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Abstract: These lecture notes provide an introduction to the subject of data assimilation, based on
an underlying formulation as a Bayesian inverse problem. Various standard methods are then derived
and discussed from this standpoint.
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1. Discrete Time: Formulation

1.1. Set-up

Let Ψ : Rn → Rn and consider the Markov chain v = {vj}j∈N defined by the random map

vj+1 = Ψ(vj) + �j ; j ∈ N; (1.1a)

v0 = u ∼ N(m0; C0); (1.1b)

where � = {�j}j∈N is an i.i.d. sequence with �0 ∼ N(0;Σ). We assume that we are given data y = {yj}j∈Z+

defined as
yj+1 = h(vj+1) + �j+1; j ∈ N; (1.2)

where h : Rn → Rm and � = {�j}j∈Z+ is an i.i.d. sequence with �1 ∼ N(0;Γ). The objective of data
assimilation is to determine information about the state v of the system, given data y.

1.2. Smoothing Problem

Let J = {1; :::; J}, J0 = {0; :::; J} and define v = {vj}j∈J0 ; y = {yj}j∈J; � = {�j}j∈J0 and � = {�j}j∈J0 : The
smoothing problem is to find v from y. We provide a Bayesian formulation of this problem, making the
assumption that u; � and � are mutually independent random variables.
Prior The prior on v is specified by (1.1a), together with the independence of u and �, to be the measure
on RN ; N = |J0| × n, with density P(v) proportional to exp(−I0(v)), where

I0(v) :=
1

2

∣∣C− 1
2

0 (v0 −m0)
∣∣2 +

J−1∑
j=0

1

2

∣∣Σ− 1
2

(
vj+1 −Ψ(vj)

)∣∣2:
Likelihood The likelihood of the data y|v, is a (Gaussian) probability measure on RM ; M = |J| ×m, with
density P(y|v) proportional to exp(−Φ(v; y)), where

Φ(v; y) =

J−1∑
j=0

1

2

∣∣Γ− 1
2

(
yj+1 − h(vj+1)

)∣∣2: (1.3)

Theorem 1.1. The posterior smoothing distribution on v|y is a probability measure on RN with density
P(v|y) proportional to exp(−I(v; y)) where

I(v; y) = I0(v) + Φ(v; y) (1.4)

Proof. Bayes’ Theorem states that

P(v|y) =
P(y|v)P(v)

P(y)
:

Thus, ignoring constants of proportionality which depend only on y,

P(v|y) ∝ P(y|u)P(v)

∝ exp(−Φ(v; y) exp(−I0(v))

= exp(−I(v; y)):
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1.3. Filtering Problem

Let Yj = {yl}jl=1 denote the accumulated data up to time j. Filtering is concerned with the sequential
updating of P(vj |Yj), the probability density of vj |Yj . This update is defined by the following two-step
procedure which provides a prescription for computing P(vj+1|Yj+1) from P(vj |Yj).
Prediction This is governed by (1.1a). Here we note that

P(vj+1|Yj) =

∫
Rn

P(vj+1|Yj ; vj)P(vj |Yj)dvj (1.5a)

=

∫
Rn

P(vj+1|vj)P(vj |Yj)dvj (1.5b)

Note that, since the forward model equation (1.1a) determines P(vj+1|vj), this prediction step provides the
map from P(vj |Yj) to P(vj+1|Yj):
Analysis This is governed by (1.2). We apply Bayes’ Theorem and deduce that

P(vj+1|Yj+1) = P(vj+1|Yj ; yj+1)

=
P(yj+1|vj+1; Yj)P(vj+1|Yj)

P(yj+1|Yj)

=
P(yj+1|vj+1)P(vj+1|Yj)

P(yj+1|Yj)
: (1.6)

Since the observation equation (1.2) determines P(yj+1|vj+1), this analysis step provides a map from P(vj+1|Yj)
to P(vj+1|Yj+1):
Filtering Update Together, then, the prediction and analysis step provide a mapping from P(vj |Yj) to
P(vj+1|Yj): However, there is, in general, no easily usable closed form expression for P(vj |Yj). However,
formulae (1.5), (1.6) form the starting point for numerous algorithms to approximate it.

1.4. Filtering and Smoothing are Related

Theorem 1.2. Let P(v|y) denote the smoothing distribution on the discrete time interval j ∈ J0, and
P(vJ |YJ) the �ltering distribution at time j = J . Then the marginal of the smoothing distribution on vJ is
the same as the �lter ∫

P(v|y)dv0dv1:::dvJ−1 = P(vJ |YJ):

Proof. Note that y = YJ . Since v = (v0; :::; vJ−1; vJ) the result follows trivially.

Remark 1.3. Note that the marginal of the smoothing distribution on say vj ; j < J is not equal to the
�lter P(vj |Yj). This is because the smoother induces a distribution on vj which is inuenced by the entire
data stream YJ = y = {yl}l∈J; in contrast the �lter at j involves only the data Yj = {yl}l∈{1;:::;j}.

1.5. Well-Posedness

Let � and �′ denote two probability measures which have strictly positive Lebesgue densities � and �′ on
Rn. Define the Hellinger distance between � and �′ as

dHell(�; �
′) =

√√√√1

2

∫ (
1−

√
�′(x)

�(x)

)2

�(x)dx

=

1

2
E�
(

1−

√
�′(x)

�(x)

)2


1
2

: (1.7)
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Notice that, for f : Rn → Rm,

|E�f(x)− E�
′
f(x)| ≤

∫
|f(x)||�(x)− �′(x)|dx

=

∫ √
2|f(x)||

√
�(x) +

√
�′(x)| · 1√

2
|
√
�(x)−

√
�′(x)|dx

≤
(∫

2|f(x)|2|
√
�(x) +

√
�′(x)|2dx

) 1
2
(

1

2

∫
|
√
�(x)−

√
�′(x)|2dx

) 1
2

≤
(∫

4|f(x)|2(�(x) + �′(x))dx

) 1
2

1

2

∫ (
1−

√
�′(x)√
�(x)

)2

�(x)dx

 1
2

= 2(E�|f(x)|2 + E�
′
|f(x)|2)

1
2 dHell(�; �

′):

Thus the Hellinger metric provides a direct way of estimating changes in expectation of square integrable
functions:

|E�f(x)− E�
′
f(x)| ≤ 2(E�|f(x)|2 + E�

′
|f(x)|2)

1
2 dHell(�; �

′): (1.8)

We let �0 denote the prior measure on v for the smoothing problem, and � and �′ the posterior measures
resulting from two different instances of the data, y and y′ respectively.

Theorem 1.4. Assume that E�0(
∑J−1
j=0 1 + |h(vj+1)|2)

1
2 <∞. Then, for all |y|; |y′| ≤ r and some c = c(r)

dHell(�; �
′) ≤ c|y − y′|:

Proof. Let �0; � and �′ denote the Lebesgue densities on �0; � and �′ respectively. Then

�0(v) =
1

Z0
exp(−I0(v));

�(v) =
1

Z
exp(−I0(v)− Φ(v; y));

�′(v) =
1

Z ′
exp(−I0(v)− Φ(v; y′));

where

Z0 =

∫
exp(−I0(v))dv;

Z =

∫
exp(−I0(v)− Φ(v; y))dv;

Z ′ =

∫
exp(−I0(v)− Φ(v; y′))dv:

Thus we have

dHell(�; �
′)2 =

1

2

∫
|
√
�(x)−

√
�′(x)|2dx

=
1

2

∫
Z0

∣∣∣ 1√
Z
e−

1
2 Φ(v;y) − 1√

Z ′
e−

1
2 Φ(v;y′)

∣∣∣2�0(dv)

≤ I1 + I2;

where

I1 = Z0

∫
1

Z
|e− 1

2 Φ(v;y) − e− 1
2 Φ(v;y′)|2�0(dv)
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and

I2 = Z0

∣∣∣ 1√
Z
− 1√

Z ′

∣∣∣2 ∫ e−Φ(v;y′)�0(dv)

= Z ′
∣∣∣ 1√
Z
− 1√

Z ′

∣∣∣2:
Since Φ(v; y) ≥ 0 and Φ(v; y′) ≥ 0 we have

|Z − Z ′| ≤ Z0

∫
|e−Φ(v;y) − e−Φ(v;y′)|�0(dv)

≤ Z0

∫
|Φ(v; y)− Φ(v; y′)|�0(dv):

By definition

|Φ(v; y)− Φ(v; y′)| ≤ 1

2

J−1∑
j=0

|yj+1 − y′j+1||yj+1 + y′j+1 − 2h(vj+1)|

≤ 1

2

J−1∑
j=0

|yj+1 − y′j+1|2
 1

2
J−1∑
j=0

|yj+1 + y′j+1 − 2h(vj+1)|2
 1

2

≤ c(r)|y − y′|

J−1∑
j=0

1 + |h(vj+1)|2
 1

2

:

Thus
|Z ′ − Z| ≤ c(r)|y − y′|:

Hence, since Z;Z ′ > 0, I2 ≤ c(r)|y − y′|. A similar argument shows that I1 ≤ c(r)|y − y′| and the proof is
complete.

Corollary 1.5. Let f : RN → R‘ be such that E�0 |f(v)|2 <∞ and assume further that

E�0

(∑J−1
j=0 1 + |h(vj+1|2

) 1
2

<∞. Then

|E�f(x)− E�
′
f(x)| ≤ c|y − y′|:

Proof. First note that, since Φ(v; y) ≥ 0, E�|f(x)|2 ≤ cE�0 |f(x)|2, and similarly for �′. The result follows
from (1.8) and Theorem 1.4.

Corollary 1.6. Let g : Rn → R‘ be such that E�0 |g(vJ)|2 <∞ and assume further that

E�0

(∑J−1
j=0 1 + |h(vj+1)|2

) 1
2

<∞: If �J and �′J denote the �ltering distributions at time J corresponding to

data YJ ; Y
′
J respectively, then

|E�J g(x)− E�
′
J g(x)| ≤ c|YJ − Y ′J |:

Proof. Since, by Theorem 1.2, �J is the marginal of the smoother on the vJ coordinate, the result follows
from Corollary 1.5 by choosing f(v) = g(vJ).

2. Discrete Time: Smoothing Algorithms

The formulation of the data assimilation problem described in the previous chapter is probabilistic, and its
computational resolution requires the probing of a probability distribution. This can be computationally
infeasible for very large problems but, where possible, provides an important benchmark solution. In section
2.1 we provide some background concerning Monte Carlo Markov Chain (MCMC) methods for this problem.
Then, in section 2.2, we describe some optimization algorithms which relate to maximising the posterior
probability.
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2.1. MCMC Methods

The posterior distribution of interest is the measure � with density � given in the proof of Theorem 1.4. We
will describe the Metropolis-Hastings methodology for creating a Markov chain which is invariant for �. We
then describe two specific instances of this method.

We are given a probability density function � : RN → R+, with
∫
�(x)dx = 1. Now consider a Markov

transition kernel q : RN × RN → R+ with the property that
∫
q(x; y)dy = 1 for every x ∈ RN . We create a

Markov chain {x(k)}k∈N which is invariant for � as follows. To this end we define

a(x; y) = 1 ∧ �(y)q(y; x)

�(x)q(x; y)
(2.1)

The algorithm is:

1. Set k = 0 and choose x(0) ∈ RN .
2. k → k + 1.
3. Draw y(k) ∼ q(x(k−1); dy).
4. Set x(k) = y(k) with probability a(x(k−1); y(k)), x(k) = x(k−1) otherwise.
5. Go to step 2.

The resulting Metropolis-Hastings algorithm then satisfies the following:

Theorem 2.1. If x(0) ∼ � with Lebesque density �, then x(k) ∼ � for all k ∈ Z+. Thus, if the Markov chain
is ergodic,

1

K

K∑
k=1

�(x(k))
a.s.−→ E��(x)

for � a.e. initial condition x(0).

Remark 2.2. It is not necessary to know the normalisation constants for �(·) and q(x; ·) since only their
ratios appear in a.

We now apply the Metropolis-Hastings methodology to the data assimilation smoothing problem. In
addition to the measures �0 and �, with densities �0 and �, it is helpful in what follows to introduce the
measure �0 with density �0 found from �0 and �0 in the case where Ψ ≡ 0. Thus

�0(v) ∝ exp
(
−1

2

∣∣C− 1
2

0 (v0 −m0)
∣∣2 − J−1∑

j=0

1

2
|Σ− 1

2 vj+1|2
)

and is a Gaussian measure, independent in each component vj for j = 0; · · · ; J: It is also useful to rewrite
�0 as follows:

�0(v) ∝ exp(−I0(v) +G(v));

where

G(v) =

J−1∑
j=0

(1

2
|Σ− 1

2 Ψ(vj)|2 − 〈vj+1;Ψ(vj)〉
)
:

Important in what follows are the observations that

�(v)

�0(v)
∝ exp(−Φ(v; y)); (2.2)

�(v)

�0(v)
∝ exp(−Φ(v; y)−G(v)): (2.3)

We now construct two Markov chains {v(k)}k∈N which are invariant with respect to �. These will both be
Metropolis-Hastings methods and hencee we need only specify the transition kernel q(v; w), and identify the
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resulting acceptance probability a(v; w).
Independence Sampler Here we choose the proposal w(k), independently of the current state v(k−1), from
the prior �0. Thus q(v; w) ∝ �0(w) and

a(v; w) = 1 ∧ �(w)q(w; v)

�(v)q(v; w)

= 1 ∧ �(w)=�0(w)

�(v)=�0(v)

= 1 ∧ exp(Φ(v; y)− Φ(w; y)):

In particular, the resulting MCMC method always accepts moves which decrease the model-data misfit
functional Φ(:; y) given in (1.3). The independence sampler relies on draws from the prior matching the data
well. Where the data set is large (J � 1) or the noise covariance small (|Γ| � 1) this will happen infrequently
and the MCMC method will reject frequently and be inefficient. To overcome such problems local proposals,
which do not move far from the current state, are useful.
The pCN Method This is a variant of random walk type methods, based on the following proposal

w(k) = (1− �2)
1
2 v(k−1) + ��(k−1);

�(k−1) ∼ �0:

Here �(k−1) is assumed to be independent of v(k−1). This proposal preserves �0 and would be accepted all
the time in the absence of data, and if Ψ ≡ 0. This is because, if v(k−1) ∼ �0 then w(k) ∼ �0 since

Ew(k) ⊗ w(k) = (1− �2)Ev(k−1) ⊗ v(k−1) + �2E�(k−1) ⊗ �(k−1)

= (1− �2)C + �2C

= C;

where C is the covariance under �0. This shows that

�0(w)q(w; v)

�0(v)q(v; w)
= 1 (2.4)

and reflects the fact that the Markov chain

v(k) = (1− �2)
1
2 v(k−1) + ��(k−1)

is in fact reversible with respect to �0.
By use of (2.4) and (2.3) we deduce that the acceptance probability for this method is

a(v; w) = 1 ∧ �(w)q(w; v)

�(v)q(v; w)

= 1 ∧ �(w)=�0(w)

�(v)=�0(v)

= 1 ∧ exp(Φ(v; y)− Φ(w; y) +G(v)−G(w)):

By choosing � small, so that w(k) is close to v(k−1), we can make a(v(k−1); w(k)) reasonably large and obtain
a useable algorithm.

2.2. Variational Methods

Sampling the posterior using MCMC methods can be prohibitively expensive. Furthermore, if the probability
is peaked at one, or a small number of places, then simply locating these peaks may be sufficient in an applied
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context. This is the basis for variational methods which seek to maximize the posterior probability, thereby
locating such peaks.

The methods lead to problems in the calculus of variations, and are hence termed variational methods.
In the atmospheric sciences they are called 4DVAR since they incorporate data over three spatial dimensions
and one temporal dimension, in order to estimate the state. In Bayesian statistics the methods are called
MAP estimators: maximum a posteriori estimators.

Theorem 2.3. The density � associated with the posterior probability �, is maximized where I(v; y) given
in (1.4) is minimized. Furthermore, if B�(z) denotes a ball in RN of radius �, centred at z, then if Ψ; h are
continuous,

lim
�→0

P�(B�(z1))

P�(B�(z2))
= exp(I(z2; y)− I(z1; y)):

Proof. Since

�(dv) =
1

Z
exp(−I(v; y))dv

= �(v)dv

the first result is clear. For the second note that

P�(B�(z)) =
1

Z

∫
|v−z|<�

exp
(
− I(v; y)

)
dv

=
1

Z

∫
|v−z|<�

(
exp(−I(z; y)) + e(�; z)

)
dv

where e(�; z) → 0 as � → 0 for any fixed z ∈ RN . This is because I(·; y) inherits continuity from Ψ(·) and
h(·). The result follows.

Remark 2.4. The second statement in Theorem 2.3 may appear a little abstract. However, unlike the �rst
statement, it can be generalised to in�nite dimensions, as is required in continuous time. We state the result
as in the second statement for precisely this reason.

3. Discrete Time: Filtering Algorithms

3.1. The Kalman Filter

This algorithm provides a sequential method for updating the filtering distribution P(vj |Yj) from time j to
time j + 1, when Ψ and h are linear maps. In this case the filtering distribution is Gaussian and it can be
characterized entirely through the mean and covariance. We let

Ψ(v) = Mv; h(v) = Hv (3.1)

for matrices M ∈ Rn×n; H ∈ Rm×n. We assume that m ≤ n and Rank(H) = m. We let (mj ; Cj) denote the
mean and covariance of P(vj |Yj), noting that this random variable is Gaussian for each j since all maps are

linear and all noise is Gaussian additive. We let (m̂j+1; Ĉj+1) denote the mean and covariance of P(vj+1|Yj),
noting that this too is a Gaussian random variable. We now derive the map (mj ; Cj) 7→ (mj+1; Cj+1), using

the intermediate variables (m̂j+1; Ĉj+1).

Theorem 3.1. Assume that C0;Σ > 0. Then Cj > 0 for all j ∈ Z+ and

C−1
j+1 = (MCjM

T + Σ)−1 +HTΓ−1H

C−1
j+1mj+1 = (MCjM

T + Σ)−1Mmj +HTΓ−1yj+1:
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Proof. The prediction step is determined by (1.1a) in the case Ψ(·) = M ·:

vj+1 = Mvj + �j ; �j ∼ N(0;Σ):

From this it is clear that
E(vj+1|Yj) = E(Mvj |Yj) + E(�j |Yj):

Since �j is independent of Yj we have
m̂j+1 = Mmj : (3.2)

Similarly

E(vj+1 ⊗ vj+1|Yj) = E(Mvj ⊗Mvj |Yj) + E(�j ⊗ �j |Yj)
+ E(Mvj ⊗ �j |Yj) + E(�j ⊗Mvj |Yj):

Again, since �j is independent of Yj and of vj , we have

Ĉj+1 = ME(vj ⊗ vj |Yj)MT + Σ

= MCjM
T + Σ: (3.3)

Now we consider the analysis step. By (1.6), which is just Bayes’ rule, and using Gaussianity, we have

exp
(
−1

2

∣∣C− 1
2

j+1(v −mj+1)
∣∣2) ∝ exp

(
−1

2

∣∣Γ− 1
2 (yj+1 −Hv)

∣∣2 − 1

2

∣∣Ĉ− 1
2

j+1(v − m̂j+1)
∣∣2):

Equating quadratic terms in v, gives

C−1
j+1 = Ĉ−1

j+1 +HTΓ−1H (3.4)

and equating linear terms in v gives

C−1
j+1mj+1 = Ĉ−1

j+1m̂j+1 +HTΓ−1yj+1 (3.5)

Substituting the expressions (3.2) and (3.3) for (m̂j+1; Ĉj+1) gives the desired result. It remains to verify that
Cj > 0 for all j ∈ Z+ so that the formal calculations above make sense. To this end we notice that, since Σ
and Cj > 0 (inductive hypothesis, true for j = 0), we have MCjM

T +Σ > 0 and hence (MCjM
T +Σ)−1 > 0.

Thus C−1
j+1 > 0 and hence Cj+1 > 0.

Corollary 3.2. The formulae for the Kalman �lter from Theorem 3.1 may be rewritten as follows:

dj+1 = yj+1 −Hm̂j+1

Sj+1 = HĈj+1H
T + Γ

Kj+1 = Ĉj+1H
TS−1

j+1

mj+1 = m̂j+1 +Kj+1dj+1

Cj+1 = (I −Kj+1H)Ĉj+1;

with (m̂j+1; Ĉj+1) given in (3.2), (3.3).

Proof. By (3.4) we have

C−1
j+1 = Ĉ−1

j+1 +HTΓ−1H

and application of Lemma 3.4 below gives

Cj+1 = Ĉj+1 − Ĉj+1H
T (Γ +HĈj+1H

T )−1HĈj+1

=
(
I − Ĉj+1H

T (Γ +HĈj+1H
T )−1H

)
Ĉj+1

= (I − Ĉj+1H
TS−1

j+1H)Ĉj+1

= (I −Kj+1H)Ĉj+1

9



as required. Then the identity (3.5) gives

mj+1 = Cj+1Ĉ
−1
j+1m̂j+1 + Cj+1H

TΓ−1yj+1

= (I −Kj+1H)m̂j+1 + Cj+1H
TΓ−1yj+1 (3.6)

Now note that, again by (3.4),

Cj+1(Ĉ−1
j+1 +HTΓ−1H) = I

so that

Cj+1H
TΓ−1H = I − Cj+1Ĉ

−1
j+1

= I − (I −Kj+1H)

= Kj+1H:

Since H has rank m we deduce that
Cj+1H

TΓ−1 = Kj+1:

Hence (3.6) gives

mj+1 = (I −Kj+1H)m̂j+1 +Kj+1yj+1 = m̂j+1 +Kj+1dj+1

as required.

Remark 3.3. The key di�erence between the Kalman update formulae in Theorem 3.1 and in Corollary
3.2 is that, in the former matrix inversion takes place in the state space, with dimension n, whilst in the
latter matrix inversion takes place in the data space, with dimension m. In many applications m � n, as
the observed subspace dimension is much less than the state space dimension, and thus the formulation in
Corollary 3.2 is frequently employed in practice.

Lemma 3.4. Woodbury Matrix Identity Let A ∈ Rp×p; U ∈ Rp×q; C ∈ Rq×q and V ∈ Rq×p: If A and
C are invertible then A+ UCV is invertible and

(A+ UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1

V A−1:

3.2. Non-Gaussian Filters

The update equation for the Kalman filter mean, (3.5), can be derived by minimizing the following model/data
compromise functional, derived from (3.3),

J(v) :=
1

2
|Γ− 1

2 (yj+1 −Hv)|2 +
1

2
|Ĉ−

1
2

j+1(v − m̂j+1)|2: (3.7)

Whilst the Kalman filter itself is restricted to linear, Gaussian problems, the formulation via minimization
generalizes to nonlinear problems. Noting that m̂j+1 = Mmj , and that Ψ(·) = M ·, h(·) = H·, we see that a
natural generalization of (3.7) to the nonlinear case is to minimize

J(v) :=
1

2
|Γ− 1

2 (yj+1 − h(v))|2 +
1

2
|Ĉ−

1
2

j+1(v −Ψ(mj))|2

and then to set
mj+1 = arg min

v
J(v):

For simplicity we consider the case where observations are linear and h(v) = Hv leading to the update
algorithm m̂j 7→ m̂j+1 defined by

J(v) =
1

2
|Γ− 1

2 (yj+1 −Hv)|2 +
1

2
|Ĉ−

1
2

j+1(v −Ψ(m̂j))|2

mj+1 = arg min
v
J(v): (3.8)

10



By the arguments used in Corollary 3.2 we deduce the following update formulae:

mj+1 = (I −Kj+1H)Ψ(mj) +Kj+1yj+1 (3.9a)

Kj+1 = Ĉj+1H
TS−1

j+1 (3.9b)

Sj+1 = HĈj+1H
T + Γ (3.9c)

The next three sections each correspond to algorithms derived in this way, namely by minimizing J(v), but

corresponding to different choices of the model covariance Ĉj+1.

3.3. 3DVAR

This algorithm is derived from (3.9) by simply fixing the model covariance Ĉj+1 ≡ Ĉ for all j. Thus we
obtain

mj+1 = (I −KH)Ψ(mj) +Kyj+1 (3.10a)

K = ĈHTS−1; S = HĈHT + Γ (3.10b)

It is natural to ask when this filter will recover the true signal. To this end we assume that

yj+1 = Hv†j+1 + �j (3.11)

where the true signal {v†j}j∈N satisfies

v†j+1 = Ψ(v†j ); j ∈ N (3.12a)

v†0 = u (3.12b)

and, for simplicity, we assume that
sup
j∈N
|�j | = �:

We have the following result.

Theorem 3.5. Assume that (I −KH)Ψ : Rn → Rn is globally Lipschitz with constant a < 1 in some norm∥∥ · ∥∥, then

lim sup
j→∞

∥∥mj − v†j
∥∥ ≤ c�:

Proof. We may write (3.10), (3.12), using (3.11), as

mj+1 = (I −KH)Ψ(mj) +KHΨ(v†j ) +K�j

v†j+1 = (I −KH)Ψ(v†j ) +KHΨ(v†j ):

Subtracting, and letting ej = m̂j − v†j , gives∥∥ej+1

∥∥ ≤ ∥∥(I −KH)Ψ(mj) + (I −KH)Ψ(v†j )
∥∥+ ‖K�j‖

≤ a
∥∥ej∥∥+ c�

Applying Gronwall gives the desired result.

Example. Assume that H = I, so that the whole system is observed, that Γ = 2I and Ĉ = �2I. Then, for

�2 = 2

�2

S = (�2 + 2)I; K =
�2

(�2 + 2)
I

11



and

(I −KH) =
2

(�2 + 2)
I =

�2

(1 + �2)
I:

Thus, if Ψ : Rn → Rn is globally Lipschitz with constant � > 0 in the Euclidean norm, | · |, then (I −KH)Ψ

is globally Lipschitz with constant a < 1, if � is chosen so that �2�
1+�2 < 1. Thus, by choosing � su�ciently

small the �lter can be made to contract. This corresponds to trusting the data su�ciently in comparison to
the model.

3.4. Extended Kalman Filter

The idea of the extended Kalman filter (ExKF) is to propagate covariances according to the linearization of
(1.1a), and propagate the mean, using (1.1a). Thus we obtain, from modification of Corollary 3.2 and (3.2),
(3.3)

Prediction

{
m̂j+1 = Ψ(mj)

Ĉj+1 = DΨ(mj)CjDΨ(mj)
T + Σ

Analysis


Sj+1 = HĈj+1H

T + Γ

Kj+1 = Ĉj+1H
TS−1

j+1

mj+1 = (I −Kj+1H)m̂j+1 +Kj+1yj+1

Cj+1 = (I −Kj+1H)Ĉj+1

3.5. Ensemble Kalman Filter

The idea of the ensemble Kalman filter (EnKF) is to propagate covariances and mean by maintaining an
ensemble of particles, and using this ensemble to estimate the covariance and mean. Then EnKF is executed
in a variety of ways and we describe one of these, the perturbed observation EnKF.

Prediction


v̂

(k)
j+1 = Ψ(v

(k)
j ); k = 1; :::;K

m̂j+1 = 1
K

∑K
k=1 v̂

(k)
j+1;

Ĉj+1 = 1
K

∑K
k=1(v̂

(k)
j+1 − m̂j+1)(v̂

(k)
j+1 − m̂j+1)

Analysis



Sj+1 = HĈj+1H
T + Γ

Kj+1 = Ĉj+1H
TS−1

j+1

v
(k)
j+1 = (I −Kj+1H)v̂

(k)
j+1 +Kj+1y

(k)
j+1

y
(k)
j+1 = yj+1 + �

(k)
j+1

Here �
(k)
j are i.i.d. draws from N(0;Γ) and perturbed observation refers to the fact that each particle sees

an observation perturbed by an independent draw from N(0;Γ).

4. Bibliography

• Subsection 1.1 Data Assimilation is a subject which has its roots in the geophysical sciences, and is
driven by the desire to improve inaccurate models of complex dynamically evolving phenomena by
means of incorporation of data. The book [Kal03] describes data assimilation from the viewpoint of
atmospheric weather prediction, whilst the book [Ben02] describes the subject from the viewpoint of



[ICGL97] is a useful one to read because it establishes a notation which is now widely used in the
applied communities and the articles [Nic03, AJSV08] provide simple introductions to various aspects
of the subject from a mathematical perspective. The special edition of the journal PhysicaD, devoted
to Data Assimilation, [IJ07], provides an overview of the state of the art around a decade ago.

• Subsection 1.2 contains the formulation of Data Assimilation as a fully nonlinear and non-Gaussian
problem in Bayesian statistics. This formulation is not yet the basis of practical algorithms in the
geophysical systems such as weather forecasting. This is because global weather forecast models involve
n = O(109) unknowns, and incorporate m = O(106) data points daily; sampling the posterior on
Rn given data in Rm in an online fashion, useable for forecasting, is beyond current algorithmic and
computational capability. However the fully Bayesian perspective provides a fundamental mathematical
underpinning of the subject, from which other more tractable approaches can be systematically derived.
See [Stu10] for discussion of the Bayesian approach to inverse problems. Historically, data assimilation
has not evolved from this Bayesian perspective, but has rather evolved out of the control theory
perspective. This perspective is summarized well in the book [Jaz70]. However, the importance of the
Bayesian perspective is increasingly being recognized in the applied communitiess.

• Subsection 1.3 describes the filtering, or sequential, approach to data assimilation, within the fully
Bayesian framework. For low dimensional systems the use of particle filters, which may be shown
to rigorously approximate the required filtering distribution as it evolves in discrete time, has been
enormously succesful; see [DG01] for an overview. Unfortunately, these filters can behave poorly in high
dimensions [BLB08, BBL08, SBBA08]. Whilst there is ongoing work to overcome these problems with
high-dimensional particle filtering, see [BCJ11, vL10] for example, this work has yet to impact practical
data assimilation in, for example, operational weather forecasting. For this reason the ad hoc filters,
such as 3DVAR, Extended Kalman Filter and Ensemble Kalman Filter, described in section 3, are of
great practical importance. And their analysis is an important challenge for applied mathematicians.

• Subsection 2.1 Monte Carlo Markov Chain methods have a long history, initiated through the 1953
paper [MRTT53] and then generalized to an abstract formulation in the 1970 papr [Has70]. The subject
is overviewed in [Liu01]. The specific forms of the MCMC methods which we introduce here have been
chosen to be particularly effective in high dimensions, especially the pCN method; see [CRSW12].

• Subsection 2.2 Variational Methods, known as 4DVAR in the metereology community, have the dis-
tinction, when compared with the ad hoc non-Gaussian filters described in later sections, of being well-
founded statistically: they correspond to the maximum a posteriori estimator for the fully Bayesian
posterior distribution on model state given data. See [Zup97] and the references therein for a discus-
sion of the applied context. See [CDRS09] for a more theoretical presentation. Currently the European
Centre for Medium-Range Weather Forecasts (ECMWF) weather prediction code, which is based on
4DVAR, is the best weather predictor, worldwide. Theorem 3.5 is prototypical of a more sophisticated
result, concerning infinite dimensional filtering of dissipative PDEs such as the Navier-Stokes equation,
which appears in [BLL+12]. See also [PMLvL12] and [MLPvL12].

• Subsection 3.1



and may be viewed as an approximation of the extended Kalman filter, designed to be suitable in
high dimensions. See [Eve06] for an overview of the methodology, written by one of its originators, and
[VLE96] for an early example of the power of the method.
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