - f_p ||_{\infty}^2 \le Ck^{-2}$$
.

Set the optimal $k: k_{optimal} \simeq \left(\frac{np}{\log np}\right)^{\frac{1}{2\alpha+1}}$ which gives

$$\sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{\Sigma}_{p \times p} - \Sigma_{p \times p} \right\|^{2} \leq C \left(\frac{np}{\log (pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}$$

Remark: For simplicity we consider only the case $k_{optimal} \leq p$.

Main Result

Theorem. The minimax risk of estimating the covariance matrix $\Sigma_{p\times p}$ over the class satisfies

$$\inf_{\hat{\Sigma}_{p \times p}} \sup_{\mathcal{F}_{\alpha}} \mathbb{E} \left\| \hat{\Sigma}_{p \times p} - \Sigma_{p \times p} \right\|^{2} \simeq \left(\frac{np}{\log(pn)} \right)^{-\frac{2\alpha}{2\alpha+1}}?$$

under some assumptions on (n, p, α) .

Summary

- We studied rate-optimality of Toeplitz matrices estimation.
- Le Cam's theory plays important roles.
- Full asymptotic equivalence and sharp asymptotics remain unknown.