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Nonlinear equations play important roles in fundamental science and present great challenges

and opportunities to research mathematicians. In theoretical physics, many profound concepts,
predictions, and advances were pioneered through mathematical insights gained from the study

of the equations governing basic physical laws. Why do some materials demonstrate zero electric
resistance when cooled (superconductivity)? How do the two strands in an entangled DNA

double helix become separated when heated (DNA denaturation)? Why does the universe have
a finite past (big bang cosmology)? Why are all the electric charges integer multiples of a minimal

unit (charge quantization)? Why is that the basic constituents of matter known as quarks can
never be found in isolation (quark confinement)? These are some of the exemplary situations
where mathematical investigation is essential. The purpose of this series of lectures, to be given

at the Applied Mathematics Graduate Summer School of Beijing University in July 2011, is
to provide a vista-type overview of a broad range of nonlinear equations arising in classical

field theory. Emphasis will be given to the mathematical structure and physical descriptions of
various basic problems and to the appreciation of the power of functional analysis, although close

attention will also be given to the links with other areas of mathematics, including geometry,
algebra, and topology.
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1 Hamiltonian systems

In this section, we begin our study with the Hamiltonian or Lagrangian formalism of classical

mechanics, which is the conceptual foundation of all later developments.

1.1 Motion of a massive particle

Consider the motion of a point particle of mass m and coordinates (qi) = q in a potential field

V (q, t) described by Newtonian mechanics. The equations of motion are

mq̈i = −∂V
∂qi

, i = 1, 2, · · · , n, (1.1)

where · denotes time derivative. Since

−∇V = −
(

∂V

∂qi

)

(1.2)

defines the direction along which the potential energy V decreases most rapidly, the equation
(1.1) says that the particle is accelerated along the direction of the flow of the steepest descent

of V .
With the Lagrangian function

L(q, q̇, t) =
1

2
m

n
∑

i=1

(q̇i)2 − V (q, t), (1.3)

which is simply the difference of the kinetic and potential energies, (1.1) are simply the Euler–
Lagrange equations of the action

∫ t2

t1

L(q(t), q̇(t), t) dt (1.4)

over the admissible space of trajectories {q(t) | t1 < t < t2} starting and terminating at fixed

points at t = t1 and t = t2, respectively.
The Hamiltonian function or energy at any time t is the sum of kinetic and potential energies

given by

H =
1

2
m

n
∑

i=1

(q̇i)2 + V (q, t) = m

n
∑

i=1

(q̇i)2 − L. (1.5)

Introduce the momentum vector p = (pi),

pi = mq̇i =
∂L

∂q̇i
, i = 1, 2, · · · , n. (1.6)
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Then, in view of (1.5), H is defined by

H(q, p, t) =

n
∑

i=1

piq̇i − L(q, q̇, t) (1.7)

and the equations of motion, (1.1), are a Hamiltonian system,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, 2, · · · , n. (1.8)

The above formulations may be extended to the case when L is an arbitrary function of q, q̇,
and t. The equations of motion are the Euler–Lagrange equations of (1.4),

d

dt

(

∂L

∂q̇i

)

=
∂L

∂qi
, i = 1, 2, · · · , n. (1.9)

In order to make a similar Hamiltonian formulation, we are motivated from (1.6) to introduce
the generalized momentum vector p = (pi) by

pi =
∂L

∂q̇i
, i = 1, 2, · · · , n. (1.10)

We still use (1.7) to define the corresponding Hamiltonian function H . A direct calculation
shows that (1.9) are now equivalent to the Hamiltonian system (1.8).

We note that an important property of a Hamiltonian function is that it is independent of

the variables q̇i (i = 1, 2, · · · , n). In fact, from the definition of the generalized momentum vector
given by (1.10), we have

∂H

∂q̇i
= pi −

∂L

∂q̇i
= 0, i = 1, 2, · · · , n. (1.11)

This fact justifies our notation of H(p, q, t) in (1.7) instead of H(p, q, q̇, t).

Let F be an arbitrary function depending on pi, q
i (i = 1, 2, · · · , n) and time t. We see that

F varies its value along a trajectory of the equations of motion, (1.8), according to

dF

dt
=

∂F

∂t
+
∂F

∂qi
q̇i +

∂F

∂pi
ṗi

=
∂F

∂t
+
∂F

∂qi
∂H

∂pi
− ∂F

∂pi

∂H

∂qi
, (1.12)

where and in the sequel we observe the summation convention over repeated indices, although
occasionally we also spell out the summation explicitly. Thus, we are motivated to use the

Poisson bracket {·, ·},
{f, g} =

∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
, (1.13)

to rewrite the rate of change of F with respect to time t as

dF

dt
=
∂F

∂t
+ {F,H}. (1.14)

In particular, when the Hamiltonian H does not depend on time t explicitly, H = H(p, q), then
(1.14) implies that

dH

dt
= 0, (1.15)
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which gives the fact that energy is conserved and the mechanical system is thus called conser-

vative.
It will be useful to ‘complexify’ our formulation of classical mechanics. We introduce the

complex variables

ui =
1√
2
(qi + ipi), i = 1, 2, · · · , n, i =

√
−1. (1.16)

Then the Hamiltonian function H depends only on u = (ui) and its complex conjugate u = (ui),

H = H(u, u, t). (1.17)

Hence, in terms of the differential operators,

∂

∂ui
=

√
2

2

(

∂

∂qi
− i

∂

∂pi

)

,
∂

∂ui
=

√
2

2

(

∂

∂qi
+ i

∂

∂pi

)

, (1.18)

the Hamiltonian system (1.8) takes the concise form

iu̇i =
∂H

∂ui
, i = 1, 2, · · · , n. (1.19)

Again, let F be a function depending on u, u, and t. Then (1.19) gives us

dF

dt
=

∂F

∂t
+
∂F

∂ui
u̇i +

∂F

∂ui
u̇i

=
∂F

∂t
− i

∂F

∂ui

∂H

∂ui
+ i

∂F

∂ui

∂H

∂ui
.

With the notation

{f, g} =
∂f

∂ui

∂g

∂ui
− ∂f

∂ui

∂g

∂ui
(1.20)

for the Poisson bracket, we have

dF

dt
=
∂F

∂t
+

1

i
{F,H}. (1.21)

In particular, the complexified Hamiltonian system (1.19) becomes

u̇i =
1

i
{ui, H}, i = 1, 2, · · · , n, (1.22)

which is in a close resemblance of the Schrödinger equation, in the Heisenberg representation, in
quantum mechanics, which will be detailed later.

In the rest of this section, we present a few important examples.

1.2 The vortex model of Kirchhoff

It will be instructive to start from a general discussion. Let v be the velocity field of a fluid.
Then

w = ∇× v (1.23)

describes the tendency that the fluid swirls itself, which is commonly called the vorticity field.

Imagine that we form a vortex tube by vortex lines, similar to streamlines induced from the
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velocity field. Then cut off two cross-sections, say S1 and S2, to form a cylindrically shaped

finite vortex tube, say T . Then the divergence theorem says that
∫

T
∇ · w dx = 0, (1.24)

which then implies
∫

S1

w · dS =

∫

S2

w · dS, (1.25)

where the orientations on S1 and S2 are chosen in an obviously compatible way. In other words,
the flux of vortex lines across the vortex tube is constant along the tube. This common flux is

called the strength or tension of the vortex tube. On the other hand, the circulation of a vector
field v along a closed curve C is defined to be

∮

C
v · ds. (1.26)

Thus, if C is the boundary curve of a cross-section of a vortex tube of the fluid with velocity

field v, the above discussion indicates that the strength of the vortex tube may be expressed as
the circulation of the fluid around the vortex tube.

Now consider the motion confined in a horizontal plane so that v = (v1, v2, 0). Then the
vorticity field w is always along the vertical direction so that we may express it as a scalar field

given by
w = ∂1v1 − ∂2v1. (1.27)

Of course, vortex lines are all vertical to the plane.
A Kirchhoff vortex centered at the origin of R

2 is an idealized situation where the velocity
field is centrally generated from a specified scalar potential function according to the relations

vj = εjk∂kU, j, k = 1, 2, U(x) = − γ

2π
ln |x|, x ∈ R

2, (1.28)

where εjk is the standard skew-symmetric Kronecker symbol with ε12 = 1 and γ > 0 is a
parameter. It is clear that the flow-lines are concentric circles around the origin. Let Cr be any

one of such circles of radius r > 0. Then, we have
∮

Cr

v · ds = γ, (1.29)

which says the circulation along any flow line or the strength of any vortex tube containing
the center of the vortex takes the constant value γ. In other words, the quantity γ gives the

circulation or strength of the vortex centered at the origin. Furthermore, we can also compute
the vorticity field directly,

w = −∆U = −(∂2
1 + ∂2

2 )U = γδ(x), (1.30)

which clearly reveals a point vortex at the origin given by the Dirac function and justifies again

the quantity γ as the strength of the point vortex.
Following the model of Kirchhoff, the dynamical interaction of N point vortices located at

xi = xi(t) ∈ R
2 of respective strengths γi’s (i = 1, · · · , N ) at time t is governed by the interaction

potential

U(x1, · · · , xN) = − 1

2π

∑

1≤i<i′≤N
γiγi′ ln |xi − xi′ |, (1.31)

6



and the equations of motion

γiẋi = J∇xi
U, i = 1, · · · , N, J =

(

0 1

−1 0

)

. (1.32)

Rewriting x in the coordinate form with x = (xj) ∈ R
2 (j = 1, 2) and setting

x1
i = qi, γix

2
i = pi, i = 1, · · · , N, (1.33)

we arrive at

q̇i =
∂U

∂pi
, ṗi = −∂U

∂qi
, i = 1, · · · , N, (1.34)

which is a Hamiltonian system. Note that the ‘momenta’ pi’s appear in the Hamiltonian function

U in a ‘non-standard’ way. The reason for this odd appearance is that the pi’s actually do not
have a mechanical meaning as momenta and are artificially identified as the momentum variables.

However, it is interesting to note how the circulations γi’s are being absorbed into these momenta
so consistently.

1.3 The N-body problem

The N -body problem is motivated from celestial mechanics which treats celestial bodies as point
particles interacting through Newton’s law of gravitation.

Consider N point particles, each of mass mi, located at xi ∈ R
3, i = 1, · · · , N . Then

Newton’s law gives us the equations of motion

miẍi = −G
N
∑

i′ 6=i

mimi′(xi − xi′)

|xi − xi′ |3
= −∇xi

U, i = 1, · · · , N, (1.35)

where G > 0 is the universal gravitational constant and

U(x1, · · · , xn) = −G
N
∑

1≤i<i′≤N

mimi′

|xi − xi′ |
(1.36)

is the gravitational potential. Thus, the motion is governed by the principle that the particles

are accelerated along the directions of the fastest descendents that would lower the potential
energy.

In order to recast the system into a Hamiltonian system, we relabel the coordinate variables
and masses according to

(x1, · · · , xN) 7→ (q1, q2, · · · , q3N),

(m1, m1, m1, · · · , mN , mN , mN) 7→ (m1, m2, · · · , m3N),

which allows us to introduce the momentum variables

pi = miq̇i, i = 1, 2, · · · , 3N. (1.37)

It can be seen that the equations of motion now take the form of a Hamiltonian system

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, 2, · · · , 3N, (1.38)
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where the Hamiltonian function H is defined by

H =

3N
∑

i=1

p2
i

2mi
+ U =

3N
∑

i=1

1

2
q̇ipi + U. (1.39)

Since the system (1.38) consists of 6N first order equations, its complete integration (solu-
tion) requires obtaining 6N independent integrals. By exploring mechanical properties of the

system, we have the following immediate integrals (or conserved quantities), namely, the center
of masses x0 determined by

x0

N
∑

i=1

mi =
N
∑

i=1

mixi; (1.40)

the total (linear) momentum L0 given by

L0 =

N
∑

i=1

miẋi =

N
∑

i=1

pi; (1.41)

the total angular momentum a0 expressed as

a0 =

N
∑

i=1

mixi × ẋi =

N
∑

i=1

xi × pi; (1.42)

and the conserved total energy H stated in (1.39). Thus, we have a total of 10 obvious first
integrals. This number count indicates that the N -body problem quickly becomes highly non-

trivial when N increases. Indeed, the N = 3 is already notoriously hard and is known as the
3-body problem. In general, it is believed that the N -body problem is not integrable. The best

understood situation is the 2-body problem [91, 108]. Important applications of the 2-body
problem include derivation of Kepler’s laws. When the masses are replaced by charges so that

Newton’s gravitation is placed by Coulomb’s law of electrostatics, we can study the N -body
problem of charged particles. The quantum mechanical version of this is called the quantum

N -body problem [64] which has important applications in theory of atoms and molecules and is
of contemporary research interest [75].

1.4 Hamiltonian function and thermodynamics

To study the thermodynamical properties of a Hamiltonian system, we need the notation of

partition function in statistical mechanics. For simplicity, consider a closed system which can
occupy a countable set of states indexed by s ∈ N (the set of non-negative integers) and of

distinct energies Es (s ∈ N). Then the partition function of the system is defined by

Z =

∞
∑

s=0

e−βEs , (1.43)

where β = 1/kBT is called the inverse temperature for which kB is the Boltzmann constant and
T is the absolute temperature. Thus, in order that (1.43) makes sense, the sequence {Es} cannot

have a limiting point and has to diverge sufficiently rapidly as s→ ∞. Assuming all conditions
are valid so that Z <∞, we see that

Ps =
1

Z
e−βEs, s ∈ N, (1.44)
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may naturally be interpreted as the probability that the system occupies the state s so that its

energy is E = Es (s ∈ N). The quantity e−βEs is also called the Boltzmann factor. With such
an understanding, the partition function Z may be regarded as the normalization factor of the

sequence of the Boltzmann factors which give rise to the probability distribution of the random
energy, E, of the system.

We now illustrate how to use Z to obtain statistical information of the system. First, the
expected value of the energy (the thermodynamic value of the energy) is

〈E〉 =

∞
∑

s=0

EsPs =
1

Z

∞
∑

s=0

Ese
−βEs = −∂ lnZ

∂β
= kBT

2∂ lnZ

∂T
, (1.45)

which is also commonly denoted as U . Next, the variance is

σ2
E = 〈(E − 〈E〉)2〉 =

∂2 lnZ

∂β2
, (1.46)

which gives rise to the heat capacity

Cv =
∂〈E〉
∂T

=
1

kBT
2
σ2
E =

1

kBT
2

∂2 lnZ

∂β2
. (1.47)

Besides, the entropy of the system, S, which measures the disorder or uncertainty of the system,
is given by

S = −kB
∞
∑

s=0

Ps lnPs = kB(lnZ + β〈E〉) =
∂

∂T
(kBT lnZ) = −∂A

∂T
, (1.48)

where

A = −kBT lnZ = U − TS (U = 〈E〉) (1.49)

is the Helmholtz free energy. These examples have shown the usefulness of the partition function.

For a classical Hamiltonian system with generalized coordinates q = (q1, · · · , qn) and mo-
menta p = (p1, · · · , pn), governed by the Hamiltonian function H(q, p), the partition function is

expressed by

Z =

∫

e−βH(q,p) dqdp, (1.50)

where q, p take over the role of the state index s and integral replaces the summation in our

earlier discussion. Therefore, a similar collection of knowledge can be gathered as before. For
example, if F (q, p) is a mechanical quantity of interest, then its expected or thermodynamic

value is given by

〈F 〉 =

∫

F (q, p)e−βH(q,p) dqdp. (1.51)

A fairly thorough treatment of statistical mechanics may be found in [61, 71]. In the next
subsection, we will apply the ideas here to study a thermodynamic property of DNA.
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1.5 Hamiltonian modeling of DNA denaturation

DNA, the short name for deoxyribonucleic acid, is a nucleic acid that contains the genetic

instructions used in the development and functioning of all known living organisms. Chemically,
a DNA consists of two long polymers of simple units called nucleotides, with backbones made
of sugars and phosphate groups. These two strands run in parallel and form a double helix.

Attached to each sugar is one of four types of nucleotide molecules, also called bases, named by
letters A (adenine), C (cytosine), G (guanine), T (thymine), so that only A and T, C and G,

from opposite strands may bind to form pairs.1 During the last three decades, biologists and
physicists have carried out heated research on dynamics of DNA, using mathematical modeling

and computer simulation, and obtained profound knowledge about DNA and its function.
Mathematical modeling of dynamics of DNA was initiated in 1980 by Englander et al [39]

who presented a discrete sine–Gordon soliton interpretation of the DNA of n pairs of bases
and used the solitary wave in the continuous limit as an approximation in the limit n → ∞ to

obtain some qualitative behavior of DNA. In 1989, Peyrard and Bishop [107] published their
pioneering work on DNA dynamical modeling in which the base pairing due to hydrogen bonding
is recognized, the discreteness of the model is maintained, and a statistical mechanics study is

fully carried out which describes the inter-strand separation in the double helix as a function of
temperature, leading to a mathematical formulation of DNA denaturation. Following [107], here

we initially allow two degrees of freedom for each pair of bases and use ui and vi to denote the
displacements of the bases from their equilibrium positions along the direction of the hydrogen

bonds that connect the two bases in a pair. The governing Hamiltonian for the double helix
model containing a harmonic coupling between neighboring bases due to stacking and n pairs of

bases is given as

H =

n
∑

i=1

{

1

2
m(u̇2

i + v̇2
i ) +

1

2
κ([ui − ui−1]

2 + [vi − vi−1]
2) + V (ui − vi)

}

, (1.52)

where a common mass m is taken for all bases, a uniform ‘elastic’ (stacking force) constant κ is
assumed for simplicity, and the potential energy V is defined by

V (u) = D(e−au − 1)2, (1.53)

which accounts for the hydrogen bonding, with a,D some positive constants, and is of the Morse
type [94]. In terms of the new variables xi, yi and the associated momenta pi, Pi, defined by

xi =
(ui + vi)√

2
, yi =

(ui − vi)√
2

, pi = mẋi, Pi = mẏi, (1.54)

the Hamiltonian (1.52) is normalized into the form

H =

n
∑

i=1

{

p2
i

2m
+

1

2
κ(xi − xi−1)

2

}

+

n
∑

i=1

{

P 2
i

2m
+

1

2
κ(yi − yi−1)

2 +D(e−a
√

2yi − 1)2
}

, (1.55)

where the definitions of x0 and y0 depend on the specific boundary condition to be considered.
It is important to realize that the variable yi measures the stretching distance between the bases

1See Wikipedia for more information.
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in a pair of bases. To understand the thermal dynamics of stretching, note that the partition

function Z is seen to be factored as 2

Z =

∫

e−βH(p,x,P,y) dxdydpdP = ZpZxZPZy, (1.56)

where β = (kBT )−1, with T the absolute temperature and kB the Boltzmann constant. From

this, Peyrard and Bishop [107] recognized that the mean stretching 〈y`〉 of the bases at the
position ` = 1, · · · , n, due to the hydrogen bonding, is given by

〈y`〉 =
1

Z

∫

y`e
−βH dxdydpdP =

1

Zy

∫

y`e
−β

Pn
i=1 f(yi,yi−1) dy, (1.57)

where the factors involving x, p, P are dropped as a consequence of the decomposed Hamiltonian

(1.55) and f(y, y′) is the reduced potential given by the y-dependent terms in (1.55) as

f(y, y′) =
1

2
κ(y − y′)2 +D(e−a

√
2y − 1)2. (1.58)

It is still rather difficult to analyze the quantity (1.57) as a function of the temperature T without
further simplification. In [107], Peyrard and Bishop take n→ ∞ in (1.57) to arrive at

〈y`〉 = 〈ϕ0|y`|ϕ0〉 =

∫

ϕ2
0(y)y dy, (1.59)

where

ϕ0(y) =
(
√

2a)1/2(2d)d−1/2

Γ(2d− 1)1/2
exp(−de−

√
2ay)e−(d− 1

2
)
√

2ay, d =
1

a
β(κD)1/2 >

1

2
. (1.60)

Based on the above formalism, Peyrard and Bishop [107] succeeded in finding a thermo-
dynamical description of the DNA denaturation phenomenon. Using (1.60) and numerical

evaluation, it is shown [107] that the base mean stretching 〈y`〉 increases significantly as the
temperature climbs to a particular level which is an unambiguous indication of DNA denatura-
tion. Another interesting by-product of such a calculation is that, since the dependence of the

ground state on the absolute temperature T = (kBβ)−1 is through the parameter d given earlier,
a greater value of the elastic constant κ leads to a higher DNA denaturation temperature, which

is what observed [46, 107] in laboratory.
In particular, we have seen that the dynamics of the DNA molecule is effectively described

by the reduced Hamiltonian that contains the ‘out-of-phase’ motion of the bases only given in
terms of the y-variables as

H =
n
∑

i=1

{

1

2
mẏ2

i +
1

2
κ(yi − yi−1)

2 +D(e−a
√

2yi − 1)2
}

. (1.61)

See [106] for a review of related topics and directions. This example shows how a simple

system of ordinary differential equations may be used to investigate a fundamental problem in
biophysics.

2To save space, we use dx (say) to denote dx1
· · ·dxn and use x to denote the vector coordinates (xi) or a

single variable interchangeably if there is no risk of confusion in the context.
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2 The Schrödinger Equation and Quantum Mechanics

Quantum mechanics (QM) was developed at the beginning of the last century aimed at explaining
physical phenomena at microscopic scales (small mass and small distance) and based upon

several celebrated experiments which could not be explained within the conceptual framework
of classical physics. Even today, QM remains a challenge to human intuition and continues

to stun away students who study it. See [84, 96] for some extra reading of the mathematical
formulation and history of QM and [35, 55, 90, 115] for textbook introductions to QM oriented
towards people interested in its physical origins, mathematical structure, and computational

details. Referring to QM, in Preface of his book [55], Griffiths states “there is no general
consensus as to what its fundamental principles are, how it should be taught, or what it really

means” and quotes Richard Feynman’s words “I think I can say safely that nobody understands
quantum mechanics.” All these sound rather pessimistic about QM. Nevertheless, QM is one

of the greatest successes of modern physics. In this section, we will focus on the Schrödinger
equation which is the core of QM and attempt to achieve a reasonable level of understanding of

some basics of QM.

2.1 Path to quantum mechanics

We start with a brief discussion of several milestone early-day discoveries that led to the formu-
lation of QM. We will mainly follow the presentation in [55] in the first two subsections.

The photoelectric effect

Place a piece of metal in a vacuum tube and shoot a beam of light onto it. The electrons in
the metal may become sufficiently energized to be emitted from the metal. This is the so-called

photoelectric effect and finds wide range of applications in today’s electronics. Now measure the
energy carried by an emitted electron and denote it by Ee. It is known that Ee may be written

as the difference of two quantities, one is proportional to the frequency, ν, of the light beam
so that the proportioality constant, h, is universal and independent of the metal, the other, φ,

depends on the metal but is independent of the light frequency. Therefore, we have

Ee = hν − φ. (2.1)

Einstein’s postulate

Light, a special form of electromagnetic waves, is composed of particles called photons. Each

photon carries an amount of energy equal to hν. That is,

E = hν. (2.2)

When the photon hits an electron in a metal, the electron receives this amount of energy,

consumes the amount of the binding energy of the metal to the electron to escape from the
metal, and becomes an emitted electron of the energy given by (2.1).

Measurements

In physics, frequency ν is measured in hertz with unit second−1 (times per second), and
angular frequency ω is related to ν by ω = 2πν (radians per second). Hence, in terms of ω, the

Einstein formula becomes

E = ~ω, ~ =
h

2π
. (2.3)

12



Recall that energy is measured in unit of Joules and one Joule is equal to one Newton×meter.

The constant ~ in (2.3), called the Planck constant, is a tiny number of the unit of Joules×second
and accepted to be

~ = 1.05457× 10−34. (2.4)

(Historically, h is called the Planck constant, and ~ the Dirac constant or extended Planck
constant.)

The Compton effect

After the 1905 postulate of Einstein that light is composed of photons, physicists began to

wonder whether a photon might exhibit its (kinetic) momentum in interaction (i.e., in collision
with another particle). In 1922, Compton and Debye came with a very simple (and bold)

mathematical description of this, which was then experimentally observed by Compton himself
in 1923 and further proved by Y. H. Woo,3 then a graduate student of Compton. In simple terms,

when a photon hits an electron, it behaves like indeed like a particle collides with another particle
so that one observes energy as well as momentum conservation relations, which is evidenced by

a wavelength shift after the collision.
Mathematically, we write the energy of a photon by the Einstein formula, E = mc2, where

c is the speed of light in vacuum and m is the ‘virtual rest mass’ of photon (note that a photon

in fact has no rest mass). In view of (2.3), we have

E = mc2 = ~ω. (2.5)

Recall that the wavenumber (also called the angular wavenumber) k, wavelength λ, frequency

ν, angular frequency ω, and speed c of a photon are related by

k =
2π

λ
, c = λν = λ

ω

2π
. (2.6)

Consequently, the momentum of the photon is given by

p = mc =
E

c
= ~

ω

c
= ~ k. (2.7)

The de Broglie wave-particle duality hypothesis

In 1924, de Broglie formulated his celebrated wave-particle duality hypothesis in his Ph. D.

thesis which equalizes waves and particles, takes the Einstein formula (2.3) and the Compton–
Debye formula (2.7) as the two axioms, and reiterates the wave and particle characteristics of

all interactions in nature:

E = ~ω, (2.8)

p = ~ k. (2.9)

3Here is what found in Wikipedia about Y. H. Woo: Wu graduated from the Department of Physics of
Nanjing Higher Normal School (later renamed National Central University and Nanjing University), and was
later associated with the Department of Physics at Tsinghua University. He was once the president of National
Central University (later renamed Nanjing University and r



In other words, a particle of energy E and momentum p behaves like a wave of wavenumber k

and a wave of wavenumber k behaves like a particle of energy E and momentum p such that
E, p, and k are related through (2.8) and (2.9).

2.2 The Schrödinger equation

With the above preparation, we are now ready to derive the Schrödinger equation which was
first published by Schrödinger in 1926.

Consider a stationary wave distributed over the x-axis of wavenumber k (the wave has k



For a particle moving in a potential field V , the energy-momentum relation (2.17) becomes

E =
p2

2m
+ V. (2.19)

Therefore the Schrödinger equation (2.18) for a free particle is modified into form

i~
∂φ

∂t
= − ~2

2m

∂2φ

∂x2
+ V φ. (2.20)

This is called the Schrödinger wave equation whose solution, φ, is called a wave function.

Statistical interpretation of the wave function by Born

Consider the 1D Schrödinger equation (2.20) describing a particle of mass m and assume
that φ is a ‘normalized’ solution of (2.20) which satisfies normalization condition

∫

|φ(x, t)|2 dx = 1 (2.21)

and characterizes the ‘state’ of the particle. According to Born, the mathematical meaning of

such a wave function is that ρ(x, t) = |φ(x, t)|2 gives the probability density of the location of
the particle at time t. In other words, the probability of finding the particle in an interval (a, b)

at time t is

P ({a < x(t) < b}) =

∫ b

a
|φ(x, t)|2 dx. (2.22)

With this interpretation, we see that the expected location of the particle at time t is

〈x〉(t) =

∫

x|φ(x, t)|2 dx =

∫

φ(x, t) x φ(x, t) dx. (2.23)

Operator representations of physical quantities

Naturally, the expected value of the momentum of the particle should be equal to the product
of the particle mass and the expected value of the particle velocity. Therefore, in view of (2.20),

we have

〈p̂〉(t) = m
d〈x〉(t)

dt

= m

∫

(φt(x, t) x φ(x, t) + φ(x, t) x φt(x, t)) dx

= i
~

2

∫

(xφφxx − φxxφ) dx

=

∫

φ(x, t)

(

− i~
∂

∂x

)

φ(x, t) dx. (2.24)

Hence, formally, the expected value of the momentum is the ‘expected value’ of the operator

p̂ = −i~
∂

∂x
. (2.25)

In other words, within the framework of Born’s statistical interpretation of the wave function,

momentum has its elegant operator representation (2.25).
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In this manner, we have the trivial operator representations

x̂ = x, f̂(x) = f(x), (2.26)

for the particle coordinate x and its functions. Besides, (2.19) gives us the energy representation

Ê =
1

2m
p̂2 + V (= the Hamiltonian). (2.27)

Thus,

〈Ê〉 =

∫

φ(x, t)

(

− ~2

2m

∂2

∂x2
+ V

)

φ(x, t) dx. (2.28)

Using (2.20) in (2.28), we have

〈Ê〉 =

∫

φ(x, t)

(

i~
∂

∂t

)

φ(x, t) dx. (2.29)

In other words, energy should be represented by the operator

Ê = i~
∂

∂t
. (2.30)

The afore-discussed fundamental representations of various physical quantities form the foun-

dation of QM.

Conservation law and probability current

It is easily checked that the normalization condition is well posed because

d

dt

∫

|φ(x, t)|2 dx = 0, (2.31)

by virtue of the equation (2.20) so that it suffices to require the condition

∫

|φ(x, 0)|2 dx = 1 (2.32)

initially. Here, we look for some additional consequences from the global conservation law (2.31).

For this purpose, we differentiate the probability density ρ to get

ρt = φtφ+ φφt

= −i
~

2m
(φφx − φφx)x, (2.33)

where we have used (2.20) again. It is interesting to view ρ as a ‘charge’ density and rewrite

(2.33) in the form of a conservation law,

∂

∂t
ρ+

∂

∂x
j = 0, (2.34)

where j may be viewed as a ‘current’ density which is identified as

j = i
~

2m
(φφx − φφx). (2.35)
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We note that it is crucial that φ is complex-valued: if it is real-valued, the current density

will be zero identically and ρ will be time-independent.
Furthermore, differentiating (2.22) and using (2.35), we have

d

dt
P ({a < x(t) < b}) =

d

dt
Q(a, b)(t)

=
d

dt

∫ b

a
ρ(x, t) dx

= j(a, t)− j(b, t), (2.36)

where Q(a, b) may be interpreted as the charge contained in the interval (a, b) at time t so that
its rate of change is equal to the net current following into such an interval. Or more correctly,

we may call Q the ‘probability charge’ and j the ‘probability current.’

The Ehrenfest theorem

Differentiating (2.24) and using (2.20), we have

d〈p̂〉
dt

=

∫ (

φt

[

− i~
∂

∂x

]

φ+ φ

[

− i~
∂

∂x

]

φt

)

dx

= −i~

∫
([

− i
~

2m
φxx + i

V

~
φ

]

φx + φ
∂

∂x

[

i
~

2m
φxx − i

V

~
φ

])

dx

= − ~2

2m

∫

([φxφx]x − [φφxx]x) dx−
∫

Vx|φ|2 dx

= −〈Vx〉, (2.37)

which may be compared with the equation of motion in the classical Newtonian mechanics,

m
d2x

dt2
=

dp

dt
= −Vx. (2.38)

In other words, in QM, in sense of expected value, quantum operators obey the equation of
motion of Newtonian mechanics. This statement is known as the Ehrenfest theorem.

Unstable particles

The profound meaning of the conservation law (2.21) is that a particle can never disappear
once it is present. Here we show that a small modification may be made so that we are able

to describe unstable particles which may disappear after some time elapse. We will not justify
whether such a modification is physically correct but will only be content to know that there is

room in QM to accommodate theoretical explorations. To this end, we assume that the potential
energy V in (2.20) is perturbed by an imaginary quantity,

V = V1 + iV2, V1 and V2 are both real-valued. (2.39)

Hence, (2.20) becomes

i~
∂φ

∂t
= − ~2

2m

∂2φ

∂x2
+ (V1 + iV2)φ. (2.40)

In view of (2.40), we see that the probability that there is a particle present at time t, i.e.,

P (t) =

∫

|φ(x, t)|2 dx, (2.41)

17



satisfies the equation

P ′(t) =
1

~

∫

V2(x)|φ(x, t)|2 dx. (2.42)

For simplicity, we further assume that there is a constant Γ > 0 such that

V2(x) ≤ −Γ, ∀x. (2.43)

Then (2.42) and (2.43) lead us to

P ′(t) ≤ −Γ

~
P (t). (2.44)

If a particle is present initially, P (0) = 1, then (2.44) implies that

P (t) ≤ e−
Γ
~
t, t > 0. (2.45)

In other words, in a bulk situation, we will observe loss of particles, which suggests that we
encounter unstable particles.

Higher dimensional extensions

It is immediate that our discussion about the 1D Schrödinger equations can be extended to

arbitrarily high dimensions. For this purpose, we consider the Minkowski space of dimension
(n + 1) with coordinates t = x0, x = (x1, · · · , xn), for time and space, respectively. We use the

Greek letter µ, ν, etc, to denote the spacetime indices, µ, ν = 0, 1, · · · , n, the Latin letter i, j, k,
etc, to denote the space indices, i, j, k = 1, · · · , n, and ∇ to denote the gradient operator on
functions depending on x1, · · · , xn.

The Schrödinger equation that quantum-mechanically governs a particle of mass m in R
n is

given by

i~
∂φ

∂t
= − ~2

2m
∆φ+ V φ. (2.46)

The energy and momentum operators are, respectively, given by

Ê = i~
∂

∂t
, p̂ = −i~∇. (2.47)

The total energy operator, or the Hamiltonian, is

Ĥ =
1

2m
p̂2 + V. (2.48)

The probability current j = (jµ) = (j0, j) = (ρ, ji) is defined by

ji = i
~

2m
(φ∂iφ− φ∂iφ), i = 1, · · · , n. (2.49)

The conservation law relating probability density ρ (or ‘charge’) and probability current j (or
‘current’) reads

∂µj
µ = 0, or

∂

∂t
ρ+ ∇ · j = 0. (2.50)

Moreover, the Ehrenfest theorem says

d〈p̂〉
dt

= −〈∇V 〉. (2.51)
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Note also that, in applications, the potential function V may be self-induced by the wave

function φ. For example, V = |φ|2.
Steady state and energy spectrum

We return to the one-dimensional situation again and look for solution of (2.20) in the
separable form

φ(x, t) =



Therefore, in view of the normalization condition (2.21), we arrive at

∞
∑

n=1

|cn|2 = 1. (2.61)

This result is amazing since it reminds us of the total probability of a discrete random variable
whose probability mass density function is given by the sequence {|cn|2}. In QM, indeed, such a

random variable is postulated as the measured value of energy for the particle that occupies the
state given by (2.60). In other words, if we use E to denote the random reading of the energy
of the particle occupying the state (2.60), then E may only take E1, E2, · · · , En, · · · , as possible

values. Furthermore, if these values are distinct, then

P ({E = En}) = |cn|2, n = 1, 2, · · · . (2.62)

In QM, the above statement appears as a major postulate which is also referred to as the
‘generalized statistical interpretation’ of eigenstate representation. In particular, when φ(x, t)

itself is separable as given in (2.52), since E is an eigenvalue itself, we see that E takes the single
value E with probability one. Thus, we recover the earlier observation made on separable state.

Finally, using (2.60), we can compute the expected value of the energy operator Ĥ immedi-
ately:

〈Ĥ〉 =

∫

φĤφ dx

=
∞
∑

n=1

En|cn|2. (2.63)

It is interesting to note that (2.63) is consistent with the postulate (2.62). In fact, we may

also understand that the interpretation (2.62) is motivated (or supported) by (2.63).
Note also that the right-hand side of (2.63) is independent of time t. Thus, (2.63) may be

viewed as a QM version of the energy conservation law.

2.3 Quantum N-body problem

Consider the QM description of N particles of respective masses mi and electric charges Qi
(i = 1, · · · , N ) interacting solely through the Coulomb force. The locations of these N particles
are at xi ∈ R3. Thus we can express their respective momenta as

p̂i = −i~∇xi
, i = 1, · · · , N. (2.64)

The potential function is given by

V (x1, · · · , xN) =
N
∑

1≤i<i′≤N

QiQi′

|xi − xi′ |
. (2.65)

Thus, the N -particle system Hamiltonian reads

Ĥ =

N
∑

i=1

1

2mi
p̂2
i + V (x1, · · · , xN), (2.66)
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which forms the foundation of the quantum N -body problem.

An important special situation of the quantum N -body problem is the classical atom model
in which Z electrons, each of electric charge e and mass m, orbit around a heavy nucleus of

electric charge Ze resting at the origin. In this case, the Hamiltonian becomes

Ĥ = −
Z
∑

i=1

~2

2m
∇2

xi
−

Z
∑

i=1

Ze2

|xi|
+

Z
∑

1≤i<i′≤Z

e2

|xi − xi′ |
, (2.67)

where the second term describes the Coulomb interaction of the electrons with the nucleus and
the third term that between the electrons. In the case of a hydrogen atom, Z = 1, and the third

term disappears. Thus, we arrive at the simplest possible Hamiltonian

Ĥ = − ~
2

2m
∇2

x − e2

|x| . (2.68)

The spectrum of (2.68), say {E}, consists of two different portions: E > 0 (which happens to
be continuous) and E < 0 (which happens to be discrete). Since the Coulomb potential vanishes

at infinity, the state with E < 0 indicates that the electron is in a state which lies inside the
‘potential well’ of the nucleus, the proton, which is called a bound state, and describes a situation

when the electron and proton ‘bind’ to form a composite particle, the hydrogen. Likewise, the
state with E > 0 indicates that the electron is in a state which lies outside the potential well of
the proton, which is called a scattering state, and describes a situation when the electron and

proton interact as two charged ‘free’ particles which do not appear to have the characteristics of
a composite particle, namely, a hydrogen atom. Hence we will be interested in the bound state

situation only.
Restricting to spherically symmetric configurations, it can be shown [55] that the bound-state

energy spectrum of (2.68) is given by

En = − me4

2~2n2
=
E1

n2
, n = 1, 2, · · · , (2.69)

known as the Bohr formula. The ground-state energy, E1, is about −13.6 eV which is what is

needed to ionize a hydrogen atom.
Suppose that the hydrogen atom absorbs or emits an amount of energy, Eδ, so that the

initial and final energies are Ei and Ef, respectively. Then

Eδ = Ei −Ef = E1

(

1

n2
i
− 1

n2
f

)

. (2.70)

It will be instructive to examine in some detail that the hydrogen atom is made to emit

energy through the form of light. The Plank formula states that the frequency ν of the light
obeys

Eδ = hν = h
c

λ
, (2.71)

where c is the speed and λ is the wavelength of light. Substituting (2.71) into (2.70), we obtain

the celebrated Rydberg formula

1

λ
=

me4

4πc~3

(

1

n2
f
− 1

n2
i

)

, ni > nf. (2.72)
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Specifically, transitions to the ground state nf = 1 give rise to ultraviolet (higher-frequency)

lights with
1

λ
=

me4

4πc~3

(

1 − 1

n2

)

, n = 2, 3, · · · , (2.73)

called the Lyman series; transitions to the first excited state nf = 2 lead to visible (medium-
frequency) lights with n = 3, 4, · · ·, called the Balmer series; transitions to the second excited

state nf = 3 correspond to infrared (lower-frequency) lights with n = 4, 5, · · ·, called the Paschen
series. The series with nf = 4, 5, 6 are named under Brackett, Pfund, and Humphreys, respec-

tively. The Rydberg formula was presented by Johannes Robert Rydberg (a Swedish experimen-
tal physicist at Lund University) in 1888,4 many years before the formulation of the Schrödinger
equation and QM.

The model for helium, with Z = 2, immediately becomes more difficult because the Hamil-
tonian takes the form

Ĥ = −
(

~2

2m
∇2

x1
+

2e2

|x1|

)

−
(

~2

2m
∇2

x2
+

2e2

|x2|

)

+
e2

|x1 − x2|
, (2.74)

in which the last term renders the problem non-separable.5 The model for lithium, with Z = 3,
shares the same difficulty. Thus, we see that the quantum N -body problem is important for

particle physics and quantum chemistry but difficult to deal with when N ≥ 2. A way out of
this is to develop approximation methods. Along this direction, two well-known approaches are

the Hartree–Fock method and the Thomas–Fermi model, both based on variational techniques.
We will briefly discuss these approaches below.

We note that, while the classical N -body problem is nonlinear, its QM version, which asks

about the spectrum of the N -body Hamiltonian, becomes linear.

2.4 The Hartree–Fock method

To motivate our discussion, we use {En} to denote the complete sequence of eigenvalues of the

Hamiltonian Ĥ so that
E1 ≤ E2 ≤ · · · ≤ En ≤ · · · , (2.75)

and {un} the corresponding eigenstates which form an orthonormal basis. Let ψ be any nor-
malized function, satisfying

〈ψ|ψ〉 =

∫

|ψ|2 dx = 1. (2.76)

4The original Rydberg formula reads

1

λ
= R

 

1

n2

f
−

1

n2

i

!

, ni > nf,

where R is the Rydberg constant with the observed value R = 1.097×107 m−1, which amazingly agrees with that
given in (2.72) in terms of the fundamental constants c, e, m, ~.

5One might be tempted to ignore the inter-electron interaction spelled out by the last term. In this situation,
the Hamiltonian is the sum of the two hydrogen Hamiltonians, which is separable and renders the ground-state
energy E1 = 8(−13.6) = −108.8 eV. This value is much lower than the experimentally determined value −79 eV
for helium. Hence, we see that the inter-electron potential, which indeed adds a positive contribution, should not
be neglected.
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Thus, the expansion

ψ =

∞
∑

n=1

cnun, (2.77)

gives us
∞
∑

n=1

|cn|2 = 1. (2.78)

Consequently, we have

〈ψ|Ĥ|ψ〉 =

∫

ψĤψ dx =

∞
∑

n=1

En|cn|2 ≥ E1

∞
∑

n=1

|cn|2 = E1. (2.79)

In other words, the lowest eigen-pair (E1, u1) may be obtained from solving the minimization
problem

min
{

〈ψ|Ĥ|ψ〉 | 〈ψ|ψ〉= 1
}

. (2.80)

In practice, it is often hard to approach (2.80) directly due to lack of compactness. Instead,
one may come up with a reasonably good wave-function configuration, a trial approximation,

depending on finitely many parameters, say α1, · · · , αm, of the form

ψ(x) = ψ(α1, · · · , αm)(x). (2.81)

Then one solves the minimization problem

min
{

〈ψ(α1, · · · , αm|Ĥ|ψ(α1, · · · , αm)〉 | 〈ψ(α1, · · · , αm)|ψ(α1, · · · , αm)〉 = 1
}

, (2.82)

involving multivariable functions of α1, · · · , αm only.
We now rewrite the Hamiltonian (2.67) as

Ĥ =

Z
∑

i=1

Ĥi +
1

2

∑

i6=j
Vij, (2.83)

where

Ĥi = − ~
2

2m
∇2

xi
− Ze2

|xi|
, Vij =

e2

|xi − xj|
, i 6= j, i, j = 1, · · · , Z, (2.84)

are the i-th electron Hamiltonian, without inter-electron interaction, and the inter-electron
Coulomb potential between the i- and j-th electrons, respectively.

Since the non-interacting Hamiltonian
∑Z

i=1 Ĥi allows separation of variables, we are prompted
to use the trial configuration

ψ(x1, · · · , xZ) = φ1(x1) · · ·φZ(xZ), x1, · · · , xZ ∈ R
3, (2.85)

known as the Hartree product, where φ1, · · · , φZ are unknowns. In order to implement the

normalization condition 〈ψ|ψ〉 = 1, we impose

〈φi|φi〉 =

∫

|φi|2(xi) dxi =

∫

|φi|2(x) dx = 1, i = 1, · · · , Z. (2.86)
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Inserting (2.85) and using (2.86), we arrive at

I(φ1, · · · , φZ) =

∫

ψĤψ dx1 · · ·dxZ

=

Z
∑

i=1

∫

φiĤiφi dxi +
1

2

∑

i6=j

∫

φiφjVijφiφj dxi dxj

=
Z
∑

i=1

∫
(

~

2m
|∇φi|2 −

Ze2

|x| |φi|
2

)

dx +
e2

2

∑

i6=j

∫ |φi(x)|2|φj(y)|2
|x − y| dxdy,

(2.87)

where we have renamed the dummy variables with x, y ∈ R
3. Consequently, we are led to

considering the reduced constrained minimization problem

min{I(φ1, · · · , φZ) | 〈φi|φi〉 = 1, i = 1, · · · , Z} , (2.88)

whose solutions may be obtained by solving the following system of nonlinear integro-differential
equations

~

2m
∆φi +

Ze2

|x| φi + λiφi =
e2

2





Z
∑

j 6=i

∫ |φj(y)|2
|x− y| dy



φi, i = 1, · · · , Z, (2.89)

with the Lagrange multipliers λ1, · · · , λZ appearing as eigenvalues. Thus, in particular, we
see that, in order to solve a linear problem with interacting potential, we are offered a highly

nontrivial nonlinear problem to tackle instead.
Note that the above discussion of the Hartree–Fock method is over-simplified. Since electrons

are fermions which obey the Pauli exclusion principle, the wave function to be considered should

have been taken to be skew-symmetric instead of being symmetric, with respect to permutations
of x1, · · · , xZ and φ1, · · · , φZ , which give rise to their joint wave function ψ(x1, · · · , xZ). Thus,

practically, we need to consider the problem with the redesigned skew-symmetric wave function

ψ(x1, · · · , xZ) =
1√
Z!

∣

∣

∣

∣

∣

∣

∣

∣

φ1(x1) φ1(x2) · · · φ1(xZ)
φ2(x1) φ2(x2) · · · φ2(xZ)

· · · · · · · · · · · ·
φZ(x1) φZ(x2) · · · φZ(xZ)

∣

∣

∣

∣

∣

∣

∣

∣

, (2.90)

known as the Slater determinant [131], which makes the problem more complicated.

2.5 The Thomas–Fermi approach

The Hartree–Fock method is effective when the atom number Z is small. When Z is large, the
problem quickly becomes difficult and alternative methods are to be developed. The Thomas

[140] and Fermi [45] approach is such a method which treats electrons as a static electron gas
cloud surrounding a nucleus and subject to a continuously distributed electrostatic potential.

The electron at x assumes the maximum energy, say −eA, where A is a constant otherwise the
electrons will not be staying in the static state. Let the electrostatic potential be φ(x). Then
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−eφ(x) will be the potential energy carried by the electron. Thus, if we use p(x) to denote the

maximum momentum of the electron, we have the relation

−eA =
p2(x)

2m
− eφ(x). (2.91)

On the other hand, let n(x) be the number of electrons per unit volume of the space, which is

taken to be a tiny domain, say δΩ, centered around x. Then p(x) is approximately a constant
over δΩ. We assume that all states in the momentum space are occupied by the electrons which
take up a volume

4π

3
p3(x) (2.92)

in the momentum space. Since each state can be occupied by exactly one electron, due to Pauli’s

exclusion principle, we arrive at the electron number count (in δΩ)

n(x) = 2
4π
3 p

3(x)

h3
, (2.93)

where h is the Planck constant and the factor 2 takes account of the two possible spins of the

electrons. Inserting (2.91) into (2.93), we have

n(x) =
8π

3h3
(2me[φ(x)−A])

3
2 . (2.94)

On the other hand, we know that the electrostatic potential function φ and the electron

number density n are related through the Poisson equation

∆φ = 4πen, (2.95)

where −ne = ρ is the charge density (cf. §3). In view of (2.94) and (2.95), we obtain the

self-consistency equation

∆φ = α(φ− A)
3
2 , α =

32π2e

3h3
(2me)

3
2 , (2.96)

which serves as the governing equation of the Thomas–Fermi method, also called the Thomas–

Fermi equation. Of course, a meaningful solution must satisfy φ ≥ A.
Since the electron cloud surrounds a nucleus of charge Ze, we see that φ should behave like

a central Coulomb potential, Ze/|x|, near the origin. Hence, we have the singular boundary
condition

lim
|x|→0

|x|φ(x) = Ze. (2.97)

Besides, if we assume the electron cloud is concentrated in a bounded domain, say Ω, then n = 0
on ∂Ω. Thus, (2.94) leads to the boundary condition

φ(x) = A, x ∈ ∂Ω. (2.98)

It is interesting to note that the Thomas–Fermi semi-classical treatment of the quantum

N -body which is linear turns the problem back into a nonlinear problem. See [74, 75, 76] for
the mathematical work on the Thomas–Fermi model and many important extensions.
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3 The Maxwell equations, Dirac monopole, etc

In this section, we start with the electromagnetic duality in the Maxwell equations. We then
present the Dirac monopole and Dirac strings. Next, we consider the motion of a charged particle

in an electromagnetic field and introduce the notion of gauge fields. Finally, we derive Dirac’s
charge quantization formula.

3.1 The Maxwell equations and electromagnetic duality

Let the vector fields E and B denote the electric and magnetic fields, respectively, which are
induced from the presence of an electric charge density distribution, ρ, and a current density,

j. Then these fields are governed in the Heaviside–Lorentz rationalized units by the Maxwell
equations

∇ · E = ρ, (3.1)

∇× B− ∂E

∂t
= j, (3.2)

∇ ·B = 0, (3.3)

∇× E +
∂B

∂t
= 0. (3.4)

In vacuum where ρ = 0, j = 0, these equations are invariant under the dual correspondence

E 7→ B, B 7→ −E. (3.5)

In other words, in another world ‘dual’ to the original one, e



3.2 The Dirac monopole and Dirac strings

In order to motivate our study, consider the classical situation that electromagnetism is generated

from an ideal point electric charge q lying at the origin,

ρe = 4πqδ(x), je = 0, ρm = 0, jm = 0. (3.11)

It is clear that, inserting (3.11), the system (3.6)–(3.9) can be solved to yield B = 0 and

E =
q

|x|3x, (3.12)

which is the well-known Coulomb law in static electricity.

We now consider the case of a point magnetic charge g, or a monopole, at the origin,

ρe = 0, je = 0, ρm = 4πg δ(x), jm = 0. (3.13)

Hence E = 0 and

B =
g

|x|3x = −g∇
(

1

|x|

)

. (3.14)

Consequently, the magnetic flux through a sphere centered at the origin and of radius r > 0 is

Φ =

∫

|x|=r
B · dS = 4πg, (3.15)

which is independent of r and is identical to the Gauss law for static electricity. Nevertheless,

we show below through quantum mechanics that the introduction of a magnetic charge yields
drastically new physics because electric and magnetic fields are induced differently from a gauge

vector potential.
We now evaluate the energy of a monopole. Recall that the total energy of an electromagnetic

field with electric component E and magnetic component B is given by

E =
1

2

∫

R3

(E2 + B2) dx. (3.16)

Inserting (3.14) into (3.16) and using r = |x|, we have

E = 2πg2

∫ ∞

0

1

r2
dr = ∞. (3.17)

This energy blow-up seems to suggest that the idea of a magnetic monopole encounters an
unacceptable obstacle. However, since the Coulomb law expressed in (3.12) for a point electric

charge also leads to a divergent energy of the same form, (3.17), the infinite energy problem for
a monopole is not a more serious one than that for a point electric charge which has been used

effectively as good approximation for various particle models.
We now study the magnetic field generated from a monopole more closely.

Recall that for the electric field generated from a point electric charge q, the Coulomb law
(3.12) gives us a scalar potential function φ = −q/|x| such that E = ∇φ holds everywhere away

from the point electric charge.
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Similarly, we consider the magnetic field B generated from a monopole of charge g, given in

(3.14). Based on the classical knowledge on magnetic field, we know that B should be solenoidal.
That is, there should exist a vector field A such that

B = ∇× A, (3.18)

except at the origin where the point monopole is placed. Unfortunately, using (3.15) and the

Stokes theorem, it is easy to see that (3.18) cannot hold everywhere on any closed sphere centered
at the origin. In other words, any such sphere would contain a singular point at which (3.18)

fails. Shrinking a sphere to the origin would give us a continuous locus of singular points which
is a string that links the origin to infinity. Such a string is called a Dirac string.

It may be checked directly that

A+ = (A+
1 , A

+
2 , A

+
3 ), A+

1 =
−x2

|x|(|x|+ x3)
g, A+

2 =
x1

|x|(|x|+ x3)
g, A+

3 = 0, (3.19)

satisfies (3.18) everywhere except on the negative x3-axis, x1 = 0, x2 = 0, x3 ≤ 0. That is, with
A+, the Dirac string S− is the negative x3-axis. Similarly,

A− = (A−
1 , A

−
2 , A

−
3 ), A−

1 =
x2

|x|(|x| − x3)
g, A−

2 =
−x1

|x|(|x| − x3)
g, A−

3 = 0, (3.20)

satisfies (3.18) everywhere except on the positive x3-axis, x1 = 0, x2 = 0, x3 ≥ 0. That is, with
A−, the Dirac string S+ is the positive x3-axis.

As a consequence, A+ and A− do not agree away from S+ ∪ S− because there holds

A+ − A− = a = (a1, a2, a3), x ∈ R
3 \ (S+ ∪ S−), (3.21)

where

a1 =
−2gx2

(x1)2 + (x2)2
, a2 =

2gx1

(x1)2 + (x2)2
, a3 = 0. (3.22)

In order to understand the physical meaning associated with the appearance of the Dirac
strings which give rise to the puzzling ambiguity (3.21), we need to consider the motion of an

electric charge in an electromagnetic field.

3.3 Charged particle in an electromagnetic field

Consider a point particle of mass m and electric charge Q moving in an electric field E and
a magnetic field B, in addition to a potential field V , in the Euclidean space R3 so that x =

(x1, x2, x3) gives the location of the particle. The equation of motion is

mẍ = Q(E + ẋ ×B) −∇V, (3.23)

where QE is the electric force and Qẋ × B is the Lorentz force of the magnetic field B exerted
on the particle of velocity ẋ.

Let B and E be represented by a vector potential A and a scalar potential Ψ as follows

B = ∇×A,

E = ∇Ψ − ∂A

∂t
.
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At classical level, Ψ and A do not contribute to the underlying physics because they do not make

appearance in the governing equations (3.1)–(3.4) and (3.23). However, at quantum-mechanical
level, they do make observable contributions. Such a phenomenon was predicted by Aharonov

and Bohm [5, 6] and is known as the Aharonov–Bohm effect. Thus, in order to explore the
meaning of the ‘ambiguity’ of the vector potential associated with (3.21), we need to consider

the QM description of the motion of the charged particle.
Using y = (yi) = mẋ = m(ẋi) to denote the mechanical momentum vector, the equation

(3.23) becomes

ẏi = Q

(

∂Ψ

∂xi
− ∂Ai

∂t

)

+Qẋj
(

∂Aj
∂xi

− ∂Ai
∂xj

)

− ∂V

∂xi

= −QdAi
dt

+Q
∂Ψ

∂xi
+Qẋj

∂Aj
∂xi

− ∂V

∂xi
,

which may be recast into the form

d

dt
(yi +QAi) =

∂

∂xi
(QΨ +QẋjAj − V ),

or

d

dt

(

∂L

∂ẋi

)

=
∂L

∂xi
, i = 1, 2, 3, (3.24)

if we define the function L to be

L(x, ẋ, t) =
1

2
m(ẋi)2 +QΨ +QẋiAi − V

=
1

2
mẋ2 +QΨ(x, t) +Qẋ · A(x, t)− V (x, t). (3.25)

In other words, the formula (3.25) gives us the Lagrangian function of the problem. It is
interesting to note that the momentum vector has a correction due to the presence of the

electromagnetic field through the vector potential A,

pi =
∂L

∂ẋi
= ẏi +QAi, i = 1, 2, 3. (3.26)

Hence the Hamiltonian function becomes

H = piẋi − L =
1

2m
ẏi

2 −QΨ + V

=
1

2m
(pi −QAi)

2 −QΨ + V. (3.27)

Finally, if we use A = (Aµ) (µ = 0, 1, 2, 3) to denote a vector with four components, A =
(Ψ,A), the Hamiltonian function (3.27) takes the form

H =
1

2m
(pi −QAi)

2 −QA0 + V. (3.28)

From the Hamiltonian (3.28) and the correspondence (2.47), we have

i~
∂ψ

∂t
= − 1

2m
(~∂i − iQAi)

2ψ −QA0ψ + V ψ. (3.29)

29



Thus, if we introduce the gauge-covariant derivatives

Dµψ = ∂µψ − i
Q

~
Aµψ, µ = 0, 1, 2, 3, (3.30)

then the gauged Schrödinger equation (3.29) assumes an elegant form,

i~D0ψ = − ~
2

2m
D2
i ψ + V ψ. (3.31)

Note that (3.29) or (3.31) is semi-quantum mechanical in the sense that the point particle of
mass m is treated quantum mechanically by the Schrödinger equation but the electromagnetic

field is a classical field, through the coupling of the vector potential Aµ, also called the gauge
field, which will be made more specific in the next section.

It can be examined that (3.31) in invariant under the transformation

ψ 7→ eiωψ, Aµ 7→ Aµ +
~

Q
∂µω, (3.32)

which is also called the gauge transformation, gauge equivalence, or gauge symmetry. Two gauge
equivalent field configurations, (ψ, Aµ) and (ψ′, A′

µ), describe identical physics.
In view of differential geometry, the above structure defines a complex line bundle ξ over the

Minkowski spacetime R
3,1 where the symmetry group is U(1) = {eiω |ω ∈ R} so that ψ is a

cross-section and Aµ a connection which obey the transformation property

ψ′ = Ωψ, A′
µ = Aµ − i

~

Q
Ω−1∂µΩ, Ω ∈ C2(R3,1, U(1)). (3.33)

It will be convenient to consider the problem in the context of such a global transformation
property.

3.4 Removal of Dirac strings, existence of monopole, and charge quantization

We are now prepared to study the relation between the vector potentials A+ and A− induced

from a point magnetic charge g placed at the origin.
From (3.22), we see that if we use (r, θ, ϕ) to denote the spherical coordinates where θ is the

azimuth angle and ϕ the inclination angle, then

a1 = 2g∂1θ, a2 = 2g∂2θ, θ = tan−1

(

x2

x1

)

. (3.34)

Thus, inserting Ω = eiω into

A+
µ −A−

µ = −i
~

Q
Ω−1∂µΩ, (3.35)

and assuming ω depends on θ only on R
3 \ (S+ ∪ S−), we have, in view of (3.34), the relation

~

Q

∂ω

∂θ
= 2g. (3.36)

Integrating the above equation and using the requirement of the single-valuedness of Ω, we arrive
at

~

Q
(2πn) = 2g(2π), n ∈ N, (3.37)
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which leads to the Dirac charge quantization formula

gQ =
~

2
n, n ∈ N. (3.38)

Consequently, when the condition (3.38) holds, the magnetic field away from a point magnetic

charge g is well defined everywhere and is generated piecewise from suitable gauge potentials
defined on their corresponding domains. In particular, the Dirac strings are seen to be artifacts
and are removed. Consequently, like point electric charges, magnetic monopoles are also truly

point magnetic charges, which will simply be referred to as monopoles from now on.
An immediate popular-science implication of the formula (3.38) is that the existence of a

single monopole in the universe would predict that all electric charges are integer multiples of a
basic unit charge. Indeed, this is what observed in nature since all electric charges are measured

to be the multiples of the charge of the electron.
Although a monopole has never been found in nature, there are some recent heated activities

among experimental physicists leading to the discovery of monopole-like structures in condensed-
matter systems [15, 27, 49, 93].
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Thus, the dual basis transformation follows a reversed direction. For this reason, we say that

the bases in V are transformed in a covariant way, while the bases in V ′ are transformed in a
contravariant way.

If we express A explicitly in terms of a matrix (Aij) by

Auj =
n
∑

i=1

Aijui, i = 1, · · · , n, (4.4)

then for any vector expanded with respect to the bases B i.e., u =
∑n

i=1 xiui, with coordinate
vector (x1, · · · , xn), we have

v = Au =

n
∑

i=1

xi





n
∑

j=1

Ajiuj



 =

n
∑

i=1





n
∑

j=1

Aijxj



 ui. (4.5)

In other words, if we write the coordinates of v under B as (y1, · · · , yn), we have the same
‘forward’ relationship

yi =

n
∑

j=1

Aijxj , i = 1, · · · , n. (4.6)

Thus, we may call the coordinate vectors for vectors in V the covariant vectors. Likewise, for a
vector u′ =

∑n
i=1 x

′
iu

′
i, correspondingly, we see that v′ = (A′)−1u′ =

∑n
i=1 y

′
iu

′
i satisfies

y′i =
n
∑

j=1

A−1
ji x

′
j or x′i =

n
∑

i=1

A′
ijy

′
j =

n
∑

i=1

Ajiy
′
j . (4.7)

Hence, we see that the corresponding coordinate vectors are transformed in a ‘backward’ manner

with the transposed matrix. For this reason, the coordinate vectors for vectors in V ′ are called
the contravariant vectors.

Simply speaking, covariant and contravariant vectors transform themselves with respect to
the column and row indices of a transformation matrix, respectively. Analogously, we have

covariant, contravariant, and mixed tensors, as well.
Note that, since V ′′ = V , the terms ‘covariant’ and ‘contravariant’ are relative and inter-

changeable, since the column and row indices of a matrix are interchangeable.

Now we come back to field theory. The Minkowski spacetime R
3,1 is chosen to have the 4×4

metric matrix given as

g = (gµν) = diag{1,−1,−1,−1}, µ, ν = 0, 1, 2, 3. (4.8)

The Lorentz transformation are 4×4 invertible matrices, of the form (Lµν ) (µ, ν are the row and
column indices, respectively), which leave g invariant, i.e.,

g = LtgL, or gαβ = LµαgµνL
ν
β (α, β, µ, ν = 0, 1, 2, 3), (4.9)

where summation convention is assumed over repeated indices. Thus gµν in particular is a

contravariant 2-tensor. From (4.9), we have

g−1 = (L−1)g−1(L−1)t. (4.10)
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Since matrix transposition switches the indices of columns and rows of a matrix, we see that

g−1 is a covariant 2-tensor, written as gµν, which happens to be identical to g,

g−1 = (gµν) = (gµν) = g. (4.11)

Now the coordinates of the Minkowski space R
3,1 is written as xµ, which is a covariant vector,

of course, which is transformed according to

yµ = Lµνx
ν . (4.12)

We may use gµν and gµν to raise and lower indices, which transform contravariant and covariant
quantities to their counterparts (i.e., covariant and contravariant quantities). For example,

xµ = gµνx
ν, (xµ) = (x0, x1, x2, x3) = (x0,−x1,−x2,−x3). (4.13)

As a consequence of (4.9), (4.12), and (4.13), we have the invariance

yµy
µ = gµνL

ν
αx

αLµβx
β = xαgαβx

β = xµx
µ, (4.14)

for the contraction of any coordinate vector under the Lorentz transformations, which is essential

for relativity.
The set of all Lorentz transformations, or the Lorentz group, is generated by the Lorentz

boosts 6 and spatial rotations. For example, the Lorentz boost along the x1-axis connecting two
inertial coordinate frames, (xµ) and yµ, moving apart with relative speed v (|v| < c), is given by

y0 =
x0 + vx1

c2

(1− v2

c2
)

1
2

, y1 =
x1 + vx0

(1 − v2

c2
)

1
2

, y2 = x2, y3 = x3. (4.15)

Obviously the Lorentz group may be parametrized by six parameters, three for spatial rotations

and three for the relative speeds of inertial frames with respect to the three spatial direc-
tions. Since the three speeds assume values in the open interval (−c, c), the Lorentz group

is non-compact. The transformation group consisting of the Lorentz group and all spacetime
translations is called the Poincaré group, which is ten-dimensional, of course.

In the same fashion, if T µν is a covariant 2-tensor which transforms according to

Sµν = LµαL
ν
βT

αβ, (4.16)

then we have

SµνS
µν = gµµ′gνν′S

µ′ν′Sµν = gµµ′gνν′L
µ′

α′L
ν′

β′Tα
′β′

LµαL
ν
βT

αβ = TµνT
µν , (4.17)

which is seen again as a Lorentz invariant quantity.

Since physical laws are independent of the coordinate system of an observer and the Lorentz
transformations link all allowed coordinate systems, these laws may only be expressed by those
quantities which are Lorentz invariant.

It may be checked that the standard operator ∂µ = ∂/∂xµ behaves contravariantly and the
differential dxµ behaves covariantly. Thus, the spacetime line element

ds2 = dxµdx
µ = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 (4.18)

is an invariant, which implies in particular that the speed (c = 1) of light remains the same in
all coordinate frames related by the Lorentz transformations. If the gauge field Aµ introduced
in the last section is contravariant, then the gauge-covariant derivative Dµ defined in (3.30) is

also contravariant.
6Sometimes the Lorentz transformations are specifically referred to as the Lorentz boosts.
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4.2 Relativistic field equations

Recall that the Schrödinger equation for the motion of a free particle of mass m is derived from

the Newtonian energy-momentum relation

E =
p2

2m
, (4.19)

which is non-relativistic. In order to extend the Schrödinger equation to the relativistic realm,

a direct approach is to replace the Newtonian relation (4.19) by its relativistic extension, which
is quite simple to do.

In fact, recall that, according to relativity, the energy contained in a resting particle of mass
m is given by the popular-science formula

E = mc2, (4.20)

where c is the speed of light in vacuum. When the particle is considered with motion, the

relation (4.20), after setting c = 1, becomes the following energy-momentum relation

E2 = p2 +m2, (4.21)

due to Einstein. Thus, using the quantization procedure stated in (2.47), we arrive at the
equation

−∂
2ψ

∂t2
= −∆ψ +m2ψ or − �ψ = m2ψ, (4.22)

governing a complex scalar field ψ, which is relativistic and commonly called the Klein–Gordon
equation. Here and in the sequel, we set ~ = 1 for convenience. Alternatively, we may also

rewrite (4.22) as
−∂µ∂µψ = m2ψ, (4.23)

which is clearly Lorentz invariant and is the Euler–Lagrange equation of the invariant action

L =

∫ (

1

2
∂µψ∂µψ − 1

2
m2|ψ|2

)

dx. (4.24)

Global and local symmetries

There is no harm to consider a slightly generalized Lagrange action density

L =
1

2
∂µφ∂µφ− V (|φ|2), (4.25)

where φ is a complex-valued scalar field as before. It is clear that the above Lagrangian is

invariant under the phase change for the field φ,

φ(x) 7→ eiωφ(x), (4.26)

where ω is a real constant. Such a symmetry is called a global symmetry because it simply says
that an everywhere identical phase shift for the field φ does not change anything. However, when
this global symmetry is enlarged to a local one for which ω becomes a function of the spacetime

coordinates, ω = ω(x), the invariance is no longer valid. A way out of this is to replace the
ordinary derivatives by covariant derivatives and modify the Lagrangian into

L =
1

2
DµφDµφ − V (|φ|2), Dµφ = ∂µφ− ieAµφ, (4.27)
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where e > 0 is a coupling constant resembling an electric charge as before, and require that the

vector field Aµ obey the transformation rule

Aµ 7→ Aµ +
1

e
∂µω (4.28)

and behave like a contravariant vector field under the Lorentz transformations. It can be directly
checked that, under a local (x-dependent) phase shift

φ(x) 7→ eiω(x)φ(x), (4.29)

Dµφ changes itself covariantly according to

Dµφ 7→ eiω(x)Dµφ (4.30)

so that the modified Lagrangian indeed becomes invariant under the gauge transformation con-
sisting of (4.28) and (4.29).

Unfortunately, the Lagrangian (4.27) is incomplete because it cannot give rise to an equation
of motion for the newly introduced gauge field Aµ which is an additional dynamical variable. In

order to derive a suitable dynamic law for the motion of Aµ, we compare Aµ with φ and demand
that the qualified Lagrangian contain quadratic terms of the first-order derivatives of Aµ. Since
these terms should be invariant under (4.28), we see that a minimal way to do so is to introduce

the contravariant 2-tensor

Fµν = ∂µAν − ∂νAµ, µ, ν = 0, 1, 2, 3. (4.31)

Using contraction to observe Lorentz invariance, we arrive at the minimally modified complete
Lagrange action density

L = −1

4
FµνF

µν +
1

2
DµφDµφ− V (|φ|2), (4.32)

where factor 1
4 is for convenience, which is invariant under the gauge and Lorentz transformations

and governs the evolution of the fields φ and Aµ. The Euler–Lagrange equations of the updated
Lagrangian (4.32) are

DµD
µφ = −2V ′(|φ|2)φ, (4.33)

∂νF
µν = −Jµ, (4.34)

where

Jµ =
i

2
e(φDµφ − φDµφ). (4.35)

The equation (4.33) is a gauged wave equation which extends (4.22) or (4.23). It will be instruc-
tive to recognize what is contained in the equation (4.34). To do so, we can first use (4.33) to
check that Jµ is a conserved ‘4-current’ satisfying

∂µJ
µ = 0. (4.36)

Thus, if we introduce the charge density ρ and current density j by setting

ρ = J0 =
i

2
e(φD0φ− φD0φ), j = (J i), J i =

i

2
e(φDiφ− φDiφ), i = 1, 2, 3, (4.37)
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we have the conservation law
∂ρ

∂t
+ ∇ · j = 0, (4.38)

which indicates that (4.34) is to be identified with the Maxwell equations. For this purpose, we
introduce the electric and magnetic fields E = (Ei) and B = (Bi) by setting

(Fµν) =









0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0









. (4.39)

We can check that the µ = 0 component of (4.34) is simply ∇ · E = ρ, which is the Gauss law

(3.1). The spatial components of (4.34), with µ = i = 1, 2, 3, render the equation

∂E

∂t
+ j = ∇×B, (4.40)

which is (3.2). Hence we have partially recover the Maxwell equations (the part with charge and
current sources). In order to recover the source-free part, i.e., the equations (3.3) and (3.4), we

note that (4.31) implies the Bianchi identity

∂γFµν + ∂µF νγ + ∂νF γµ = 0, (4.41)

which lead to (3.3) and (3.4). In other words, (3.3) and (3.4) automatically hold as a consequence
of the definition (4.31). In summary, (4.34) is indeed the Maxwell equations.

Therefore, we have seen that the Maxwell equations can be derived as a consequence of
imposing gauge symmetry, which is a great lesson to have.

At this spot, it is worthwhile to pause and make some comments about what we have just
learned. The spacetime where the fields are defined on is called the external space. The scalar

field may be viewed as a cross-section of a principal (complex line) bundle over the spacetime.
The bundle into which the scalar field takes values in is call the internal space. The external

space has the Lorentz group as the symmetry group which leads to relativity. The internal space
has the U(1) group as the symmetry group, whose local invariance or gauge invariance leads to
the introduction of gauge field which generates electromagnetism. The external space symmetry

is called external symmetry and the internal space symmetry is called internal symmetry. Local
U(1) internal symmetry requires the presence of electromagnetism. The Lorentz symmetry

discussed is a global external symmetry which gives rise to special relativity. When such a
global external symmetry is elevated into a local one, new fields arise. Indeed, in this situation,

we are led to general relativity and presence of gravitation, as shown by Einstein. Furthermore,
it is foreseeable that, when the internal symmetry is modified to be given by larger gauge groups

such as SU(N ) (N ≥ 2), other physical forces may be generated. In fact, this is the case and the
forces generated can be weak and strong forces for nuclear interactions. This procedure exhausts

all four known forces in nature: gravitational, electromagnetic, weak, and strong forces. In other
words, we can draw the conclusion that external symmetry leads to the presence of gravity and
internal symmetry leads to the presence of electromagnetic, weak, and strong interactions.

We also remark that, if the complex scalar field φ becomes real-valued, the charge density
ρ given in (4.37) vanishes identically. In other words, a real-valued scalar field leads to an

electrically neutral situation and a complex-valued scalar field may be used to generate electricity.
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Moreover, we remark that the charge (4.37) is generated by a scalar field but the charge e in

the definition of the gauge-covariant derivative is switched on ‘by hand’.
Note that

−1

4
FµνF

µν = −1

2

∑

0≤µ<ν≤3

FµνF
µν =

1

2





3
∑

i=1

F 2
0i −

∑

1≤i<j≤3

F 2
ij



 =
1

2
(E2 − B2). (4.42)

We see that the terms
1

2

3
∑

i=1

F 2
0i =

1

2
E2,

1

2
|D0φ|2, (4.43)

and
1

2

∑

1≤i<j≤3

F 2
ij =

1

2
B2,

1

2
|Diφ|2, (4.44)

in the Lagrangian (4.32) play rather different roles: The former are ‘kinetic’ terms which describe
the dynamics of the fields and the latter are ‘potential’ or ‘elastic’ terms because they do not

contain time derivatives. In particular, electric energy density is of kinetic type but magnetic
energy density is of elastic or potential type.

4.3 Coupled nonlinear hyperbolic and elliptic equations

It may be enlightening to view the equations of motion (4.33) and (4.34) as two coupled wave
equations. For this purpose, we use the notation

�D = DµD
µ, (4.45)

to denote the gauged D’Lambertian operator with respect to the gauge-covariant derivatives.

Hence �∂ = � is the standard one and we see that (4.33) and (4.34) become

�Dφ = −2V ′(|φ|2)φ, (4.46)

�∂A
µ = Jµ + ∂µ(∂νA

ν). (4.47)

We see that, if we may impose the so-called Lorentz gauge condition

∂µA
µ = 0, (4.48)

the equation (4.47) gives rise to non-homogeneous wave equations governing Aµ (µ = 0, 1, 2, 3).

It is also interesting to consider the static situation when the fields are independent of the
time variable x0 = t. In this situation, it is consistent to impose the so-called temporal gauge

condition
A0 = 0. (4.49)

With A = (A1, A2, A3) and

DAφ = ∇φ− ieAφ, DiD
iφ = −D2

Aφ = −∆Aφ, (4.50)

we have
∆Aφ = ∆φ− 2ieA · ∇φ− ie(∇ · A)φ− e2|A|2φ. (4.51)
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Thus, (4.46) and (4.47) become a system of nonlinear equations

∆φ = 2ieA · ∇φ+ ie(∇ ·A)φ+ e2|A|2φ+ 2V ′(|φ|2)φ, (4.52)

∆A = ∇(∇ · A) +
i

2
(φDAφ− φDAφ), (4.53)

which are strictly elliptic and considerably simplified when A satisfies the condition

∇ · A = 0, (4.54)

known as the Coulomb gauge condition. It may be useful to note that the equations (4.52) and
(4.53) are the Euler–Lagrange equations of the energy functional

E(φ,A) =

∫ {

1

2
|∇ × A|2 +

1

2
|DAφ|2 + V (|φ|2)

}

dx. (4.55)

The equations (4.52) and (4.53) and the energy (4.55) are actually known as the Ginzburg–

Landau equations and the Ginzburg–Landau energy arising in the theory of superconductivity,
which will be discussed in more detail later in the notes.

4.4 Abelian Higgs model

Although the Abelian Higgs model originated from particle physics, it has broad applications in

solid-state or condensed-matter physics and supplies as a profound source of important ideas.
We begin by considering the static solutions of the model with temperature dependence.

Temperature-dependent potential function

The simplest situation is that the potential density V is of the form

V (|φ|2) =
1

2
m2(T )|φ|2 +

1

8
λ|φ|4, (4.56)

where m2 is a function of the temperature T , which is typically of the form

m2(T ) = a

([

T

Tc

]2

− 1

)

, (4.57)

λ, a > 0 are suitable parameters, and Tc > 0 is a critical temperature.

Vacuum solutions, or ground states, are the lowest energy static solutions. In high temper-
ature, T > Tc, we have m2(T ) > 0 and, in view of the Klein–Gordon equation, the quantity

m(T ) > 0 is the mass of two real scalar particles represented by φ1 and φ2 where φ = φ1+iφ2 and
higher order terms of φ1 and φ2 describe self-interactions. The only minimum of the Hamiltonian

density

H =
1

2
|∇φ|2 +

1

2
m2(T )|φ|2 +

1

8
λ|φ|4 (4.58)

is

φv = 0, (4.59)

which is the unique vacuum state of the problem. This vacuum state is of course invariant under
the U(1)-symmetry group φ 7→ eiωφ.

Symmetry and symmetry breaking
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In general, given a symmetry group, the Lagrangian density should be invariant if the vacuum

state is already invariant, based on some consideration from quantum field theory. Such a
statement is known as the Coleman theorem (the invariance of the vacuum state implies the

invariance of the universe). If both the vacuum state and the Lagrangian density are invariant,
we say that there is exact symmetry. If the vacuum state is non-invariant, the Lagrangian

density may be non-invariant or invariant. In both cases, we say that the symmetry as a whole
is broken. The former case is referred to as explicit symmetry-breaking and the latter case is
referred to as spontaneous symmetry-breaking, which is one of the fundamental phenomena in

low-temperature physics.
To explain some of the above concepts, we assume that T < Tc. We have m2(T ) < 0 and we

see that there is a phase transition: although φ = 0 is still a solution but it is no longer stable.
In fact the minimum of H is attained instead at any of the configurations

φv,θ = φ0e
iθ, φ0 =

√

(

1 −
[

T

Tc

]2)2a

λ
> 0, θ ∈ R, (4.60)

which give us a continuous family of distinct vacuum states (a circle) labeled by θ. Since for

ω 6= 2kπ
φ 7→ eiωφ (4.61)

transforms any given vacuum state, φv,θ, to a different one, φv,θ+ω, we observe the non-invariance
of vacuum states although the Lagrangian density is still invariant. Consequently, the symmetry

is spontaneously broken. The quantity φ0 measures the scale of the broken symmetry.

Illustration. Consider what happens when exerting pressure on an upright stick.

Goldstone particles and Higgs mechanism

We continue to consider the system at low temperature, T < Tc. Since m2(T ) < 0, it seems
that we would have particles of imaginary mass. However, this is not the case as will be seen

below.
In fact, the fore-discussed Lagrangian density governs fluctuations around vacuum state. For

T > Tc, the vacuum state is the zero state and m(T ) clearly defines mass. For T < Tc, we need
to consider fluctuations around a given nonzero vacuum state, say φ0, represented by two real

scalar functions φ1 and φ2,
φ(x) = φ0 + φ1(x) + iφ2(x). (4.62)

In this case, the minimum of V is strictly negative,

V (φ2
0) =

1

2
m2(T )φ2

0 +
1

8
λφ4

0 = −1

8
λφ4

0. (4.63)

Thus, in order to maintain finite energy in an unbounded space, we need to shift the potential

energy density by the quantity given above,

V 7→ V +
1

8
λφ4

0 =
λ

8
(|φ|2 − φ2

0)
2, (4.64)

and the new minimum energy level is zero. Using the updated potential function, we have the
Lagrangian density

L =
1

2
∂µφ1∂

µφ1 +
1

2
∂µφ2∂

µφ2 −
λ

2
φ2

0φ
2
1 −

λ

8
(φ4

1 + φ4
2 + 2φ2

1φ
2
2 + 4φ0φ

3
1 + 4φ0φ1φ

2
2), (4.65)
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which governs the scalar fields φ1 and φ2 fluctuating around the vacuum state, φ1 = 0, φ2 = 0.

The coefficient of φ2
1 defines the mass of the φ1-particles,

m1 =
√
λφ0 =

√
2|m(T )| > 0. (4.66)

However, since the φ2
2 term is absent (the higher=order terms describe interactions), these φ2-

particles are massless and are called the Goldstone particles. Hence, we see that spontaneous

symmetry-breaking leads to the presence of the Goldstone particles, namely, particles of zero
mass instead of particles of imaginary mass. This statement is known as the Goldstone theorem.

The Goldstone particles are massless, and hence, are curious. We see in the following that
these particles may be removed from the system when gauge fields are switched on. For this

purpose, we return to the locally invariant Lagrangian density to get

L = −1

4
FµνF

µν +
1

2
DµφDµφ− λ

8
(|φ|2 − φ2

0)
2, (4.67)

and we consider fluctuations around the vacuum state

φv = φ0, (Aµ)v = 0. (4.68)

Using the earlier decomposition of φ into φ0, φ1, φ2, we obtain the Lagrangian density for the
interaction of the fields φ1, φ2, and Aµ as follows,

L = −1

4
FµνF

µν +
1

2
∂µφ1∂

µφ1 +
1

2
∂µφ2∂

µφ2 +
1

2
e2φ2

0AµA
µ − λ

2
φ2

0φ
2
1 + Linter, (4.69)

where Linter contains all off-diagonal interaction terms involving the mixed products of the
fields φ1, φ2, Aµ, and their derivatives. Recall that the definition of the gauge transformation.

Hence, φ1, φ2, Aµ transform themselves according to the rule

φ0 + φ1 + iφ2 7→ φ0 + φ′1 + iφ′2, Aµ 7→ A′
µ,

φ′1 = φ1 cosω − φ2 sinω + φ0(cosω − 1),

φ′2 = φ1 sinω + φ2 cosω + φ0 sinω,

A′
µ = Aµ +

1

e
∂µω.

From the Lagrangian density, we see that φ2 remains massless. Besides, the gauge field Aµ
becomes massive (a mass of eφ0). However, using the above expression, we can find a suitable
gauge transformation so that φ′2 = 0. For example, we may choose

ω = − arctan
φ2

φ0 + φ1
. (4.70)

If we use the phase function ω determined above in the transformation and the new field variables
φ′1, A

′
µ, and suppress the prime sign ′, we see that the Lagrangian becomes

L = −1

4
FµνF

µν +
1

2
∂µφ1∂

µφ1 +
1

2
e2φ2

0AµA
µ − λ

2
φ2

0φ
2
1 + Linter, (4.71)

where Linter contains all off-diagonal interaction terms involving the mixed products of the fields

φ1, Aµ, and their derivatives. Thus we see that, in such a fixed gauge, we are left with a massive
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real scalar field and a massive gauge field and the massless Goldstone particle is eliminated. In

other words, spontaneous breaking of a continuous symmetry does not lead to the appearance
of a massless Goldstone particle but to the disappearance of a scalar field and the appearance of

a massive gauge field. This statement is known as the Higgs mechanism7 and the massive scalar
particles are called the Higgs particles. In particular, the Lagrangian density we have seen is

commonly referred to as the Abelian Higgs model and the complex scalar field φ is called the
Higgs field.

5 The Ginzburg–Landau equations for superconductivity

In this section, we consider the Ginzburg–Landau equations for superconductivity and Abrikosov’s
vortices and their topological characterizations. We will end with an excursion to the monopole

and quark confinement problem.
In the static situation,

∂0 = 0, A0 = 0, (5.1)

the Abelian Higgs model is the well-known Ginzburg–Landau theory for superconductivity. The
complex scalar field φ gives rise to density distribution of superconducting electron pairs known

as the Cooper pairs and the fact that the electromagnetic field behaves like a massive field due
to the Higgs mechanism is simply a consequence of the Meissner effect which is equivalent to

saying that the magnetic field becomes massive and cannot penetrate a superconductor.
For simplicity, we focus here on the two-dimensional situation. This is the most interesting

situation because it allows us to consider the Abrikosov [1] or Nielsen–Olesen [99] vortices.

5.1 Heuristic proof of the Meissner effect

We start with a ‘proof’ of the Meissner effect which states that a superconductor screens an

external magnetic field when this magnetic field is not strong enough to destroy its supercon-
ducting phase and that the superconducting phase in the superconductor may be switched to

the normal-conducting phase permitting the full penetration of the external magnetic field when
this magnetic field is made strong enough. For this purpose, we recall that the energy density
or Hamiltonian of the two-dimensional Ginzburg–Landau theory in the presence of a constant

external magnetic field, Hext > 0 (say), is given by

H(φ, Aj) =
1

2
F 2

12 +
1

2
|D1φ|2 +

1

2
|D2φ|2 +

λ

8
(|φ|2 − φ2

0)
2 − F12Hext. (5.2)

The normal and completely superconducting phases are represented by (φn, An
j ) and (φs, As

j ),

respectively, so that

φn = 0, Fn
12 = Hext; φs = φ0, As

j = 0, j = 1, 2. (5.3)

Therefore, we have

H(φn, An
j ) =

λ

8
φ4

0 −
1

2
H2

ext, H(φs, As
j) = 0. (5.4)

7This fundamental mechanism in fact was due to the independent work by three different groups of people:
Englert and Brout [40], Higgs [58], and Guralnik, Hagen, and Kibble [57], published in the same journal and at
the same time.
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Consequently, when Hext satisfies

Hext <
1

2
φ2

0

√
λ, (5.5)

we have H(φn, An
j ) > H(φs, As

j) and (φs, As
j) is energetically favored over (φn, An

j ). Thus the

superconductor is in the superconducting phase described by (φs, As
j) and the magnetic field is

completely expelled from the superconductor, F s
12 = 0. On the other hand, when

Hext >
1

2
φ2

0

√
λ, (5.6)

we have H(φn, An
j ) < H(φs, As

j) and (φn, An
j ) is energetically favored over (φs, As

j). Thus the
superconductor is in the normal phase described by (φn, An

j ) and the externally applied magnetic

field penetrates the superconductor completely, Fn
12 = Hext. Such a picture has fully depicted

the Meissner effect stated earlier.

5.2 Energy partition, flux quantization, and topological properties

Below, we will neglect the external magnetic field and set φ0 = 1, e = 1 for convenience. The
Euler–Lagrange equations, or the static Abelian Higgs equations (also known as the Ginzburg–

Landau equations) are

DkDkφ =
λ

2
(|φ|2 − 1)φ, (5.7)

∂kFjk =
i

2
(φDjφ− φDjφ), (5.8)

where j, k = 1, 2. Since the total energy is

E(φ, Aj) =

∫

R2

(

1

2
F 2

12 +
1

2
|D1φ|2 +

1

2
|D2φ|2 +

λ

8
(|φ|2 − 1)2

)

, (5.9)

the finite-energy condition implies that a solution (φ, A) must satisfy the boundary condition

F12 → 0, |Djφ| → 0, |φ| → 1 as |x| → ∞. (5.10)

In fact, it can be shown that the above decay may be achieved exponentially fast.
Note that the magnetic field F12 is also viewed as the vorticity field if the vector field

A = (A1, A2) is viewed as the velocity field in a two-dimensional fluid. Therefore, wherever
F12 6= 0, nontrivial vorticity is present. For this reason, nontrivial solutions of two-dimensional

gauge field equations are also called ‘vortices’ or ‘vortex-lines’.

Partition identity and consequence

Exploring the conformal structure of the problem, we arrive at

4

∫

R2

F 2
12 dx = λ

∫

R2

(|φ|2 − 1)2 dx. (5.11)

This identity says that there holds an exact partition between the magnetic energy and the

potential energy of the Higgs particle. In particular, the absence of the magnetic field, F12 ≡ 0
implies the triviality of the Higgs scalar field, |φ| ≡ 1, and vice versa. In particular, the equations

do not allow reduction to

A1 = A2 ≡ 0, ∆φ =
λ

2
(|φ|2 − 1)φ, x ∈ R

2, (5.12)
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among finite-energy solutions. Such a property may be regarded as a demonstration of the

Meissner effect from a different angle: A finite-energy solution has a nontrivial scalar field sector
if and only of the solution has a nontrivial gauge field sector. In the following, we will present

such solutions.

Flux quantization and topological invariants

Since |φ(x)| → 1 as |x| → ∞, we see that

Γ =
φ

|φ| : S1
R → S1 (5.13)

is well defined when R > 0 is large enough, where S1
R denotes the circle in R2 centered at the

origin and of radius R. Therefore Γ may be viewed as an element in the fundamental group

π1(S
1) = Z (5.14)

and represented by an integer N . In fact, this integer N is the winding number of φ around S1
R

and may be expressed by the integral

N =
1

2πi

∫

S1
R

d lnφ. (5.15)

It is interesting to note that the continuous dependence of the right-hand side of the above

relation with respect toR implies that it is actually independent ofR. An important consequence
of such an observation is the famous flux quantization condition

Φ =

∫

R2

F12 dx = 2πN (5.16)

which follows from
∣

∣

∣

∣

∫

|x|≤R
F12 dx + i

∫

|x|=R
d lnφ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

|x|=R
Aj dxj + i

∫

|x|=R
φ−1∂jφ dxj

∣

∣

∣

∣

≤
∫

|x|=R
|φ−1||DAφ| ds

≤ Ce−δR
∫

|x|=R
ds

= 2πRCe−δR → 0 as R→ ∞. (5.17)

Note that, when the theory is formulated in the language of a complex line bundle say ξ,

so that φ is a cross section, A is a connection 1-form, F = dA is the curvature, and DA is
the bundle connection, then the integer N is nothing but the first Chern class c1(ξ), which

completely classifies the line bundle up to an isomorphism. That is,

Φ

2π
= N = c1(ξ). (5.18)

An important open question is whether for any given N ∈ Z there is a solution to the

constrained minimization problem

EN ≡ inf

{

E(φ, A)

∣

∣

∣

∣

∫

R2

F12 dx = 2πN

}

. (5.19)

The problem is known to be solvable only when λ = 1 due to Taubes [66, 138, 139].
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5.3 Vortex-lines, solitons, and particles

In the theory of superconductivity, the complex scalar field is an ‘order’ parameter which charac-

terizes the two phases, superconducting and normal states, of a solid. Mathematically, |φ|2 gives
rise to the density of superconducting electron pairs, also called the Cooper pairs, so that φ 6= 0
indicates the presence of electron pairs and onset of superconductivity and φ = 0 indicates the

absence of electron pairs and the dominance of normal state. As a consequence, when the order
parameter φ is such that it is nonvanishing somewhere but vanishing elsewhere, we are then

having a ‘mixed state’. Recall that, according to the Meissner effect, a superconductor screens
the magnetic field. In other words, the presence of superconductivity prevents the penetration

of a magnetic field. Therefore, in a mixed state, the magnetic field, F12, always has its maximum
penetration at the spots where φ = 0. Or equivalently, |F12| assumes its local maximum values

at the zeros of φ. Since F12 may be interpreted as a vorticity field, the zeros of φ give rise to
centers of vortices or locations of vortex-lines distributed over R2. In fact, although it is not

obvious, it may be checked that |D1φ|2 + |D2φ|2 also attains its local maxima at the zeros of φ.
Hence, we have seen that the energy density

H(φ, A)(x) =

(

1

2
F 2

12 +
1

2
|D1φ|2 +

1

2
|D2φ|2 +

λ

8
(|φ|2 − 1)2

)

(x) (5.20)

attains its local maxima at the zeros of φ as well. However, since energy and mass are equivalent,
we have observed mass concentration centered at the zeros of φ. In other words, we have

produced a distribution of solitons which may be identified with ‘particles’ in quantum field
theory.

We now show that the presence of zeros of φ is essential for a solution to be nontrivial: If
(φ, A) is a finite-energy solution of the Abelian Higgs equations so that φ never vanishes, then

(φ, A) is gauge-equivalent to the trivial solution A ≡ 0, φ ≡ 1.
Here is a quick proof.

Since φ never vanishes, we may rewrite φ as

φ = ϕeiω (5.21)

for globally defined real-valued smooth functions ϕ and ω over R2. In fact, we may assume

ϕ > 0. Using the gauge transformation

φ 7→ φe−iω, Aj 7→ Aj − ∂jω, (5.22)

we see that (φ, A) becomes ‘unitary’ in the sense that φ is real valued,

φ = ϕ, (5.23)

and we say that we have chosen a ‘unitary gauge.’ In unitary gauge, the equations of motion
decompose significantly to take the form

∆ϕ = |A|2ϕ+
λ

2
(ϕ2 − 1)ϕ,

2Ak∂kϕ+ (∂kAk)ϕ = 0,

∂1F12 = ϕ2A



From the last two equations, we have
∫

R2
(A2∂1F12 −A1∂2F12) dx =

∫

R2
|A|2ϕ2 dx. (5.24)

Integrating further by parts and dropping the boundary terms, we obtain
∫

R2

(F 2
12 + |A|2ϕ2) dx = 0. (5.25)

Since ϕ never vanishes, we have A ≡ 0. Returning to the governing equations, we arrive at the
single remaining equation

∆ϕ =
λ

2
ϕ(ϕ2 − 1), (5.26)

which may be rewritten as

∆(ϕ− 1) =
λ

2
ϕ(ϕ+ 1)(ϕ− 1). (5.27)

Using the boundary condition ϕ − 1 → 0 as |x| → ∞ and the maximum principle, we deduce
ϕ ≡ 1 as claimed.

Estimate of energy from below – topological lower bound

A useful identity involving gauge-covariant derivatives is

|Djφ|2 = |D1φ± iD2φ|2 ± F12|φ|2 ± i(∂1[φD2φ]− ∂2[φD1φ]). (5.28)

Therefore the total energy satisfies

E(φ, A) ≥ min{λ, 1}
∫

R2

(

1

2
F 2

12 +
1

2
|Djφ|2 +

1

8
(|φ|2 − 1)2

)

dx

= min{λ, 1}
∫

R2

(

1

2

∣

∣

∣

∣

F12 ±
1

2
(|φ|2 − 1)

∣

∣

∣

∣

+
1

2
|D1φ± iD2φ|2 ±

1

2
F12

)

dx

≥ min{λ, 1}π|N |, (5.29)

where Φ = 2πN and the signs ± follow N = ±|N |. In the sequel, we focus on N ≥ 0 for

convenience. When λ = 1, we have
E(φ, A) ≥ πN (5.30)

and such an energy lower bound is saturated if and only if (φ, A) satisfies the self-dual system

of equations

D1φ+ iD2φ = 0, (5.31)

F12 =
1

2
(1− |φ|2), (5.32)

which is a reduction of the original equations of motion and is also often called a BPS system
after Bogomol’nyi [10] and Prasad and Sommerfield [113] who first derived these equations.

Structure of BPS system

It will be convenient to complexify our variables and use

A = A1 + iA2, A1 =
1

2
(A+A), A2 =

1

2i
(A− A), z = x1 + ix2, (5.33)

∂ =
1

2
(∂1 − i∂2), ∂ =

1

2
(∂1 + i∂2), ∂1 = ∂ + ∂, ∂2 = i(∂ − ∂), (5.34)

∆ = ∂2
1 + ∂2

2 = 4∂∂ = 4∂∂. (5.35)
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Hence the first equation in the BPS system assumes the form

∂φ =
i

2
Aφ. (5.36)

To see what this relation means, we recall the ∂-Poincaré lemma which states that the equation

∂ω(z) = iα(z) (5.37)

over a disk B ⊂ C always has a solution. In fact, this solution may be represented by [66]

ω(z) =
1

2π

∫

B

α(z′)
z′ − z

dz′ ∧ dz′. (5.38)

Now let ψ solve ∂ψ = i
2A locally. Then we see that the complex-valued function f = φe−ψ

satisfies the Cauchy–Riemann equation

∂f = ∂(φe−ψ) = e−ψ(∂φ− φ∂ψ) = 0. (5.39)

Therefore f(z) is analytic. In particular, f (and hence φ) may only have isolated zeros with
integer multiplicities. In other words, if z0 is a zero of φ, then

φ(z) = (z − z0)
nh(z) (5.40)

for z near z0 and the function h(z) never vanishes, where n is a positive integer which is also

the local winding number of φ around z0. From the second equation of the BPS system, we see
clearly that the vorticity field F12 achieves it maximum value at z0 as well,

max{F12} = F12(z0) =
1

2
(5.41)

so that the point z0 defines the center of a (magnetic) vortex. The integer n is also called the

local vortex charge. Besides, since |φ| → 1 as |x| → ∞, we see that φ can only have a finite
number of zeros over C. Assume that the zeros of φ and their respective multiplicities are

z1, n1, z2, n2, · · · , zk, nk. (5.42)

Counting multiplicities of these zeros (i.e., a zero of multiplicity m is counted as m zeros), the

total vortex charge is the total number of zeros of φ, say N (φ),

N (φ) =
k
∑

s=1

ns. (5.43)

On the other hand, away from the zeros of φ, the first equation in the BPS system is

A = −i2∂ lnφ. (5.44)

Therefore, there, we can represent F12 as

F12 = ∂1A2 − ∂2A1 = −i(∂A− ∂A) = −2∂∂ ln |φ|2 = −1

2
∆ ln |φ|2. (5.45)
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Inserting the above into the second equation in the BPS system, we have

∆ ln |φ|2 + 1− |φ|2 = 0 (away from the zeros of φ). (5.46)

Now define

u = ln |φ|2. (5.47)

Then, near zs (s = 1, 2, · · · , k), we have

u(z) = 2ns ln |z − zs| + a regular term. (5.48)

Consequently, we arrive at the Liouville type equation

∆u = eu − 1 + 4π
k
∑

s=1

nsδ(z − zs) in C = R
2 (5.49)

subject to the boundary condition

u→ 0 as |x| = |z| → ∞ (5.50)

(since |φ| → 1 as |x| → ∞), which may be solved by various techniques.
Conversely, for any given data {(zs, ns)}, the solution of the above elliptic equation gives

rise to a solution pair (φ, A) which represents multiply distributed vortices at {zs} with the
corresponding local vortex charges {ns}.

Formally, it may be easily convinced that

∫

R2

∆u dx = 0. (5.51)

Hence, from the equation, we obtain

∫

R2

(1 − |φ|2) dx =

∫

R2

(1 − eu) dx = 4π

k
∑

s=1

ns = 4πN (φ). (5.52)

Integrating the second equation in the BPS system and inserting the above relation, we get the

beautiful result

N = c1(ξ) =
1

2π

∫

R2
F12 dx =

1

4π

∫

R2
(1 − |φ|2) dx = N (φ). (5.53)

In other words, the total vortex number is nothing but the first Chern class of the solution we
have seen before, which also determines the total magnetic flux, Φ = 2πN .

Let us record the important conclusion that our solution carries the minimum energy,

EN = πN. (5.54)

Note that such an exact result is only known for λ = 1 but unknown for λ 6= 1. It is worth
mentioning that λ classifies superconductivity so that λ < 1 corresponds to type I and λ > 1
corresponds to type II superconductivity, respectively.

Estimate of energy from above – topological upper bound
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Using (φ, A) to denote a solution of the BPS system with N = ±|N | as a trial field configu-

ration pair, we have

E(φ, A) ≤ max{λ, 1}
∫

R2

(

1

2
F 2

12 +
1

2
|Djφ|2 +

1

8
(|φ|2 − 1)2

)

dx

= max{λ, 1}
∫

R2

(

1

2

∣

∣

∣

∣

F12 ±
1

2
(|φ|2 − 1)

∣

∣

∣

∣

+
1

2
|D1φ± iD2φ|2 ±

1

2
F12

)

dx

≤ max{λ, 1}π|N |. (5.55)

Therefore, we have obtained the following lower and upper bounds

min{λ, 1}π|N | ≤ EN ≤ max{λ, 1}π|N |, (5.56)

which implies that the energy E grows in proportion to the total vortex number N and suggests

that these vortices may indeed be viewed as particles. It is also seen that a nonvanishing N is
essential for the existence of a nontrivial solution.

Recently, it is demonstrated in [21] that EN is asymptotically like π
2N

2 lnλ for λ large.
Energy gap

An interesting fact contained in (5.56) is that the Ginzburg–Landau equations have no

nontrivial energy-minimizing solution with an energy in the open interval

I = (0,min{λ, 1}π). (5.57)

Such a result may be viewed as an energy or mass gap theorem at classical level.

5.4 From monopole confinement to quark confinement

Consider two masses, m1 and m2, initially placed r distance away. The gravitational attractive

force between the masses is then
F (r) = G

m1m2

r2
, (5.58)

following Newton’s law. Thus, the work or energy needed to completely split them so that they
eventually stay away as non-interacting ‘free masses’ is

W =

∫ ∞

r

F (ρ) dρ = G
m1m2

r
. (5.59)

Of course, we can do the same thing for a pair of monopole and anti-monopole because the
magnetic force between them obeys the same inverse-square law.

However, when the monopole and anti-monopole are placed in a type-II superconductor, we
will encounter an entirely different situation. Due to the presence of superconducting Cooper



which is a linear function of r. In particular, the work needed to completely split the monopole

pair so that the monopole and anti-monopole are seen as isolated free entities will be infinite.
Thus, it will be practically impossible to separate the monopole and anti-monopole immersed in

a type-II superconductor. In other words, the monopole and anti-monopole are confined. More
precisely, we see that, due to the Meissner effect, the monopole and anti-monopole placed in

a type-II superconductor interact with each other through narrowly formed vortex-lines which
give rise to a constant inter-monopole binding force and the linear law of potential expressed in
(5.60). As a result, it is impossible to separate such a pair of monopole and anti-monopole, and

the monopole confinement phenomenon takes place. Such a confinement picture is also called
linear confinement.

A fundamental puzzle in physics, known as the quark confinement [54], is that quarks, which
make up elementary particles such as mesons and baryons, cannot be observed in isolation. A

well accepted confinement mechanism, exactly known as the linear confinement model, interest-
ingly states that, when one tries to separate a pair of quarks, such as a quark and an anti-quark

constituting a meson, the energy consumed would grow linearly with respect to the the sep-
aration distance between the quarks so that it would require an infinite amount of energy in

order to split the pair. The quark and anti-quark may be regarded as a pair of source and sink
of color-charged force fields. The source and sink interact through color-charged fluxes which
are screened in the bulk of space but form thin tubes in the form of color-charged vortex-lines

so that the strength of the force remains constant over arbitrary distance, resulting in a linear
dependence relation for the potential energy with regard to the separation distance. Such a sit-

uation is similar to the above-described magnetic monopole and anti-monopole pair immersed
in a type-II superconductor. We have seen that the magnetic fluxes mediating the interacting

monopoles are not governed by the Maxwell equations, which would otherwise give rise to an
inverse-square-power law type of decay of the forces and lead to non-confinement, but rather

by the Ginzburg–Landau equations or the static Abelian Higgs model in the temporal gauge,
which produce narrowly distributed vortex-lines, known as the Abrikosov vortices [1] or the

Nielsen–Olesen strings [99], as presented, leading to a linear confinement result, (5.60).
Inspired by the above-described monopole confinement in a type-II superconductor, Man-

delstam [86, 87], Nambu [95], and ’t Hooft [135, 137] proposed in the 1970s that the ground

state of quantum-chromodynamics (QCD) is a condensate of chromomagnetic (color-charged)
monopoles, causing the chromoelectric fluxes between quarks to be squeezed into narrowly

formed tubes or vortex-lines, similar to the electron condensation in the bulk of a supercon-
ductor, in the form of the Cooper pairs, resulting in the formation of color-charged flux-tubes

or vortex-lines which mediate the interaction between quarks, following a non-Abelian version
of the Meissner effect, called the ‘dual Meissner effect’, which is responsible for the screening of

chromoelectric fluxes [124, 125].
Thus, we have seen that the notion of magnetic monopoles is not only a theoretical con-

struction as a result of the electromagnetic duality but also supplies as a useful ‘theoretical
phenomenon’ that provides a crucial hint to a hopeful solution of one of the greatest puzzles of
modern physics – quark confinement.

6 Non-Abelian gauge field equations

In the last two sections, we discussed a gauge field theory with the Abelian group U(1). The

Yang–Mills theory is now a generic name for the gauge field theory with an arbitrary non-Abelian
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Lie group G.

6.1 The Yang–Mills theory



For any A ∈ G, since A† = −A, we see that

|A|2 = (A,A) = −Tr (A2). (6.10)

In complete analogy with the electromagnetic field in the Abelian case, we can examine the

non-commutativity of the gauge-covariant derivatives to get

DµDνφ −DνDµφ = (∂µAν − ∂νAµ + [Aµ, Aν])φ, (6.11)

where [·, ·] is the Lie bracket (or commutator) of G. Hence we are motivated to define the

skew-symmetric Yang–Mills field (curvature) 2-tensor Fµν as

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν]. (6.12)

It is clear to see that Fµν transforms itself according to

Fµν 7→ F ′
µν = ∂µA

′
ν − ∂νA

′
µ + [A′

µ, A
′
ν] = ΩFµνΩ

−1. (6.13)

Hence we obtain the analogous invariant term,

1

4
Tr (FµνF

µν). (6.14)

Hence, we arrive at the final form of our locally gauge-invariant Lagrangian action density

L =
1

4
Tr (FµνF

µν) +
1

2
(Dµφ)(Dµφ)† − V (|φ|2). (6.15)

which defines a non-Abelian gauge field theory called the Yang–Mills theory. The Euler–

Lagrange equations of the above action are called the Yang–Mills equations. In the situation
where the potential density V introduces a spontaneously broken symmetry, the theory is called
the Yang–Mills–Higgs theory and the equations are the Yang–Mills–Higgs equations.

In the case where the matter component (containing φ) is neglected, the action density
becomes

L =
1

4
Tr (FµνF

µν), (6.16)

which is simply called the (pure) Yang–Mills theory. The Euler–Lagrange equations of such a
Lagrangian are called the (pure) Yang–Mills equations, which are non-Abelian extension of the

Maxwell equations in vacuum.
Like the Maxwell electromagnetic field, the Yang–Mills fields are also mediating (force) fields.

In the non-Abelian case the commutators introduce nonlinearity and new physics appears: these
non-Abelian gauge fields are in fact nuclear force fields which become significant only in short

distances. More precisely, like the U(1) group giving rise to electromagnetic interactions, the
SU(2) group gives rise to weak, SU(3) strong, and SU(5) grand unified interactions.

6.2 The Schwinger dyons

In order to motivate our presentation of some well-known particle-like solutions of the Yang–

Mills–Higgs equations, we briefly discuss the Schwinger dyons which are hypothetical point
particles carrying both electric and magnetic charges and were introduced by Schwinger [123]

to model quarks.
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Consider the motion of a dyon with mass m and electric and magnetic charges q1 and g1
in the electromagnetic field (E,B) of another dyon with electric and magnetic charges q2 and
g2 placed at the origin. We assume that the second dyon is so heavy that it stays stationary

throughout our study.
Solving (3.6)–(3.9) for the second dyon, we obtain the generated electric and magnetic fields

E = q2
x

|x|3 , B = g2
x

|x|3 . (6.17)

On the other hand, the non-relativistic motion of the first dyon is governed by the Lorentz force
so that

mẍ = q1(E + ẋ ×B) + g1(B− ẋ× E). (6.18)

Inserting (6.17) into (6.18), we arrive at

mẍ = (q1q2 + g1g2)
x

|x|3 + (q1g2 − q2g1)ẋ× x

|x|3 . (6.19)

Using (6.19), we arrive at the conserved total angular momentum J defined by

J = x ×mẋ − (q1g2 − q2g1)
x

|x| . (6.20)

It is important to notice that, in the special case of the motion of an electrically charged
particle in the magnetic field generated by a monopole, we have g1 = 0, q2 = 0 and (6.20)

becomes
J = x ×mẋ − q1g2

x

|x| . (6.21)

We recall that, in this case, the Dirac charge quantization formula reads

g2q1 =
n

2
, n = 0,±1,±2, · · · . (6.22)

As an immediate consequence of the similarity between (6.20) and (6.21), we obtain the

celebrated Schwinger charge quantization formula for dyons

g2q1 − g1q2 =
n

2
, n = 0,±1,±2, · · · . (6.23)

Like that of a Dirac monopole, a Schwinger dyon also carries infinite energy.

6.3 The ’t Hooft–Polyakov monopole and Julia–Zee dyon

In the above study, we discussed monopoles and dyons in terms of the Maxwell equations for
electromagnetism which is a theory of Abelian gauge fields. In fact it is more natural for
monopoles and dyons to exist in non-Abelian gauge field-theoretical models because nonvanish-

ing commutators themselves are now present as electric and magnetic source terms. In other
words, non-Abelian monopoles and dyons are self-induced and inevitable. In this section, we

shall present the simplest non-Abelian dyons known as the Julia–Zee dyons [67], which contain
as special solutions the ’t Hooft–Polyakov monopoles.

Consider the simplest non-Abelian Lie group SO(3), which has a set of generators {ta}
(a = 1, 2, 3) satisfying [ta, tb] = εabctc. Consequently, the so(3)-valued quantities A = Aata and

B = Bata give rise to a commutator,

[A,B] = εabcA
aBbtc. (6.24)

52



For convenience, we may view A and B as two 3-vectors, A = (Aa) and B = (Ba). Then, by

(6.24), [A,B] corresponds to the vector cross-product, A × B. With these in mind, we make
the following introduction to the SO(3) (or SU(2) since SO(3) and SU(2) have identical Lie

algebras) Yang–Mills–Higgs theory.
Let Aµ = (Aaµ) (µ = 0, 1, 2, 3) and φ = (φa) (a = 1, 2, 3) be a gauge and matter Higgs fields,

respectively, interacting through the action density

L = −1

4
Fµν · Fµν +

1

2
Dµφ ·Dµφ− λ

4
(|φ|2 − 1)2, (6.25)

where the field strength tensor Fµν is defined by

Fµν = ∂µAν − ∂νAµ − eAµ ×Aν, (6.26)

and the gauge-covariant derivative Dµ is defined by

Dµφ = ∂µφ− eAµ × φ. (6.27)

Based on consideration on interactions [67, 134, 136], it is recognized that the electromagnetic
field Fµν is defined by the formula

Fµν =
1

|φ|φ ·Fµν −
1

e|φ|3φ · (Dµφ×Dνφ). (6.28)

The equations of motion of (6.25) can be derived as

DνFµν = −eφ×Dµφ,

DµDµφ = −λφ(|φ|2 − 1). (6.29)

We are interested in static solutions of (6.29). In general, this is a difficult problem. Here
we can only consider radially symmetric solutions.

Set r = |x|. Following Julia and Zee [67], the most general radially symmetric solutions of
(6.29) are of the form

Aa0 =
xa

er2
J(r),

Aai = εabi
xb

er2
(K(r)− 1),

φa =
xa

er2
H(r), a, b, c = 1, 2, 3. (6.30)

Inserting (6.30) into (6.29) and using prime to denote differentiation with respect to the radial

variable r, we have

r2J ′′ = 2JK2,

r2H ′′ = 2HK2 − λr2H

(

1 − 1

e2r2
H2

)

,

r2K ′′ = K(K2 − J2 +H2 − 1). (6.31)
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We need to specify boundary conditions for these equations. First, we see from (6.30) and

regularity requirement that H, J,K must satisfy

lim
r→0

(

H(r)

er
,
J(r)

er
, K(r)

)

= (0, 0, 1). (6.32)

Secondly, since the Hamiltonian density of (6.25) takes the form

H = F0i · F0i +D0φ ·D0φ−L

=
1

e2r2
(K ′)2 +

1

2
(u′)2 +

1

2
(v′)2 +

1

2e2r4
(K2 − 1)2 +

1

r2
K2(u2 + v2) +

λ

4
(u2 − 1)2,

(6.33)

where u = H/er and v = J/er. Finite energy condition,

E =

∫

R3

H dx <∞, (6.34)

and the formula (6.33) imply that u(r) → 1 and K(r) → 0 as r → ∞. Besides, it is seen from
(6.33) that v(r) → some constant C0 as r → ∞. However, C0 cannot be determined completely.
We record these results as follows,

lim
r→∞

(

H(r)

er
,
J(r)

er
, K(r)

)

= (1, C0, 0). (6.35)

Solutions in the BPS limit

Inserting (6.30) into (6.28), we find the electric and magnetic fields, E = (Ei) and B = (Bi),

as follows,

Ei = −F 0i =
xi

er

d

dr

(

J

r

)

, (6.36)

Bi = −1

2
εijkF

jk =
xi

er3
. (6.37)

It is interesting to note that both Ei and Bi obey the inverse-square law.

From (6.36) we see that, if J = 0, E = 0 and there is no electric field. The magnetic charge
g may be obtained through integrating (6.37),

g =
1

4π
lim
r→∞

∮

|x|=r
B · dS =

1

e
, (6.38)

which is similar to the Dirac quantization formula except that electric charge is doubled. More-
over, the equations of motion (6.31) are simplified into the form

r2H ′′ = 2HK2 − λr2H

(

1 − 1

e2r2
H2

)

,

r2K ′′ = K(K2 +H2 − 1). (6.39)

These equations cannot be solved explicitly for general λ > 0 but an existence theorem has been
established by using functional analysis [117]. Here we present a family of explicit solutions at

the BPS limit λ = 0 due to Bogomol’nyi [10] and Prasad–Sommerfield [113].
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When λ = 0, the system (6.39) becomes

r2H ′′ = 2HK2,

r2K ′′ = K(K2 +H2 − 1), (6.40)

with the associated energy

E =

∫

R3
H dx =

4π

e2

∫ ∞

0

{

(K ′)2 +
1

2r2
(rH ′ −H)2 +

1

2r2
(K2 − 1)2 +

1

r2
K2H2

}

dr. (6.41)

It is clear that the system (6.40) is the Euler–Lagrange equations of (6.41). Besides, using the
boundary conditions (6.32) and (6.35), we have

E =
4π

e2

∫ ∞

0

{(

K ′ +
1

r
KH

)2

+
1

2r2

(

rH ′ −H + (K2 − 1)

)2

+
d

dr

(

H

r
− K2H

r

)}

dr

≥ 4π

e
. (6.42)

Hence, we have the energy lower bound, E ≥ 4π/e, which is attained when (H,K) satisfies

rK ′ = −KH,
rH ′ = H − (K2 − 1). (6.43)

Of course, any solution of (6.43) also satisfies (6.40). It was Maison [85] who first showed that
(6.40) and (6.43) are actually equivalent, which is a topic we will not get into here.

We now obtain a family of explicit solutions of (6.43) (hence (6.40)).
Introduce a change of variables from (H,K) to (U, V ),

−H = 1 + rU, K = rV. (6.44)

Then (6.43) becomes U ′ = V 2, V ′ = UV , which implies that U2 − V 2 = constant. Thus, by
virtue of (6.35) and (6.44), we have

U2 − V 2 = e2, r > 0. (6.45)

Inserting (6.45) into U ′ = V 2 and using (6.32), i.e., U(r) ∼ −1/r for r > 0 small, we obtain an
explicit solution of (6.43),

H(r) = er coth(er) − 1,

K(r) =
er

sinh(er)
, (6.46)

which gives rise to a smooth, minimum energy (mass) E = 4π/e, monopole (J = 0) solution
of the equations of motion (6.29) at the BPS limit λ = 0 through the radially symmetric

prescription (6.30). When λ > 0, one may use variational methods to obtain an existence
theory for solutions. These solutions are collectively known as the ’t Hooft–Polyakov monopoles

[109, 133] which are smooth and of finite energy.
We next present a continuous family of explicit dyon solutions. At the BPS limit, λ = 0, the

system (6.31) is

r2J ′′ = 2JK2,

r2H ′′ = 2HK2,

r2K ′′ = K(K2 − J2 +H2 − 1), (6.47)
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which becomes (6.40) when we compress H, J through

H 7→ (coshα)H, J 7→ (sinhα)H,

where α is a constant. Therefore, using (6.46), we have

H(r) = coshα(er coth(er)− 1),

J(r) = sinhα(er coth(er)− 1),

K(r) =
er

sinh(er)
. (6.48)

Consequently, in view of (6.30), we have obtained a family of explicit dyon solutions of (6.29).
Note that all the boundary conditions stated in (6.32) and (6.35) are fulfilled except one, namely,

lim
r→∞

H(r)

er
= coshα 6= 1. (6.49)

However, since λ = 0, (6.49) is of no harm to the finite energy condition (6.34).
To compute the total electric charge, we use (6.36). We have

q =
1

4π
lim
r→∞

∮

|x|=r
E · dS

=
1

e
lim
r→∞

(rJ ′(r) − J(r)) =
sinhα

e
. (6.50)

It is a comfort to see that the solution becomes electrically neutral, q = 0, when α = 0 and
(6.48) reduces to the monopole solution (6.46).

Total electric charge may be non-quantized

It should be noted that, since α in (6.50) is arbitrary, the electric charge q given in (6.50) is
not quantized and may assume value in a continuum. The main reason for the discrepancy with

what expressed by the Dirac charge quantization formula is that the electric charge q here is the
total charge induced from a continuously distributed electric field but not a pure point charge.

The Higgs field may generate charges

The calculation carried out here also shows that, like mass, both electric and magnetic

charges may be generated from the Higgs fields.

6.4 The Glashow–Weinberg–Salam electroweak model

The bosonic Lagrangian action density of the Glashow–Weinberg–Salam electroweak model may

be written as

L = −1

4
Fµν · Fµν −

1

4
HµνH

µν + (D̂µφ) · (D̂µφ)† − λ

2
(|φ|2 − φ2

0)
2, (6.51)

where φ now is a Higgs complex doublet lying in the fundamental representation space of SU(2),
Fµν and Hµν are the gauge fields of SU(2) and U(1) with the potential Aµ and Bµ and the

corresponding coupling constants g and g′, respectively, for the generators of SU(2) we use the
conventional Pauli spin matrices τa (a = 1, 2, 3),

τ1 =

(

0 1
1 0

)

, τ2 =

(

0 −i
i 0

)

, τ3 =

(

1 0
0 −1

)

, τ = (τa), (6.52)
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the coordinate vectors Aµ = (Aaµ), and the gauge-covariant derivatives are defined by the ex-

pressions

D̂µφ =

(

∂µ − igτaAaµ − ig′Bµ

)

φ = Dµφ− ig′Bµφ. (6.53)

Therefore, within the above framework, the Euler–Lagrangian equations of (6.51) are

D̂µD̂
µφ = λ(|φ|2 − φ2

0)φ, (6.54)

DµFµν = ig(φ†τ [D̂νφ]− [D̂νφ]†τφ), (6.55)

∂µHµν = ig′(φ†[D̂νφ] − [D̂νφ]†φ). (6.56)

Both dyon and vortex solutions of these equations have been obtained (cf. [152] and refer-

ences therein).8

7 The Einstein equations and related topics

We start from a quick introduction to Riemannian geometry and a derivation of the metric

energy-momentum tensor. We next derive the Einstein equations for gravitation. We then dis-
cuss some direct cosmological consequences from the Einstein equations, the origin of the cos-

mological constant and its interpretation as vacuum mass-energy density, and the Schwarzschild
blackhole solution and its extensions. We end with an excursion to the ADM mass and related
topics such as the positive mass theorem and the Penrose inequality.

7.1 Einstein field equations

Let (gµν) be the metric tensor of spacetime. The spacetime line element or the first fundamental
form is defined by

ds2 = gµνdx
µdxν , (7.1)

which is also a measurement of the proper time (see (4.18) for its flat-spacetime version). A

freely moving particle in spacetime follows a curve that stationarizes the action

∫

ds. (7.2)

We now derive the equations of motion from the above action principle.

8The following paragraph posted at Wikipedia about the Glashow–Weinberg–Salam model, under the subject
title ‘Unified Field Theory,’ is worth reading in the context of our study here: In 1963 American physicist Sheldon
Glashow proposed that the weak nuclear force and electricity and magnetism could arise from a partially unified
electroweak theory. In 1967, Pakistani Abdus Salam and American Steven Weinberg independently revised
Glashow’s theory by having the masses for the W particle and Z particle arise through spontaneous symmetry
breaking with the Higgs mechanism. This unified theory was governed by the exchange of four particles: the
photon for electromagnetic interactions, a neutral Z particle and two charged W particles for weak interaction.
As a result of the spontaneous symmetry breaking, the weak force becomes short range and the Z and W bosons
acquire masses of 80.4 and 91.2 GeV, respectively. Their theory was first given experimental support by the
discovery of weak neutral currents in 1973. In 1983, the Z and W bosons were first produced at CERN by Carlo
Rubbia’s team. For their insights, Salam, Glashow and Weinberg were awarded the Nobel Prize in Physics in
1979. Carlo Rubbia and Simon van der Meer received the Prize in 1984.
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We use the notation xµ(s) to denote the desired curve (trajectory of the particle) and δxµ(s)

a small variation, both parametrized by s. Then, to the first order of variation, we have

δ(ds2) = 2dsδ(ds) = (δgµν)dx
µdxν + 2gµνdx

µδ(dxν)

= (gµν,αδx
α)dxµdxν + 2gµνdx

µd(δxν), (7.3)

where and in the sequel we use the notation

f,α, Aµ,α, Fµν,α, T µν,α, (7.4)

etc., to denote the conventional partial derivative with respect to the variable xα of various

quantities. Using vµ to denote the components of the 4-velocity,

vµ(s) =
dxµ(s)

ds
, (7.5)

we then obtain

δ(ds) =

(

1

2
gµν,αv

µvνδxα + gµνv
µ d

ds
(δxν)

)

ds

= (δxα)

(

1

2
gµν,αv

µvν − d

ds
(gµαv

µ)

)

ds+ d(gµνv
µδxν). (7.6)

Inserting the above into the stationary condition

δ

∫

ds = 0 (7.7)

and using the fact that δxµ vanishes at the two end points of the curve, we arrive at the equations
of motion

d

ds
(gµαv

µ) − 1

2
gµν,αv

µvν = 0. (7.8)

Again, since gµν is symmetric, we have

d

ds
(gµαv

µ) = gµα
dvµ

ds
+ gµα,νv

µvν

= gµα
dvµ

ds
+

1

2
(gαµ,ν + gαν,µ)v

µvν . (7.9)

Consequently the equations of motion become

gµα
dvµ

ds
+ Γαµνv

µvν = 0 or
dvα

ds
+ Γαµνv

µvν = 0, (7.10)

where Γµνα and Γαµν are called the Christoffel symbols, which are defined by

Γµνα =
1

2
(gµν,α + gµα,ν − gνα,µ), Γαµν = gαβΓµνβ . (7.11)

The curves that are solutions of (7.10) are called geodesics.

We see immediately that Γµνα = Γµαν . Besides, it is also useful to note that the definition
of Γµνα gives us the identity

Γµνα + Γνµα = gµν,α. (7.12)
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One of the most important applications of the Christoffel symbols is their role in the definition

of covariant derivatives for covariant and contravariant quantities,

Aµ;α = Aµ,α − ΓβµαAβ,

Tµν;α = Tµν,α − ΓβµαTβν − ΓβναTµβ,

Aµ;α = Aµ,α + Γ
µ
βαA

β ,

T µν ;α = T µν ,α + ΓµβαT
βν + ΓνβαT

µβ . (7.13)

We will sometimes use ∇α to denote covariant derivative. A direct consequence of the above
definition and the identity (7.12) is that

gµν;α = gµν,α − Γβµαgβν − Γβναgµβ

= gµν,α − Γµαν − Γναµ = 0. (7.14)

Similarly, gµν ;α = 0. Therefore we have seen that the covariant and contravariant metric tensors,

gµν and gµν, behave like constants under covariant differentiation.
Let Aµ be a test covariant vector. Following (7.13), we obtain through an easy calculation

the commutator
Aµ;α;β − Aµ;β;α = [∇α,∇β]Aµ = RνµαβAν , (7.15)

where
Rνµαβ = Γνµβ,α − Γνµα,β + ΓγµβΓ

ν
γα − ΓγµαΓνγβ (7.16)

is a mixed 4-tensor called the Riemann curvature tensor. There hold the simple properties

Rνµαβ = −Rνµβα, (7.17)

Rνµαβ +Rναβµ + Rνβµα = 0. (7.18)

Furthermore, similar to (7.15), for covariant 2-tensors, we have

Tµν;α;β − Tµν;β;α = RγµαβTγν + RγναβTµγ . (7.19)

Therefore, in particular, for a covariant vector field Aµ, we have

Aµ;ν;α;β − Aµ;ν;β;α = RγµαβAγ;ν +RγναβAµ;γ . (7.20)

We now make permutations of the indices ν, α, β and add the three resulting equations. In view
of (7.15), the left-hand side is

(Aµ;α;β;ν −Aµ;β;α;ν) + permutations

= (RγµαβAγ);ν + permutations

= (RγµαβAγ;ν +Rγµαβ;νAγ) + permutations. (7.21)

In view of (7.18), the right-hand side is

RγµαβAγ;ν + permutations. (7.22)

Equating (7.21) and (7.22), we arrive at

Rγµαβ;νAγ + permutations = 0. (7.23)
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Since Aµ is arbitrary, we find that

Rγµνα;β +Rγµαβ;ν +Rγµβν;α = 0. (7.24)

This result is also known as the Bianchi identity.

The Ricci tensor Rµν is defined from Rνµαβ through contraction,

Rµν = Rαµνα. (7.25)

It is clear that Rµν is symmetric. The scalar curvature R is then defined by

R = gµνRµν. (7.26)

In the Bianchi identity (7.24), set γ = ν and multiply by gµα. We obtain

(gµαRνµνα);β + (gµαRνµαβ);ν + (gµαRνµβν);α = 0, (7.27)

which is simply

2Rβα;β − R;α = 0. (7.28)

Multiplying the above by gµα, we have the following very important result,

Gµν ;ν = 0, (7.29)

where

Gµν = Rµν − 1

2
gµνR, (7.30)

or its covariant partner, Gµν , is called the Einstein tensor.

We next consider physics over the curved spacetime of metric (gµν) governed by a matter
field u which is either a scalar field or a vector field and governed by the action

S =

∫

L(x,Du, g)
√

|g|dx, (7.31)

where we have emphasized the influence of the metric tensor g = (gµν) and used the canonical
volume element

√

|g|dx. Here |g| is the absolute value of the determinant of the metric g. Since
physics is independent of coordinates, L must be a scalar. For example, the real Klein–Gordon

action density now reads

L(x, u, Du, g) =
1

2
gµν∂µu∂νu− V (u), (7.32)

which is g-dependent. In other words, physics can no longer be purely material.

It is easily seen that the Euler–Lagrange equations, or the equations of motion, of (7.31) are
now

1
√

|g|
∂µ

(

√

|g| ∂L
∂(∂µua)

)

=
∂L
∂ua

, a = 1, 2, · · · , m; u = (ua). (7.33)

Using the translation invariance of the action and (7.33), we can derive the energy-momentum
tensor,9 also called the stress tensor, T µν , given as

T µν = −2
∂L
∂gµν

− gµνL = 2gαµgβν
∂L
∂gαβ

− gµνL, (7.34)

9The foundational framework that allows one to derive conserved quantities as a result of symmetry properties
of the action is called the Noether theorem which will not be elaborated here.

60



which obeys the conservation law

T µν ;ν = 0. (7.35)

The basic principle which led Einstein to write down his fundamental equations for gravita-

tion states that the geometry of a spacetime is determined by the matter it contains. Mathe-
matically, Einstein’s idea was to consider the equation

Qµν = −κT µν , (7.36)

where Qµν is a 2-tensor generated from the spacetime metric (gµν) which is purely geometric,

T µν is the energy-momentum tensor which is purely material, κ is a constant called the Einstein
gravitational constant, and the negative sign in front of κ is inserted for convenience. This

equation imposes severe restriction to the possible form of the 2-tensor Qµν . For example, Qµν

should also satisfy the same conservation law (or the divergence-free condition),

Qµν ;ν = 0, (7.37)

as T µν (see (7.35)). The simplest candidate for Qµν could be gµν. However, since gµν is non-

degenerate, this choice is seen to be incorrect because it makes T µν non-degenerate, which is
absurd in general. The next candidate could be the Ricci curvature Rµν. Since Rµν does not

satisfy the required identity (7.37), it has to be abandoned. Consequently, based on both the
compatibility condition (7.37) and simplicity consideration, we are naturally led to the choice

of the Einstein tensor, Gµν , defined in (7.30). Therefore we obtain the Einstein equations,

Gµν = −κT µν or Gµν = −κTµν. (7.38)

It can be shown that the equation (7.38) recovers Newton’s law of gravitation,

F = −Gm1m2

r2
, (7.39)

which gives the magnitude of an attractive force between two point particles of masses m1

and m2 with a distance r apart, in the static spacetime and slow motion limit, if and only if

κ = 8πG. Recall that the constant G is called the Newton universal gravitational constant,
which is extremely small compared to other quantities.

In summary, we have just derived the Einstein gravitational field equations,

Gµν = −8πGTµν. (7.40)

7.2 Cosmological consequences

In modern cosmology, the universe is believed to be homogeneous (the number of stars per unit

volume is uniform throughout large regions of space) and isotropic (the number of stars per
unit solid angle is the same in all directions). This basic property is known as the Cosmological

Principle and has been evidenced by astronomical observations. A direct implication of such a
principle is that synchronized clocks may be placed throughout the universe to give a uniform

measurement of time (Cosmic time). Another is that the space curvature, K, is constant at
any fixed cosmic time t. Hence we have the following simple mathematical descriptions for the

space.
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(a) If K = K(t) > 0, the space is closed and may be defined as a 3-sphere embedded in the

flat Euclidean space of the form

x2 + y2 + z2 +w2 = a2, a = a(t) =
1

√

K(t)
. (7.41)

(b) If K = K(t) < 0, the space is open and may be defined similarly by the equation

−x2 − y2 − z2 +w2 = a2, a = a(t) =
1

√

|K(t)|
, (7.42)

which is embedded in the flat Minkowski space with the line element

dx2 + dy2 + dz2 − dw2, (7.43)

known as the anti-de Sitter space (or the ‘adS space’ in short).10

(c) If K = K(t) = 0, the space is the Euclidean space R3. In particular the space is open

and its line element is given by
d`2 = dx2 + dy2 + dz2. (7.44)

Use the conventional spherical coordinates (r, θ, χ) to replace the Cartesian coordinates
(x, y, z). We have

x = r cos θ sinχ, y = r sin θ sinχ, z = r cosχ. (7.45)

Thus, in the cases (a) and (b), we have

±r2 +w2 = a2, ±rdr = wdw. (7.46)

Substituting (7.45) and (7.46) into the line elements of the Euclidean space and of the Minkowski

space given by (7.43), respectively, we obtain the induced line element d`2 of the space,

d`2 =
a2

(a2 ∓ r2)
dr2 + r2dθ2 + r2 sin2 θdχ2. (7.47)

Finally, inserting (7.47) into the spacetime line element and making the rescaling r 7→ ar,
we have

ds2 = dt2 − a2(t)

(

1

(1− kr2)
dr2 + r2dθ2 + r2 sin2 θdχ2

)

, (7.48)

where k = ±1 or k = 0 according to K > 0, K < 0 or K = 0. This is the most general

line element of a homogeneous and isotropic spacetime and is known as the Robertson–Walker
metric.

In cosmology, the large-scale viewpoint allows us to treat stars or galaxies as particles of a
perfect ‘gas’ that fills the universe and is characterized by its mass-energy density ρ, counting

both rest mass and kinetic energy per unit volume, and pressure p, so that the associated
energy-momentum tensor Tµν is given by

Tµν = (ρ+ p)vµvν + pgµν, (7.49)

10In the Minkowski spacetime R
n,1 with the metric ds2 = (dx0)2 −

Pn

i=1(dxi)2, the de Sitter or anti-de Sitter
space is the hyperbolic submanifold defined by (x0)2 −

Pn

i=1(x
i)2 = ∓a2 (a > 0).
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where vµ is the 4-velocity of the gas particles and gµν is the spacetime metric. The cosmological

principle requires that ρ and p depend on time t only.
We now consider some possible consequences of a homogeneous and isotropic universe in

view of the Einstein theory. From (7.16) and (7.25), we can represent the Ricci tensor in terms
of the Christoffel symbols by

Rµν = Γαµα,ν − Γαµν,α + ΓαµβΓ
β
αν − ΓαµνΓ

β
αβ . (7.50)

Naturally, we label our coordinates according to x0 = t, x1 = r, x2 = θ, x3 = χ. Then the
nonzero Christoffel symbols induced from the Robertson–Walker line element are 11

Γ0
11 =

a(t)a′(t)
(1 − kr2)

, Γ0
22 = a(t)a′(t)r2, Γ0

33 = a(t)a′(t)r2 sin2 θ,

Γ1
01 =

a′(t)
a(t)

, Γ1
11 =

kr

(1− kr2)
,

Γ1
22 = −r(1 − kr2), Γ1

33 = −r(1− kr2) sin2 θ,

Γ2
02 =

a′(t)
a(t)

, Γ2
12 =

1

r
, Γ2

33 = − sin θ cos θ,

Γ3
03 =

a′(t)
a(t)

, Γ3
13 =

1

r
, Γ3

23 = cot θ, (7.51)

where a′(t) = da(t)/dt. Inserting (7.51) into (7.50), we see that the Ricci tensor Rµν becomes
diagonal with

R00 =
3a′′

a
, R11 = −aa

′′ + 2(a′)2 + 2k

1 − kr2
,

R22 = −(aa′′ + 2(a′)2 + 2k)r2,

R33 = −(aa′′ + 2(a′)2 + 2k)r2 sin2 θ. (7.52)

Hence, in view of (7.26), the scalar curvature (7.26) becomes

R =
6

a2
(aa′′ + (a′)2 + k). (7.53)

On the other hand, from (7.10) and (7.51), we see that the geodesics of the metric (7.48),
which are the trajectories of moving stars and galaxies when net local interactions are neglected,

are given by r, θ, χ= constant. Thus in (7.49) we have v0 = 1 and vi = 0, i = 1, 2, 3. Therefore
Tµν is also diagonal with

T00 = ρ, T11 =
pa2

1 − kr2
, T22 = pa2r2, T33 = pa2r2 sin2 θ. (7.54)

Substituting (7.52), (7.53), and (7.54) into the Einstein equations (7.40), we arrive at the

following two equations,

3a′′

a
= −4πG(ρ+ 3p),

aa′′ + 2(a′)2 + 2k = 4πG(ρ− p)a2. (7.55)

11It should be noted that, nowadays, the computation of Riemannian tensors has been facilitated enormously
by available symbolic packages. See [19, 88, 112] and references therein.
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Eliminating a′′ from these equations, we obtain the well-known Friedmann equation

(a′)2 + k =
8π

3
Gρa2. (7.56)

We can show that, in the category of time-dependent solutions, the Einstein cosmological equa-
tions, (7.55), are in fact equivalent to the single Friedmann equation (7.56). To this end, recall
that both systems are to be subject to the conservation law for the energy-momentum tensor,

namely, T µν ;ν = 0 or

ρ′ + 3(ρ+ p)
a′

a
= 0. (7.57)

Differentiating (7.56) and using (7.57), we get the first equation in (7.55). Inserting (7.56) into

the first equation in (7.55), we get the second equation in (7.55).
The relative rate of change of the radius of the universe is recognized as Hubble’s ‘constant’,

H(t), which is given by

H(t) =
a′(t)
a(t)

. (7.58)

Recent estimates for Hubble’s constant put it at about (18× 109 years)−1. In particular, a′ > 0
at present. However, since the first equation in (7.55) indicates that a′′ < 0 everywhere, we
can conclude that a′ > 0 for all time in the past. In other words, the universe has undergone a

process of expansion in the past.
We now investigate whether the universe has a beginning time. For this purpose, let t0

denote the present time and t denote any past time, t < t0. The property a′′ < 0 again gives us
a′(t) > a′(t0), which implies that

a(t0) − a(t) > a′(t0)(t0 − t).

Thus there must be a finite time t in the past, t < t0, when a vanishes. Such a time may
be defined as the time when the universe begins. For convenience, we may assume that the
universe begins at t = 0, namely, a(0) = 0. Hence we arrive at the general picture of the Big

Bang cosmology that the universe started at a finite time in the past from a singular point and
has been expanding in all its history of evolution.

It is easy to see that the equations (7.55) do not allow static (time-independent) solutions.
When Einstein applied his gravitational equations to cosmology, he hoped to obtain a homoge-

neous, isotropic, static, and compact universe. Therefore he was led to his modified equations

Gµν + Λgµν = −8πGTµν, (7.59)

where Λ is a constant called the cosmological constant. Of course the added cosmological term,
Λgµν, does not violate the required divergence-free condition. Although static models of the uni-

verse have long been discarded since Hubble’s discovery in 1929 that the universe is expanding,
a nonvanishing cosmological constant gives important implications in the theoretical studies of

the early-universe cosmology. In fact, the equations (7.59) may also be rewritten

Gµν = −8πG

(

Tµν + T
(vac)
µν

)

,

T
(vac)
µν =

Λ

8πG
gµν, (7.60)
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where T
(vac)
µν is interpreted as the energy-momentum tensor associated with the vacuum: the

vacuum polarization of quantum field theory endows the vacuum with a nonzero energy-momentum

tensor, which is completely unobservable except by its gravitational effects. In particular,

ρ(vac) = T
(vac)
00 =

Λ

8πG
(7.61)

may be viewed as the mass-energy density of the vacuum. This viewpoint imposes a natural
restriction on the sign of the cosmological constant, Λ ≥ 0.

Multiplying (7.59) by the metric gµν and summing over repeated indices, we find

R = 8πGT + 4Λ, T = gµνTµν. (7.62)

Inserting (7.62) into (7.59), we obtain the more elegant equations

Rµν − Λgµν = −8πG

(

Tµν −
1

2
gµνT

)

. (7.63)

In particular, in the absence of matter, we have the vacuum Einstein equations

Rµν = Λgµν. (7.64)

Any spacetime satisfying (7.64) is called an Einstein space and its metric gµν is called an Einstein
metric.

7.3 Static solution of Schwarzschild

In the situation when both the cosmological constant Λ and the matter energy-momentum tensor
vanish, the Einstein equations (7.63) become

Rµν = 0, (7.65)

which says that the vacuum spacetime is characterized by its Ricci tensor being trivial. In the

context of the static spherically symmetric limit with the standard coordinates (t, r, θ, φ) used
to count for (xµ), the metric element takes the form

ds2 = f(r) dt2 − {h(r) dr2 + r2(dθ2 + sin2 θ dφ2)}. (7.66)

With (7.66), the Ricci tensor becomes diagonal and the diagonal components are given by [144]

R00 =
1

2
(fh)−

1
2 ([fh]−

1
2 f ′)′ + (rfh)−1f ′, (7.67)

R11 = −1

2
(fh)−

1
2 ([fh]−

1
2 f ′)′ + (rh2)−1f ′, (7.68)

R22 = R33 = −1

2
(rfh)−1f ′ + (rh2)−1h′ + r−2(1− h−1). (7.69)

Inserting these into (7.65), we have
d

dr
ln(fh) = 0, (7.70)
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which leads to f = K/h where K > 0 is a constant. Since f appears as the coefficient of dt2 in

the metric element (7.66), we may rescale the time coordinate with t 7→ K
1
2 t to normalize K to

unity. Thus, substituting fh = 1 into (7.69) and setting it to zero, we obtain [144]

f ′ =
1

r
(1 − f), (7.71)

which may be integrated to give us

f(r) = 1 +
C

r
, (7.72)

where C is an integrating constant. We can examine that the pair (f, h) where h = 1/f and
f given in (7.72) indeed makes (7.67)–(7.69) vanish identically. Therefore, the metric element

(7.66) becomes

ds2 =

(

1 +
C

r

)

dt2 −
{

(

1 +
C

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2)

}

. (7.73)

It is worth noting that, in the r → ∞ limit, this metric assumes the form of that in the standard
flat Minkowski spacetime, i.e.,

ds2 = dt2 − {dr2 + r2(dθ2 + sin2 θ dφ2)}. (7.74)

Since regularity of the metric element requires f > 0, we may be tempted to take C > 0 in
(7.72). Unfortunately, or fortunately, the situation we are facing here is not so simple and a more

elaborate consideration needs to be carried out so that the solution is physically meaningful.
Indeed, one may argue [144] that, since the solution should recover that given by the Newton

law of gravitation generated from a centralized localized mass, say M , in the region where r is
sufficiently large, one is led to the inevitable conclusion

C = −2GM, (7.75)

where G is the Newton constant.

It may be instructive to take a pause and find how to work (7.75) out. For this purpose,
consider the motion of a test particle far away from local region. Relativistically, the trajectory

of the particle is parameterized by the proper time, ds, in terms of the spacetime coordinates
xµ(s), and following the geodesic equations, (7.10). We may assume that the speed of the motion

is negligible compared with the speed of light. Thus we are able to take the approximation

ds ≈ dt, vµ ≈ (1, 0, 0, 0). (7.76)

In view of (7.76), the equations (7.10) become

d2xα

dt2
+ Γα00 = 0, α = 0, 1, 2, 3. (7.77)

However, by virtue of (7.66), we see that the only nontrivial component of (7.77) is at α = 1

(x1 = r) which is the single equation

d2r

dt2
=
f ′(r)
2h

=
1

2
ff ′ = − C

2r2

(

1 +
C

r

)

, (7.78)
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which agrees with Newton’s law
d2r

dt2
= −GM

r2
(7.79)

for r sufficiently large only if C is taken to satisfy (7.75), as stated.

In summary, we have arrived at the solution represented by

ds2 =

(

1 − 2GM

r

)

dt2 −
{

(

1 − 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2)

}

, (7.80)

which is the celebrated Schwarzschild metric or Schwarzschild solution of the Einstein equations.

Schwarzschild obtained this solution in 1915, the same year when Einstein published his work
of general relativity.12 There are coordinate singularities at the radius

r = rs = 2GM, (7.81)

referred to as the Schwarzschild radius. With rs, we rewrite (7.80) as

ds2 =
(

1 − rs
r

)

dt2 −
{

(

1− rs
r

)−1
dr2 + r2(dθ2 + sin2 θ dφ2)

}

, (7.82)

The singular sphere, r = rs, in space, also called the Schwarzschild surface, is an event horizon.
The solution (7.80) represents an empty-space solution or exterior solution which is valid outside

a spherically distributed massive body occupying the region given by r ≤ R (say). In other words,
the solution (7.80) is valid for r > R. To get the interior solution of the Einstein equations in

r < R, we need to consider the full equations (7.40), with suitably given energy-momentum or
stress tensor (7.49) (say) which enables us to match the exterior solution. A detailed discussion

of the interior solution may be found in [144].
We now discuss some of the simplest consequences of the Schwarzschild solution.
First, we note that, since the Newton constant G is a tiny quantity, the Schwarzschild radius

rs given by (7.81) is usually very small compared with the radius R of the gravitating body of
mass M under normal circumstances. For example, R = 6371 km and rs = 9 mm for the Earth;

R = 696000 km and rs = 3 km for the Sun. Thus, normally the Schwarzschild surface is well
hidden in the bulk of the gravitating body, rs < R, and there is no singular gravitational effect

because as the exterior solution the expression (7.82) is only valid for r > R.

12Here is some interesting reading provided by Wikipedia: Einstein himself was pleasantly surprised to learn
that the field equations admitted exact solutions, because of their prima facie complexity, and because he himself
had only produced an approximate solution. Einstein’s approximate solution was given in his famous 1915 article
on the advance of the perihelion of Mercury. There, Einstein used rectangular coordinates to approximate the
gravitational field around a spherically symmetric, non-rotating, non-charged mass. Schwarzschild, in contrast,
chose a more elegant ‘polar-like’ coordinate system and was able to produce an exact solution which he first set
down in a letter to Einstein of 22 December 1915, written while Schwarzschild was serving in the war stationed on
the Russian front. Schwarzschild concluded the letter by writing: “As you see, the war treated me kindly enough,
in spite of the heavy gunfire, to allow me to get away from it all and take this walk in the land of your ideas.”
In 1916, Einstein wrote to Schwarzschild on this result: “I have read your paper with the utmost interest. I had
not expected that one could formulate the exact solution of the problem in such a simple way. I liked very much
your mathematical treatment of the subject. Next Thursday I shall present the work to the Academy with a few
words of explanation. – Albert Einstein.” Schwarzschild accomplished this triumph while serving in the German
army during World War I. He died the following year from pemphigus, a painful autoimmune disease which he
developed while at the Russian front.
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However, if the mass density of the gravitating body is so high that R < rs, the singular

surface r = rs gives rise to rich and complicated gravitational properties of the spacetime. To
illustrate, we may consider ‘light’ propagation along the radial direction, characterized by the

null proper time condition, ds2 = 0, subject to dθ = 0 and dφ = 0. Thus, we obtain

(

dr

dt

)2

=
(

1 − rs
r

)2
. (7.83)

Outside the event horizon, r > rs, we see clearly that light is slowed down when it is near a
gravitating body. Thus, a gravitating body bends light. Inside the event horizon, r < rs, we

have 13

dr

dt
=

{ (rs
r − 1

)

, for outward light,
−
( rs
r − 1

)

, for inward light.
(7.86)

From the first line in (7.86), we see that it takes infinite time for the outward light to reach the

event horizon; from the second line in (7.86), we have

r + rs ln(rs − r) = t+C0, (7.87)

which says the light is accelerated and even reach the spacetime singularity r = 0 in finite time
if r > 0 is empty space. Thus we have observed that, inside the event horizon, it is ‘easier’

to fall towards the center than deviate from it. Indeed, such a space region, enclosed by the
event horizon and popularly called the Schwarzschild black hole, allows nothing, not even light,

to escape from it but rather tends to ‘collapse’ everything towards its center.

It may also be of interest to present some of the well-known extensions of the Schwarzschild

solution.
The Reissner–Nordstrom solution

First, consider the situation where an electrostatic field comes into the picture. Setting

B = 0 (vanishing magnetic field) and E = (Q/r3)x (electric field given by the Coulomb law) in
the empty space and solving the Einstein equations (7.40) there, we see that the metric (7.80)

becomes

ds2 =

(

1− 2GM

r
+
GQ2

r2

)

dt2 −
{

(

1 − 2GM

r
+
GQ2

r2

)−1

dr2 + r2(dθ2 + sin2 θ dφ2)

}

,

(7.88)

which is called the Reissner–Nordstrom metric. An event horizon occurs when

1 − 2GM

r
+
GQ2

r2
= 0, (7.89)

13Inside the event horizon, r < rs, and the metric becomes

ds
2 =

“

rs
r

− 1
”

−1

dr
2
−

n“

rs
r

− 1
”

dt
2 + r

2(dθ
2 + sin2

θ dφ
2)
o

, (7.84)

which suggests in view of the spacetime signature that the time and radial coordinates, t and r, may actually
switch roles,

t ↔ r, (7.85)

inside the black hole. Here, however, in order to keep our discussion at a minimum level of complexity, we avoid
such an interpretation but maintain the original meanings of t and r.
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which has no solution when Q is sufficiently large so that

Q2 > GM2. (7.90)

In this case, the metric is regular everywhere in r > 0. On the other hand, when

Q2 < GM2, (7.91)

the equation (7.89) gives rise to two concentric event horizons with the radii

r± = GM ±
√

G2M2 −GQ2, (7.92)

which merge into a single event horizon with the half of the Schwarzschild radius, 1
2rs = GM ,

in the degenerate limit, Q2 = GM2.
The Kerr solution

Next, consider a rotating spherically symmetric gravitating body. Recall that, for a mass
occupying a region V with mass density ρ and rotating about a certain axis `, the moment of
inertia may be calculated by

I =

∫

V

δ2(x)ρ(x) dx, (7.93)

where δ(x) denotes the distance from the point x to the axis `. If the angular velocity of the
rotating motion of the mass about ` is ω, then the angular momentum is

J = Iω. (7.94)

In terms of J, the exterior gravitational metric generated from a spherically distributed mass

rotating around the vertical axis with angular velocity ω is found to be

ds2 = ρ−2(ρ2 − rsr)dt
2 − ρ2

(

r2 − rsr + α2
)−1

dr2 − ρ2dθ2

−(r2 + α2 + rsrα
2ρ−2 sin2 θ) sin2 θ dφ2 + 2rsrαρ

−2 sin2 θ dtdφ, (7.95)

where α = J/M and ρ2 = r2 + α2 cos2 θ. This metric is known as the Kerr metric. Considering
the conditions gtt = 0 and grr = 0 again, we see that the event horizons would occur at the radii

r∗± =
rs ±

√

r2s − 4α2 cos2 θ

2
, r∗∗± =

rs ±
√

r2s − 4α2

2
. (7.96)

The above extensions allow us to come up with the concepts of charged black holes and
rotating black holes. For details, see [92].

The above two examples have shown us, in view of general relativity, the important fact that,

gravity, or rather spacetime curvature, can be generated from electricity or spinning motion, as
well as mass. Besides, the presence of event horizons or black holes is seen to be a universal

phenomenon dictated by the Einstein equations.
It is worth noting that the work of Schwarzschild may further be extended to incorporate

the situation of the black holes generated from charged and rotating masses. In such a context,
the solution is called the Kerr–Newman solution due to E. Newman et al [97, 98].
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7.4 ADM mass and related topics

At this point, it may be interesting to discuss briefly the Positive Energy Theorem [103, 119,

120, 121, 122, 148] and the Penrose Conjecture [105] in general relativity. In this context, we are
interested in an asymptotically Euclidean space-like hypersurface (M, g) embedded in a four-
dimensional Lorentzian spacetime whose metric tensor satisfies the Einstein equations (7.40) for

which the energy-momentum tensor Tµν is subject to a physically motivated condition, called
the dominant energy condition, which implies that the pointwise energy density H = T00 is

nonnegative and is in fact bounded from below by the magnitude of the pointwise angular
momentum according to

H = T00 ≥

√

√

√

√

3
∑

j=1

T 2
0j. (7.97)

The hypersurface (M, g) is said to be asymptotically Euclidean if there is a compact subset K in

M such that M\K is the union of finitely many ‘ends’ of M so that each end is diffeomorphic
to R

3 \ Br where Br denotes the ball of radius r > 0 centered at the origin. Under this
diffeomorphism, the metric gjk of M at each end can be represented near infinity by

gjk(x) = δjk + ajk(x), x ∈ R
3 \Br,

ajk(x) = O(|x|−1), ∂`ajk(x) = O(|x|−2), ∂`∂majk(x) = O(|x|−3), (7.98)

and the second fundamental form (hjk) there satisfies similar asymptotic estimates

hjk(x) = O(|x|−2), ∂`hjk(x) = O(|x|−3), x ∈ R
3 \Br . (7.99)

Without loss of generality, we assume only one end for convenience. According to Arnowitt,
Deser, and Misner [7], the total energy E and the momentum P` can be defined as the limits of

integral fluxes

E =
1

16π
lim
r→∞

∫

∂Br

(∂jgjk − ∂kgjj) ν
kdσr, (7.100)

P` =
1

8π
lim
r→∞

∫

∂Br

(h`k − δ`khjj) ν
kdσr, (7.101)

where dσr is the area element of ∂Br and ν denotes the outnormal vector to ∂Br. The Positive
Energy Theorem [103, 119, 120, 121, 148] states that the total energy (7.100) is bounded from
below by the total momentum (7.101) by

E ≥ |P | (7.102)

and that E = 0 if and only if (M, g) is the Euclidean space (R3, δ). In the special case when

the second fundamental form (hjk) vanishes identically, P ≡ 0, the energy E is called the total
mass or the ADM mass, MADM, which is always nonnegative, MADM ≥ 0. The Positive Mass

Theorem [122] states that
MADM > 0, (7.103)

unless the hypersurface (M, g) is the Euclidean space (R3, δ).
Simply put, the above theorems imply that no energy or mass means no geometry or no

gravitation.
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Note that, using the Einstein equations (7.40), one may relate the scalar curvature Rg of

(M, g) to the energy density T00 by

Rg + (hkk)
2 − hkjh

j
k = 16πGT00. (7.104)

Thus, as a consequence of the dominant energy condition (see (7.97)), the vanishing of the

second fundamental form naturally leads to the positivity condition for the scalar curvature,

Rg ≥ 0. (7.105)

Naturally, one would hope to bound MADM away from zero by some physical information
in a gravitational system. For example, one may start from considering an isolated blackhole

of mass M > 0 whose spacetime metric is known to be given by the Schwarzschild line element
(7.80). It can be checked that the spatial slice at any fixed t has the property that its second

fundamental form vanishes and that its ADM mass is the same as the black hole mass M . In
this case, the singular surface or the event horizon, Σ, of the black hole is a sphere of radius

rs = 2GM whose surface area has the value

Area(Σ) = 4πr2s = 16πG2M2. (7.106)

The Penrose Conjecture [105] states that the total energy E of the spacetime defined in (7.100)

is bounded from below by the total surface area of its apparent horizon Σ, which coincides with
the event horizon in the case of a Schwarzschild blackhole, by

16πG2E2 ≥ Area(Σ). (7.107)

In the special case when the second fundamental form of the hypersurface M vanishes, (7.107)

becomes
16πG2M2

ADM ≥ Area(Σ), (7.108)

which is referred to as the Riemannian Penrose Inequality, for which the lower bound may be

saturated only in the Schwarzschild limit [16, 17, 18, 62, 63].

8 Charged vortices and the Chern–Simons equations

We have seen that gauge theory in three dimensions allows the existence of magnetically and
electrically charged particle-like solutions called dyons. Naturally, it will be interesting to know

whether there are dyons in two dimensions. That is, whether there are magnetically and electri-
cally charged static vortices in gauge theory. To answer this question, Julia and Zee studied the

Abelian Higgs gauge field theory model in their now classic 1975 paper [67]. Using a radially
symmetric field configuration ansatz and assuming a sufficiently fast decay rate at spatial infin-
ity, they were able to conclude that a finite-energy static solution of the equations of motion over

the (2 + 1)-dimensional Minkowski spacetime must satisfy the temporal gauge condition, and
thus, is necessarily electrically neutral. This result, referred here as the Julia–Zee theorem, leads

to many interesting consequences. For example, it makes it transparent that the static Abelian
Higgs model is exactly the Ginzburg–Landau theory [51] which is purely magnetic [66, 99]. Since

the work of Julia and Zee [67], it has been accepted [38, 60, 65, 70, 104, 142, 143] that, in order
to obtain both electrically and magnetically charged static vortices, one needs to introduce into

the Lagrangian action density the Chern–Simons topological terms [30, 31], which is an essential
construct in anyon physics [146, 147]. See also [47]. The pur



8.1 The Julia–Zee theorem

Recall that the classical Abelian Higgs theory over the (2+1)-dimensional spacetime is governed

by the Lagrangian action density (4.32) and the associated equations of motion are (4.33)–(4.35).
In the static situation, the operator ∂0 = 0 nullifies everything. Hence the electric charge density
ρ becomes

ρ = J0 =
i

2
(φD0φ− φD0φ) = −A0|φ|2, (8.1)

where Dµ = ∂µ + iAµ is the renormalized gauge-covariant derivative, and a nontrivial temporal

component of the gauge field, A0, is necessary for the presence of electric charge. On the other
hand, the µ = 0 component of the left-hand side of the Maxwell equation (4.34) is

∂νF
0ν = ∂i(Fi0) = ∂2

iA0 = ∆A0. (8.2)

Consequently, the static version of the equations of motion (4.33)–(4.35) may be written as

D2
i φ = 2V ′(|φ|2)φ−A2

0φ, (8.3)

∂jFij =
i

2
(φDiφ− φDiφ), (8.4)

∆A0 = |φ|2A0, (8.5)

in which (8.5) is the Gauss law. Moreover, since the energy-momentum (stress) tensor has the

form

Tµν = −ηµ′ν′Fµµ′Fνν′ +
1

2
(DµφDνφ +DµφDνφ) − ηµνL, (8.6)

the Hamiltonian density is given by

H = T00 =
1

2
|∂iA0|2 +

1

2
A2

0|φ|2 +
1

4
F 2
ij +

1

2
|Diφ|2 + V (|φ|2), (8.7)

so that the finite-energy condition reads
∫

R2

H dx <∞. (8.8)

With the above formulation, the Julia–Zee theorem [67] may be stated as: Suppose that

(A0, Ai, φ) is a finite-energy solution of the static Abelian Higgs equations (8.3)–(8.5) over R
2.

Then either A0 = 0 everywhere if φ is not identically zero or A0 ≡ constant and the solution

is necessarily electrically neutral. In other words, the static Abelian Higgs model is exactly the
Ginzburg–Landau theory.

Here is a proof [132] of the theorem which relies on a crucial choice of a test function so that
the argument is valid exactly in two dimensions.

Let 0 ≤ η ≤ 1 be of compact support and define for M > 0 fixed the truncated function

AM0 =







M if A0 > M,
A0 if |A0| ≤M,

−M if A0 < −M.
(8.9)

Then, multiplying (8.5) by ηAM0 and integrating, we have
∫

R2

[η∇A0 · ∇AM0 +AM0 ∇A0 · ∇η + η|φ|2AM0 A0] dx = 0. (8.10)
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Using (8.9) in (8.10), we find
∫

{|A0|<M}∩ supp(η)
η|φ|2A2

0 dx+M2

∫

{|A0|>M}∩ supp(η)
η|φ|2 dx

+

∫

{|A0|<M}∩ supp(η)

η|∇A0|2 dx

≤ M

(∫

R2

|∇A0|2 dx

)1
2
(∫

R2

|∇η|2 dx

)1
2

. (8.11)

For R > 0, we now choose η to be a logarithmic cutoff function given as

η =







1 if |x| < R,

2 − ln |x|
lnR if R ≤ |x| ≤ R2,

0 if |x| > R2.

(8.12)

Then
∫

R2

|∇η|2 dx =
2π

lnR
. (8.13)

Using (8.13) in (8.11) gives
∫

{|A0|<M}∩BR

|φ|2A2
0 dx+

∫

{|A0|<M}∩BR

|∇A0|2 dx

≤
∫

{|A0|<M}∩BR

|φ|2A2
0 dx+M2

∫

{|A0|>M}∩BR

|φ|2 dx+

∫

{|A0|<M}∩BR

|∇A0|2 dx

≤ M

(

2π
∫

R2 |∇A0|2 dx

)
1
2

(lnR)
1
2

. (8.14)

The right hand side of (8.14) tends to zero as R tends to infinity. Letting M tend to infinity
proves conclusion.

The Julia–Zee theorem is also valid for non-Abelian gauge field theory. See [132].

8.2 The Chern–Simons term and dually charged vortices

For simplicity, we again concentrate on the Abelian situation in (2 + 1) dimensions. With the

gauge field Aµ and the induced field tensor Fµν = ∂µAν − ∂νAµ, the Chern–Simons term reads

1

4
εαµνAαFµν , (8.15)

where εαµν is the skew-symmetric Kronecker symbol with ε012 = 1. It is clear that the term
(8.15) is not invariant under the gauge transformation

Aµ 7→ Aµ − i∂µω. (8.16)

However, such a violation of gauge symmetry is only local but not global. In other words, the

integral of (8.15), i.e.,
∫

1

4
εαµνAαFµν dx, (8.17)
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remains gauge invariant, as may be checked easily through an integration by parts that
∫

εαµν(∂αω)Fµν dx =

∫

εαµν([∂ν∂αω]Aµ − [∂µ∂αω]Aν) dx

=

∫

εαµν(∂ν∂αω)Aµ dx−
∫

εναµ(∂α∂νω)Aµ dx

=

∫

εαµν(∂ν∂αω − ∂α∂νω)Aµ dx = 0. (8.18)

Thus, there is no violation of gauge symmetry when a Chern–Simons term is added into an

action density.
With the above preparation, the Abelian Chern–Simons–Higgs Lagrangian density intro-

duced in [104, 142], which minimally extends the classical Abelian Higgs model [66, 99], defined
over the Minkowski spacetime R

2,1, may be written in the form

L = −1

4
FµνF

µν +
κ

4
εµναAµFνα +

1

2
DµφDµφ − λ

8
(|φ|2 − 1)2, (8.19)

where κ is a constant referred to as the Chern–Simons coupling parameter. In some literature,

the quantity k ≡ πκ is also called the level of the Chern–Simons theory so that the Chern–Simons
term in the action density assumes the form

k

4π
εαµνAαFµν . (8.20)

The extremals of the Lagrangian density (8.19) formally satisfy its Euler–Lagrange equations,
or the Abelian Chern–Simons–Higgs equations [104],

DµD
µφ =

λ

2
φ(1 − |φ|2), (8.21)

∂νF
µν − κ

2
εµναFνα = −Jµ. (8.22)

in which (8.22) expresses the modified Maxwell equations so that the current density Jµ is given
by

Jµ =
i

2
(φDµφ− φDµφ), (8.23)

as before. Since we will consider static configurations only so that all the fields are independent
of the temporal coordinate, t = x0, we have

ρ = J0 = −A0|φ|2. (8.24)

Besides, also recall that the electric field E = Ej, in the spatial plane, and magnetic fields H ,

perpendicular to the spatial plane, induced from the gauge field Aµ are

Ej = ∂jA0, j = 1, 2; H = F12, (8.25)

respectively. The static version of the Chern–Simons–Higgs equations (8.21) and (8.22) take the
explicit form

D2
jφ =

λ

2
(|φ|2 − 1)φ− A2

0φ, (8.26)

∂kFjk − κ εjk∂kA0 =
i

2
(φDjφ − φDjφ), (8.27)

∆A0 = κF12 + |φ|2A0. (8.28)
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On the other hand, since the Chern–Simons term gives rise to a topological invariant which is

independent of the spacetime metric, ηµν, it makes no contribution to the energy-momentum
tensor Tµν of the action density (8.19) which may be calculated as

Tµν = −ηαβFµαFνβ +
1

2
([Dµφ][Dνφ] + [Dµφ][Dνφ]) − ηµνL0, (8.29)

where L0 is obtained from the Lagrangian (8.19) by setting κ = 0. Hence, it follows that the

Hamiltonian H = T00 or the energy density of the theory is given by

H =
1

2
|∇A0|2 +

1

2
|φ|2A2

0 +
1

2
F 2

12 +
1

2
(|D1φ|2 + |D2φ|2) +

λ

8
(|φ|2 − 1)2, (8.30)

which is positive-definite and the terms in (8.30) not containing A0 are exactly those appearing

in the classical Abelian Higgs model [66, 99]. Thus, the finite-energy condition

E(φ, A0, Aj) =

∫

R2

H(A0, Aj, φ)(x) dx <∞ (8.31)

leads us to arriving at the following natural asymptotic behavior of the fields A0, Aj, and φ,

A0, ∂jA0 → 0, (8.32)

F12 → 0, (8.33)

|φ| → 1, |D1φ|, |D2φ| → 0, (8.34)

as |x| → ∞. In analogue to the Abelian Higgs model [66, 99], we see that a finite-energy solution

of the Chern–Simons–Higgs equations (8.26)–(8.28) should be classified by the winding number,
say N ∈ Z, of the complex scalar field φ near infinity, which is expected to give rise to the total

quantized magnetic charge (or magnetic flux).
The resolution of the aforementioned open problem for the existence of charged vortices

in the full Chern–Simons–Higgs theory amounts to prove that, for any integer N , the coupled
nonlinear elliptic equations (8.26)–(8.28) over R

2 possess a smooth solution (A0, Aj, φ) satisfying
the finite-energy condition (8.31) and natural boundary conditions (8.32)–(8.34) so that the

winding number of φ near infinity is N .
Below is the main existence theorem [28], which solves the above problem.

For any given integer N , the Chern–Simons–Higgs equations (8.26)–(8.28) over R
2 have a

smooth finite-energy solution (φ, A0, Aj) satisfying the asymptotic properties (8.32)–(8.34) as

|x| → ∞ such that the winding number of φ near infinity is N , which is also the algebraic
multiplicity of zeros of φ in R2, and the total magnetic charge Qm and electric charge Qe are

given by the quantization formulas

Qm =
1

2π

∫

R2

F12 dx = N, (8.35)

Qe =
1

2π

∫

R2
ρ dx = κN. (8.36)

Such a solution represents an N -vortex soliton which is indeed both magnetically and electrically

charged.
It should be noted that the problem we encounter here is that the static Chern–Simons–Higgs

equations (8.26)–(8.28) are not the Euler–Lagrange equations of the energy functional (8.31)
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defined by the Hamiltonian density (8.30) but the action functional defined by the Lagrangian

density (8.19), which may be written explicitly as

I(φ, A0, Aj) =
1

2

∫

R2

(

F 2
12 + |D1φ|2 + |D2φ|2 +

λ

4
(|φ|2 − 1)2

)

dx

−1

2

∫

R2

(

|∇A0|2 +A2
0|φ|2 + 2κA0F12

)

dx. (8.37)

Thus, we need to find a critical point of the indefinite action functional (8.37) under the finite-

energy condition (8.31) and the topological constraint Qm = N expressed in (8.35).
In order to tackle the difficulty arising from the negative part of the action functional, we

introduce the constraint
∫

R2

{

∇A0 · ∇Ã0 + |φ|2A0Ã0 + κF12Ã0

}

dx = 0, ∀Ã0, (8.38)

for each pair of fixed φ and Aj, maintaining the finite-energy condition. In particular, when
Ã0 = A0, we have

∫

R2

κA0F12 dx = −
∫

R2

{|∇A0|2 +A2
0|φ|2} dx. (8.39)

Substituting (8.39) into (8.37), we see that the action functional becomes positive definite, which
resolves the issue of dealing with an indefinite action functional in the original (unconstrained)

setting.
Note that what is interesting in the Chern–Simons–Higgs context is that the electric charge

Qe is also quantized topologically. Such a property is naturally expected since the finite-energy

condition (8.31) for the equations (8.26)–(8.28) implies the vanishing property
∫

R2

∆A0 dx = 0. (8.40)

Thus, integrating (8.28) and using (8.24), we arrive at Qe = κQm, which gives us (8.36).
Combining the above existence theorem with the Julia–Zee theorem, we arrive at the con-

clusion: The Abelian static Chern–Simons–Higgs equations (8.26)–(8.28), which are the Euler–
Lagrange equations of the minimally coupled action density (8.19), have a nontrivial finite-energy

solution if and only if the Chern–Simons term is present, which is characterized by the condition
κ 6= 0. In such a situation, electricity and magnetism must co-exist.

For extensions of this study to the case of existence of non-Abelian Chern–Simons–Higgs
vortices, see [28].

8.3 The Rubakov–Tavkhelidze problem

Related to the Chern–Simons theory and relevant in modeling electroweak interaction, Rubakov
and Tavkhelidze [116] introduced in 1985 the ‘Abelian Higgs energy functional’

E(A, u) =

∫ {

1

2
|∇ × A|2 + |∇u|2 + g2|A|2u2 + λ(u2 − v2)2

}

dx, (8.41)

over R
3, governing a vector field A and a real scalar field u, subject to the prescribed Chern–

Simons charge

NCS =
g2

16π2

∫

A · (∇× A) dx, (8.42)
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where g, v, λ > 0 are coupling constants. The Euler–Lagrange equations of the problem are

∆u− g2|A|2u− 2λ(u2 − v2)u = 0, (8.43)

∇× (∇× A)− ξ(∇× A) + 2g2u2A = 0, (8.44)

where ξ is the Lagrangian multiplier associated with varying the functional

I(A, u) = E(A, u)− ξ

(

8π2

g2

)

NCS(A, u). (8.45)

See [118] for a recent study and [114] for some discussion in the context of a survey. So far,

a rigorous mathematical study of such an Euclidean three-dimensional Chern–Simons problem
has not been carried out yet.

It should be noted that the model (8.41) lacks gauge invariance. In order to recover its
gauge invariance, we may replace the real scalar field u by a complex scalar field φ and use the

gauge-covariant derivative
DAφ = ∇φ − giAφ (8.46)

as before. Since

|DAφ|2 = |∇φ|2 + g2|A|2|φ|2 + 2gA · Im(φ∇φ), (8.47)

we see that the Rubakov–Tavkhelidze energy (8.41) is the real-scalar-field version of the Ginzburg–

Landau energy [51]

E(A, φ) =

∫ {

1

2
|∇ × A|2 + |DAφ|2 + λ(|φ|2 − v2)2

}

dx. (8.48)

In other words, we may say that the model (8.41) is the Ginzburg–Landau model (8.48) stated

in the unitary gauge. Hence the equations of motion (8.43)–(8.44) are modified into

D2
Aφ = 2λ(|φ|2 − v2)φ, (8.49)

∇×∇×A = ig(φDAφ− φDAφ) + ξ(∇× A). (8.50)

In the purely superconducting limit when |φ| attains its maximum value v everywhere, the equa-

tions (8.49)–(8.50) are reduced into the single one governing the gauge potential A:

∇×∇×A = −2g2v2A + ξ(∇× A). (8.51)

In the special case when there is no Chern–Simons invariant present, ξ = 0, and we are left with

∇×∇×A = −2g2v2A. (8.52)

Finally, recall that the induced magnetic field B may be expressed as B = ∇ × A. Thus, in

view of (8.52), we arrive at
∆B = 2g2v2B. (8.53)

This equation is known as the London equation [83], discovered by the London brothers,14 which
clearly indicates that the induced magnetic field in a superconductor becomes ‘massive’, and

thus, fades out exponentially fast inside the superconductor. Such a statement gave the earliest
mathematical proof of the Meissner effect.

14Fritz and Heinz London, German-born physicists. The full set of the London equations, although linear,
actually are slightly more complicated than (8.53), and give rise to (8.53).
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9 The Skyrme model and related topics

The idea that elementary particles may be described by continuously distributed fields with
localized energy concentrations, also called solitons, has a long history. As a result, it will be

interesting to know whether there exist static solitons describing particles at rest or in equilib-
rium.

9.1 The Derrick theorem and consequences

We start from the standard Klein–Gordon field theory whose Lagrangian has been defined earlier
with an arbitrary potential density V ≥ 0. In the static limit, the equations of motion become

a semilinear elliptic equation
∆u = 2V ′(|u|2)u, (9.1)

which is the Euler–Lagrange equation of the Hamilton energy

E(u) =

∫

Rn

(

1

2
|∇u|2 + V (|u|2)

)

dx. (9.2)

Therefore, the solutions are simply the critical points of the energy functional.
Suppose that u is a critical point. Then uλ(x) = u(λx) is a critical point as well when λ = 1,

which leads us to the assertion
{

d

dλ
E(uλ)

}∣

∣

∣

∣

λ=1

= 0. (9.3)

On the other hand, if we use xλ to denote λx and ∇λ to denote the gradient operator with

derivatives in terms of differentiation in xλ, then

E(uλ) =

∫

Rn

{

1

2
|∇uλ|2 + V (uλ)

}

dx =

∫

Rn

{

1

2
λ2|∇λuλ|2 + V (uλ)

}

dx

=

∫

Rn

{

1

2
λ2|∇λu(xλ)|2 + V (u(xλ))

}

λ−ndxλ =

∫

Rn

{

1

2
λ2−n|∇u|2 + λ−nV (u)

}

dx. (9.4)

Combining (9.3) and (9.4), we obtain the identity

(2− n)

∫

Rn

|∇u|2 dx = 2n

∫

Rn

V (u) dx. (9.5)

Consequently, we see that there is no nontrivial solution if n ≥ 3 which rules out the most
physical dimension. This statement is known as the Derrick theorem. (Mathematicians also

called the above integral identity the Pohozaev identity – see below.) Besides, the case n = 2
is interesting only in the absence of potential energy, V = 0. Only when n = 1, the potential
density function V is not subject to any restriction and locally concentrated static solutions can

indeed be constructed (which are often called kinks or domain walls).

The Pohozaev identity – an excursion

This is a clever and sometimes very useful tool in analyzing semilinear partial differential
equations. To see what it is, we consider the elliptic boundary value problem

−∆u = λ|u|p−1u in Ω, u = 0 on ∂Ω, (9.6)

where Ω is a star-shaped bounded domain in R
n with smooth boundary and λ > 0.
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Multiplying ∆u by x · ∇u, integrating over Ω, and using u = 0 on ∂Ω, we have
∫

Ω
xj∂ju∂k∂ku dx = −n

∫

Ω
u∆u dx−

∫

Ω
xju∂k∂k∂ju dx

= −n
∫

Ω
u∆u dx+

∫

Ω
δ
j
ku∂k∂ju dx+

∫

Ω
xj∂ku∂k∂ju dx

= (1− n)

∫

Ω
u∆u dx+

1

2

∫

Ω
∂j(x

j|∇u|2) dx− n

2

∫

Ω
|∇u|2 dx

= (1− n)

∫

Ω
u∆u dx+

1

2

∫

∂Ω
|∇u|2(ν(x) · x) dS − n

2

∫

Ω
|∇u|2 dx

=
(n− 2)

2

∫

Ω
|∇u|2 dx+

1

2

∫

∂Ω
|∇u|2(ν(x) · x) dS, (9.7)

where ν(x) denotes the unit outward normal at the boundary point x ∈ ∂Ω. Besides, multiplying
|u|p−1u by x · ∇u and integrating, we have
∫

(x · ∇u)|u|p−1u dx =
1

p+ 1

∫

Ω

∇ · (x|u|p+1) dx− n

p+ 1

∫

Ω

|u|p+1 dx = − n

p+ 1

∫

Ω

|u|p+1 dx.

(9.8)
Multiplying the differential equation in (9.6) by x · ∇u and using (9.7) and (9.8), we obtain

(n − 2)

2

∫

Ω

|∇u|2 dx+
1

2

∫

∂Ω

|∇u|2(ν(x) · x) dS =
λn

(p+ 1)

∫

Ω

|u|p+1 dx, (9.9)

which is called the Pohozaev identity. When Ω is star-shaped about the origin, we have x·ν(x) ≥
0. Therefore, we get

(n− 2)

2

∫

Ω
|∇u|2 dx ≤ λn

(p+ 1)

∫

Ω
|u|p+1 dx. (9.10)

On the other hand, multiplying the differential equation in (9.6) simply by u and integrating,
we have

∫

Ω
|∇u|2 dx = λ

∫

Ω
|u|p+1 dx. (9.11)

Combining the above two results, we arrive at
(

(n− 2)

2
− n

(p+ 1)

)∫

Ω
|u|p+1 dx ≤ 0, (9.12)

which establishes that the only solution is the trivial solution u = 0 when

(n− 2)

2
− n

(p+ 1)
> 0 (9.13)

or

n ≥ 3, p >
n+ 2

n− 2
. (9.14)

In other words, nontrivial solutions are possible only when n = 1, 2 or n ≥ 3 and p satisfies

the subcritical condition: 1 < p <
n+ 2

n− 2
, (9.15)

or the critical condition: p =
n+ 2

n− 2
. (9.16)
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The Derrick theorem in presence of gauge fields

We consider again the Derrick theorem over the Minkowski space R
n,1. Of course, a finite-

energy static solution (φ, A) in the temporal gauge A0 = 0 is a critical point of the energy

functional

E(φ, A) =

∫

Rn

{

1

4
F 2
jk +

1

2
|Djφ|2 + V (|φ|2)

}

dx.

We may use the same argument as before with φλ(x) = φ(λx) and Aλ(x) = λA(λx) to arrive at
the new identity

(4 − n)

∫

Rn

F 2
jk dx+ 2(2− n)

∫

Rn

|Djφ|2 dx = 4n

∫

Rn

V (|φ|2) dx.

Therefore, with a gauge field, the allowance of spatial dimensions is extended to n ≤ 4.

The interesting individual cases are listed as follows.
(i) n = 4: The matter field sector must be trivial, V = 0, Djφ = 0 (j = 1, · · · , n) and

only gauge field is present (pure gauge situation). Solitons in this situations are called gauge
instantons.

(ii) n = 3, 2, 1: All these are allowed with total freedom for choosing V .
Thus we have seen that the presence of gauge field component enhances dimensionality for

the existence of static finite energy solutions of field equations.

9.2 The Skyrme model

The Skyrme model [127, 128, 129, 130] is one of the most important particle models in physical

three spatial dimensions without gauge fields. In the static case, its the energy functional reads

E(φ) =

∫

R3
(
∑

1≤j≤3

|∂jφ|2 +
∑

1≤j<k≤3

|∂jφ ∧ ∂kφ|2) dx, (9.17)

where the ‘wave’ function is a map from R
3 into S3. It is easy to see that energy has the scaling

property

E(φλ) =

∫

R3

(λ−1
∑

1≤j≤3

|∂jφ|2 + λ
∑

1≤j<k≤3

|∂jφ ∧ ∂kφ|2) dx, (9.18)

so that the corresponding Derrick identity reads
∫

R3

(
∑

1≤j≤3

|∂jφ|2) dx =

∫

R3

(
∑

1≤j<k≤3

|∂jφ ∧ ∂kφ|2) dx, (9.19)

which renders no objection to the existence of nontrivial critical points. In fact, we may assume
that a finite energy map φ has a definitive limit at infinity so that φ can be viewed as a map

from R
3∪{∞} ≈ S3 into S3. In other words, φ can be represented by an integer (the homotopy

class) in the group

π3(S
3) = Z. (9.20)

In fact, such an integer, called the degree of φ and denoted as deg(φ), has the following elegant
integral representation,

deg(φ) =
1

2π2

∫

R3

det(φ, ∂1φ, ∂2φ, ∂3φ)(x) dx. (9.21)
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From (9.21), we have

6π2| deg(φ)| ≤
∑

1≤i≤3

∑

1≤a≤4

j,k 6=i
∑

1≤j<k≤3

b,c6=a
∑

1≤b<c≤4

∫

R3

|∂iφa|
∣

∣

∣
∂jφ

b∂kφ
c − ∂jφ

c∂kφ
b
∣

∣

∣
dx

≤ 1

2

∫

R3





∑

1≤i≤3

|∂iφ|2 dx+
∑

1≤i<j≤3

|∂iφ ∧ ∂jφ|2


 dx, (9.22)

in view of the Schwartz inequality, which leads to the classical topological lower bound

E(φ) ≥ 12π2| deg(φ)|. (9.23)

An important unsolved question asks: does the Skyrme energy have a minimizer among the
prescribed homotopy (topological) class

CN = {φ |E(φ)<∞, deg(φ) = N} (9.24)

defined by each integer N? This problem is only solved when N = ±1 [77]. A relaxed question
asks: Does the Skyrme energy have a finite-energy critical point in each given homotopy class?

This latter problem is solved for radially symmetric maps [41, 151]. Problems of this type are
numerous in field theory physics.

9.3 Knots in the Faddeev model

In 1997, Faddeev and Niemi [44] published their seminal work on knotted solitons arising in
a quantum field theory model, known as the Faddeev model [42] which may be regarded as a

refined formalism of the Skyrme model. This work suggests that knots may indeed be used as
candidates to model elementary particles, a proposal first put forth by Lord Kelvin in 1860s.

Today, we know that the concept of knots has important applications in science. In the past 100
years, mathematicians have made great progress in topological and combinatorial classifications

of knots. In turn, the development of knot theory has also facilitated the advancement of
mathematics in several of its frontiers, especially low-dimensional topology. In knot theory, an

interesting problem concerns the existence of “ideal knots,” which promises to provide a natural
link between the geometric and topological contents of knotted structures. This problem has its

origin in theoretical physics in which one wants to prove the existence and predict the properties
of knots “based on a first principle approach” [100]. In such an approach, one is interested in
determining the detailed physical characteristics of a knot such as its energy (mass), geometric

conformation, and topological identification, via conditions expressed in terms of temperature,
viscosity, electromagnetic, nuclear, and possibly gravitational, interactions, which is also known

as an Hamiltonian approach to knots as field-theoretical stable solitons. The Faddeev knots are
such structures based a first-principle [8, 9, 43, 44, 100].

In normalized form, the action density of the Faddeev model over the standard Minkowski
spacetime R3,1 reads

L = ∂µφ · ∂µφ− 1

2
Fµν(φ)Fµν(φ), (9.25)

where the field φ assumes its values in the unit 2-sphere in R3 and

Fµν(φ) = φ · (∂µφ ∧ ∂νφ). (9.26)
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Since φ is parallel to ∂µφ ∧ ∂νφ, it is seen that

Fµν(φ)Fµν(φ) = (∂µφ ∧ ∂νφ) · (∂µφ ∧ ∂νφ), (9.27)

which may be identified with the well-known Skyrme term [127, 128, 129, 130, 154] when one
embeds S2 into S3 ≈ SU(2). Hence, the Faddeev model may be viewed as a refined Skyrme

model. In what follows, we shall only be interested in static fields which make the Faddeev
energy

E(φ) =

∫

R3

{ 3
∑

j=1

|∂jφ|2 +
1

2

3
∑

j,k=1

|Fjk(φ)|2
}

dx (9.28)

finite. The finite-energy condition implies that φ approaches a constant vector φ∞ at spatial
infinity (of R3). Hence we may compactify R3 into S3 and view the fields as maps from S3 to

S2. As a consequence, we see that each finite-energy field configuration φ is associated with an
integer, Q(φ), in π3(S

2) = Z (the set of all integers). In fact, such an integer Q(φ) is known as

the Hopf invariant which has the following integral characterization: The differential form

F = Fjk(φ) dxj ∧ dxk, j, k = 1, 2, 3, (9.29)

is closed in R3. Thus, there is a one form, A = Ajdx
j, so that

F = dA. (9.30)

Then the Hopf charge Q(φ) of the map φ may be evaluated by the integral

Q(φ) =
1

16π2

∫

R3
A ∧ F, (9.31)

due to J. H. C. Whitehead [145], which is a special form of the Chern–Simons invariant [30, 31].
The existence of the Faddeev knotted solitons are realized as the solutions to the problem

EN ≡ inf{E(φ) |E(φ)<∞, Q(φ) = N}, N ∈ Z, (9.32)

referred to as the Faddeev Knot Problem.
Thus we encounter a direct minimization problem over the full space R3. In such a situation,

a typical difficulty is that the minimizing sequence may fail to “concentrate” in a local region,
which reminds us to look at what the concentration-compactness principle of P. L. Lions [81, 82]

can offer. A careful examination of the Faddeev Knots Problem indicates that we cannot make
direct use of this method due to the lack of several key ingredients in the Faddeev energy (9.28)
and in the Hopf–Whitehead topological integral (9.31).

The Faddeev Knot Problem was partially solved in [77]. A key tool we used was called later
by us as the “Substantial Inequality” [78] which may well be explained by what happens in a

nuclear fission process: When a nucleus fissions, it splits into several smaller fragments. The
sum of the masses of these fragments is less than the original mass. The “missing” mass has

been converted into energy according to Einstein’s equation.
On the other hand, in our general framework of minimization of a physical energy functional

E subject to a topological constraint given by an integer invariant class Q = N , we may
similarly expect an energy splitting of the configuration sequence into finitely many substantial

constituents of topological charges Q = Ns (s = 1, 2, · · · , k). We expect that the charge is
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conserved and the energy of the “particle” of charge N splits into the sum of energies ENs (s =

1, 2, · · · , k) of the “substantial particles” of respective charges Ns (s = 1, 2, · · · , k). Therefore,
we expect to have

N = N1 +N2 + · · ·+Nk (charge conservation equality), (9.33)

EN ≥ EN1 +EN2 + · · ·+ENk
(energy conservation inequality). (9.34)

Note that (9.34) is read as an energy conservation relation since possible extra energy may be

needed for the substances or constituents of energies EN1, EN2, · · · , ENk
to form a bound state

or composite particle, of energy EN , and, as a result, the composite particle may carry more

energy than the sum of the energies of its substances or constituents. Hence we collectively call
the above two relations “the Substantial Inequality” which spells out a first kind of topological

growth law describing how energy and topology split in a general minimization process. The
importance of this inequality is that it characterizes the situation when concentration occurs for

a minimizing sequence. In other words, the charge-energy splitting above is nontrivial (k ≥ 2)
for a certain charge N if and only if concentration fails there.

To see how (9.33) and (9.34) can be used to quickly deduce an existence theorem for the
Faddeev minimization problem (9.32) in 3 dimensions, we recall the topological lower bound

E(φ) ≥ C|Q(φ)| 34 (9.35)

established by Vakulenko and Kapitanski [141] where C > 0 is a universal constant. Hence
EN > 0 for any N 6= 0.

Define

S = {N ∈ Z \ {0} | the Faddeev Problem (9.32) has a solution at N}. (9.36)

The Faddeev Knot Problem asks whether or not there holds S = Z.
As a first step toward the above question, we have:

The set S is not empty.
The proof of this statement [77] amounts to establishing the Substantial Inequality for the

Faddeev energy (9.28) and noting that if S is empty, then the splitting expressed in (9.33) and
(9.34) will continue forever, which contradicts the finiteness and positiveness of EN for any N .

With (9.33), we can learn more about the soluble set S. For example, choose N0 ∈ Z \ {0}
so that

EN0 = min{EN |N ∈ Z \ {0}}. (9.37)

Then we must have N0 ∈ S because a nontrivial splitting given in the Substantial Inequality
will be impossible by the definition of N0. Thus we can state [77]:

The least energy point in the Faddeev energy spectrum {EN |N ∈ Z \ {0}} is attainable.



The set S is an infinite subset of Z.

Here is a quick proof of this result.
Otherwise assume that S is finite. Set

N 0 = max{N ∈ S} (9.39)

and let N0 ∈ S be such that EN0 = min{EN |N ∈ S}, as defined earlier. Taking repeated

decompositions if necessary, we may assume that all the integers N1, N2, · · · , Nk in (9.33) and
(9.34) are in S already. Hence |N1|, |N2|, · · · , |Nk| ≤ N 0. Thus, in view of (9.33), we have

N ≤ kN 0; in view of (9.34), we have EN ≥ kEN0



which is a knot invariant. Naturally one expects the energy and the geometric complexity of

the knot K to be closely related. Indeed, the combined results in [20, 26] lead to the relation

C1N (K)p ≤ L(K) ≤ C2N (K)p, (9.43)

where C1, C2 > 0 are two universal constants and the exponent p satisfies 3/4 ≤ p < 1 so that in
truly three-dimensional situations the preferred value of p is sharply at p = 3/4. This relation

strikingly resembles the fractional-exponent growth law for the Faddeev knots just discussed
and reminds us once more that a sublinear energy growth law with regard to the topological

content involved is essential for knotted structures to occur.

The Faddeev model in general Hopf dimensions

In the Faddeev Knot Problem, it is the underlying property and structure of the homotopy

group π3(S
2) and the Faddeev energy functional formula that guarantee the validity of the

associated sublinear growth law. Generally, it seems that such a property may be related to the

notion of quantitative homotopy introduced by Gromov [56]. For example, we may consider the
Whitehead integral representation of the Hopf invariant and the “associated” knot energy ala

Faddeev. More precisely, let u : R
4n−1 → S2n (n ≥ 1) be a differentiable map which approaches a

constant sufficiently fast at infinite. Denote by Ω the volume element of S2n and |S2n| =
∫

S2n Ω.

Then the integral representation of u in the homotopy group π4n−1(S
2n), say Q(u), which is the

Hopf invariant of u, is given by

Q(u) =
1

|S2n|

∫

R4n−1
v ∧ u∗(Ω), dv = u∗(Ω). (9.44)

We can introduce a generalized Faddeev knot energy for such a map u as follows,

E(u) =

∫

R4n−1

(

|du|2 +
1

2
|u∗(Ω)|2

)

dx. (9.45)

For this energy functional, we are able to establish the following generalized sublinear energy
growth estimate [79, 80]

C1|N |(4n−1)/4n ≤ EN ≤ C2|N |(4n−1)/4n, (9.46)

where

EN = inf{E(u) |E(u)<∞, Q(u) = N}, (9.47)

and C1, C2 > 0 are universal constants. In particular, we are able to see that the fractional

exponent in the generalized growth law is the ratio of the dimension of the domain space and
twice of the dimension of the target space.

10 Strings and branes

In this section, we present a brief introduction to relativistic strings and branes. We first discuss
the relativistic motion of a point particle. We then generalize this discussion to consider the

Nambu–Goto strings and branes. We next study the Polyakov strings and show that their
quantization leads to the critical dimensionality counts of spacetime.
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10.1 Relativistic motion of a free particle

Let m be the mass of a free particle with coordinates (xi) in the space Rn, depending on time

t. Recall that the Newtonian action and Lagrangian of the moving particle are

S =

∫

L dt, L =
1

2
m

n
∑

i=1

(ẋi)2, ḟ =
df

dt
. (10.1)

On the other hand, relativistically, the motion of the particle follows the trajectory that

extremizes the action

S = κ

∫

ds, (10.2)

where κ is an undetermined constant and ds2 is the metric element given by

ds2 = c2dt2 −
n
∑

i=1

(dxi)2 = ηµνdx
µdxν , (10.3)

with c > 0 the speed of light, x0 = ct, and ηµν = diag(1,−1, · · · ,−1) the standard Minkowskian
metric tensor. In view of (10.2) and (10.3), if we consider the motion of the particle in terms of

time t, we have

S = κc

∫

√

√

√

√1−
n
∑

i=1

(ẋi)2

c2
dt. (10.4)

It is clear that (10.2) gives the dynamics of (10.1) in low speed when κ = −mc. Thus, we arrived
at the relativistic action and Lagrangian

S =

∫

L dt, L = −mc2
√

√

√

√1 −
n
∑

i=1

(ẋi)2

c2
. (10.5)

As a consequence, we can compute the associated momentum vector

pi =
∂L

∂ẋi
=

mẋi
√

1 −∑n
i=1

(ẋi)2

c2

, i = 1, · · · , n, (10.6)

which leads to the Hamiltonian

H =

n
∑

i=1

piẋ
i − L =

mc2
√

1 −∑n
i=1

(ẋi)2

c2

, (10.7)

which gives us the relation

H2 = m2c4 + c2
n
∑

i=1

p2
i . (10.8)

In particular, when the particle is at rest, we obtain the popular-science formula E = H = mc2.
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10.2 The Nambu–Goto strings

For simplicity, we set the speed of light to unity, c = 1, use the notation x2 =
∑n

i=1, and

v(t) = ẋ. Then the action of a free particle of mass m over a time span [t1, t2] reads

S = −m
∫ t2

t1

√

1 − v2 dt. (10.9)

We now consider the motion of a free string of a uniform mass density, ρ0, parametrized by
a real parameter, s, with the spatial coordinates given as a parametrized curve,

x = x(s, t), s1 ≤ s ≤ s2, (10.10)

at any fixed time t. Following (10.9), the action for the motion of the infinitesimal portion

d` =

∣

∣

∣

∣

∂x

∂s

∣

∣

∣

∣

ds ≡ |x′| ds, s1 ≤ s ≤ s2, (10.11)

is given by

−ρ0 d`

∫ t2

t1

√

1 − v2 dt. (10.12)

In the Nambu–Goto theory [52], the internal forces between neighboring points along a string do
not contribute to the action so that the velocity vector v is perpendicular to the tangent of the

string curve. Thus, we have

v =
dx

dt
=
∂x

∂t
+ a(s, t)

∂x

∂s
, v · ∂x

∂s
= 0. (10.13)

From (10.13), we can determine the scalar factor a(s, t) and obtain v as follows,

v =
∂x

∂t
−

(

∂x
∂t · ∂x∂s

)

(

∂x
∂s

)2

∂x

∂s
. (10.14)

Integrating (10.12), we obtain the total action for a Nambu–Goto string,

S = −ρ0

∫ t2

t1

∫ s2

s1

√

(

∂x

∂s

)2

(1− v2) dsdt. (10.15)

To appreciate the geometric meaning of the action (10.15), we recall that, for two vectors,

x = (xµ) = (x0, x) and y = (yµ) = (y0, y), xy stands for the inner product

xy = xµyµ = xµηµνy
ν = x0y0 −

n
∑

i=1

xiyi = x0y0 − x · y, (10.16)

in the Minkowski spacetime Rn,1. Thus, with the notation

ḟ =
∂f

∂t
, f ′ =

∂f

∂s
, (10.17)
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we have

ẋx′ =

(

1,
∂x

∂t

)(

0,
∂x

∂s

)

= −∂x
∂t

· ∂x
∂s
, (10.18)

ẋ2 = 1 −
(

∂x

∂t

)2

, x′2 = −
(

∂x

∂s

)2

. (10.19)

Therefore,

(

∂x

∂s

)2

(1− v2) =

(

∂x

∂s

)2

−
(

∂x

∂t

)2 (∂x

∂s

)2

+

(

∂x

∂t
· ∂x
∂s

)2

= (ẋx′)2 − ẋ2x′2. (10.20)

Hence the Nambu–Goto action becomes

A = −ρ0

∫

√

(ẋx′)2 − ẋ2x′2 dsdt. (10.21)

Besides, we may calculate the line element of the embedded 2-surface xµ = xµ(s, t), in the flat

Minkowski spacetime R
n,1, parametrized by the parameters s and t by

ds2 = dxµηµνdx
ν

= (ẋµdt+ x′µds)ηµν(ẋ
νdt+ x′νds)

= ẋ2dt2 + 2ẋx′dtds+ x′2ds2

= habdu
adub, a, b = 0, 1, (10.22)

where u0 = t, u1 = s, and

(hab) =

(

ẋ2 ẋx′

ẋx′ x′2

)

. (10.23)

From (10.21) and (10.23), we see that the Nambu–Goto string action is simply a surface integral

A = −ρ0

∫

Ω

√

|h|dtds = −ρ0

∫

S
dS, (10.24)

where |h| is the absolute value of the determinant of the matrix (10.23) and dS is the canonical

area element of the embedded 2-surface, (S, {hab}), in the Minkowski spacetime.
As a comparison, the action (10.21) for a point particle is simply a path integral,

A = −m
∫ τ2

τ1

√
ẋ2 dτ = −m

∫

C
dC, (10.25)

where dC is the line element of the path C parametrized by xµ = xµ(τ), τ1 ≤ τ ≤ τ2, in the
Minkowski spacetime.

Therefore the motion of a point particle follows an extremized path, the world line, and the

motion of a Nambu–Goto string follows an extremized surface, the world sheet.
Of course, both (10.24) and (10.25) are parametrization invariant.

Returning to (10.21), using the generalized time and string coordinates, τ and σ, with

t = t(τ, σ), s = s(τ, σ), fτ = ∂τf =
∂f

∂τ
, fσ = ∂σf =

∂f

∂σ
, (10.26)
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and setting T0 to unity, we see that the Nambu–Goto string action becomes

S = −
∫

√

(xτxσ)2 − (xτ )2(xσ)2 dτdσ. (10.27)

Using P τµ and Pσµ to denote the generalized ‘momenta’ where

P τµ =
∂L

∂xµτ
, Pσµ =

∂L

∂xµσ
, L = −

√

(xτxσ)2 − (xτ )2(xσ)2. (10.28)

Then the equations of motion of the Nambu–Goto string obtained from varying the action
(10.27) may be written in the form of the conservation laws

∂P τµ
∂τ

+
∂Pσµ
∂σ

= 0, µ = 0, 1, · · · , n, (10.29)

or, more explicitly,

∂τ

(

(xτxσ)∂σxµ − (xσ)
2∂τxµ

√

(xτxσ)2 − (xτ )2(xσ)2

)

+ ∂σ

(

(xτxσ)∂τxµ − (xσ)
2∂σxµ

√

(xτxσ)2 − (xτ )2(xσ)2

)

= 0. (10.30)

10.3 p-branes

More generally, consider an embedded (p+1)-dimensional hypersurface, or a membrane, parametrized

by the coordinates (ua) (a = 0, 1, · · · , p), so that the induced metric element is given by

ds2 = habdu
adub, hab = ηµν

∂xµ

∂ua
∂xν

∂ub
. (10.31)

The action of a p-brane is given by the volume integral of the hypersurface as follows,

S = −Tp
∫

dVp+1 = −Tp
∫

√

|h|du0du1 · · ·dup, (10.32)

where Tp is a positive constant referred to as the tension of the p-brane. In particular, a point
particle is a 0-brane, and a string is a 1-brane.

We now consider a ‘time-independent n-brane’, M , in the Minkowski spacetime R
n,1, which

may be realized as a graph of a function depending on the spatial coordinates only given by

x0 = f(x1, · · · , xn). (10.33)

Using (10.31), we see that the metric tensor (hij) of M is

hij = ηµν∂ix
µ∂jx

ν = ∂if∂jf − δij, i, j = 1, · · · , n. (10.34)

It can be checked that
|h| = | det(∂if∂jf − δij)| = 1 − |∇f |2, (10.35)

where we have assumed that M is spacelike, |∇f | < 1. Hence, ignoring the coupling constant,
the action of an n-brane which happens to be a graph is

S = −
∫

√

1 − |∇f |2 dx, (10.36)
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whose Euler–Lagrange equation reads

∇ ·
(

∇f
√

1 − |∇f |2

)

= 0. (10.37)

A well-known theorem of Cheng and Yau [29] states that all solutions of (10.37) over the full

space R
n satisfying |∇f | < 1 must be affine linear, f(x1, · · · , xn) =

∑n
i=1 aix

i + b, where ai’s
and b are constants.

Minimal hypersurfaces

It may be instructive to compare the above study of an n-brane with its Euclidean space

counterpart where we replace the Minkowski spacetime R
n,1 with the Euclidean space R

n+1

so that the inherited metric of the embedded n-hypersurface M defined by the graph of the

function (10.33) is given by

hij = δµν∂ix
µ∂jx

ν = ∂if∂jf + δij, i, j = 1, · · · , n. (10.38)

Consequently,

|h| = det(hij) = 1 + |∇f |2, (10.39)

such that the canonical volume of the hypersurface M reads

VM =

∫

√

|h|dx =

∫

√

1 + |∇f |2 dx. (10.40)

Minimizing (10.40) gives us the classical equation

∇ ·
(

∇f
√

1 + |∇f |2

)

= 0, x ∈ R
n, (10.41)

known as the minimal hypersurface equation for non-parametric minimal hypersurfaces defined
as the graph of a function. The Bernstein theorem for this equation states that all entire solutions

are affine linear for n ≤ 7 (cf. [101] and references therein).
It was Calabi who first observed that the equations (10.37) and (10.41) are equivalent [24]

when n = 2. A proof of this fact is as follows.
Let u be a solution of (10.41) and

p = ∂1f, q = ∂2f. (10.42)

Set w =
√

1 + p2 + q2. Then (10.41) reads

∂1

(

p

w

)

+ ∂2

(

q

w

)

= 0. (10.43)

Hence, there is a real-valued function U such that

∂1U = P ≡ − q

w
, ∂2U = Q ≡ p

w
. (10.44)

Therefore, we have

1 − P 2 −Q2 =
1

w2
> 0 (10.45)

90



and U is space-like (i.e., |∇U |2 < 1). Inserting the relations p = Qw, q = −Pw, and w = 1/W

where W =
√

1 − P 2 −Q2 into the identity ∂2p = ∂1q, we arrive at

∂1

(

P

W

)

+ ∂2

(

Q

W

)

= 0. (10.46)

Thus, U solves (10.37). The inverse correspondence from (10.37) to (10.41) may be established
similarly.

The above equivalence theorem of Calabi can be extended into arbitrary n-dimensional set-

tings [152] which give rise to a rich range of open problems.

10.4 The Polyakov string, conformal anomaly, and critical dimension

Consider a map

φ : (M, {hab}) → (N, {gµν}), φ(u0, u1, · · · , um) = (x0, x1, · · · , xn), (10.47)

where (M, {hab}) and (N, {gµν}) are (m + 1)- and (n + 1)-dimensional Minkowski manifolds
parametrized with the coordinates (ua) and (xµ), respectively. The Polyakov action is simply

the ‘harmonic map’ functional defined as

S = −
∫

(Dφ)2 dVh, (Dφ)2 = gµνh
ab∂ax

µ∂bx
ν , a, b = 0, 1, · · · , m, (10.48)

where dVh is the canonical volume element of (M, {hab}) given by dVh =
√

|h|du0du1 · · ·dum,

or customarily, for a p-brane,

S =

∫

L dVh = −τp
∫

√

| det(hab)|gµνhab∂axµ∂bxν du0du1 · · ·dup. (10.49)

where we have attached the constant τp > 0 to account for the Polyakov p-brane tension.

When p = 1, the action (10.49) defines the Polyakov string [110] action which is conformally
invariant (i.e., the action is invariant under the conformal transformation of the metric, hab 7→
Λhab). Such an invariance property is also called the Weyl invariance. The obvious advantage
of the action (10.49) over (10.32) is that the former is quadratic in xµ’s and gives rise to linear

equations of motion for the branes. Thus, the theory is much easier to quantize.
In the special case when (M, {hab}) is regarded as a submanifold of the spacetime (Rn,1, {ηµν})

so that the metric hab is induced from the map (10.47), we have

hab = ηµν∂ax
µ∂bx

ν, (10.50)

which leads us to

habηµν∂ax
µ∂bx

ν = p+ 1. (10.51)

Consequently, we see that the Polyakov p-brane action (10.49) reduces into the Nambu–Goto

p-brane action (10.32) when Tp = (p+ 1)τp.
There is another point of view regarding the relationship between the Nambu–Goto strings

and the Polyakov strings: Extremizing the metric tensor hab in the Polyakov p-brane action
(10.49), we obtain after neglecting the constant factor τp the vanishing stress tensor condition

Tab = 2gµν∂ax
µ∂bx

ν − habL = 0, ∀a, b, (10.52)
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which gives us the solution for hab as follows,

hab =
2gµν∂ax

µ∂bx
ν

L ≡ 2

L(∂ax · ∂bx). (10.53)

Inserting (10.31) into (10.49), we have

S = −(p+ 1)τp

∫

√

| det(∂ax · ∂bx)|
(

2

L

)
(p−1)

2

du, (10.54)

which is clearly seen to become a pure volume integral exactly when p = 1. In other words, in
such a context, the Nambu–Goto and Polyakov string actions are equivalent.

Quantization of the Polyakov string leads to the string partition function [110]

Z =

∫

Dϕ exp

(

− 1

48π
(26−D)

∫ {

1

2
(∂aϕ)2 + κ2eϕ

}

d2u

)

, (10.55)

where D = n + 1 = 26 is the spacetime dimension, the metric hab is Euclideanized into eϕδab
through a Wick rotation u0 7→ iu0, κ > 0 is constant, and

∫

Dϕ denotes the path integral over the
space of all possible conformal exponents. Note that, as already observed, the Polyakov string

action is conformal invariant. However, the partition function (10.55) clearly spells out the fact
that such a conformal invariance is no longer valid when D 6= 26. Such a phenomenon is called

‘conformal anomaly’ and the vanishing of conformal anomaly gives us the unique condition

D = 26, (10.56)

known as the critical dimension of bosonic string theory. Furthermore, when fermions are

present, Polyakov’s computation [111] of the partition function of quantized supersymmetric
strings, or superstrings, gives us the unique condition

D = 10, (10.57)

to avoid conformal anomaly, again. These results about the critical dimensions of spacetime

are now standard facts in string theory [155]. Physicists [25, 68, 155] further conjectured that
our 10-dimensional universe, M10, is a product of a 4-dimensional spacetime, M4, and a 6-

dimensional compact manifold, K6, curled up in a tiny but highly sophisticated way, following
a formalism called the ‘string compactification’ [37, 53], so that the spacetime M4 is maximally

symmetric (which implies that M4 can either be Minkowski, de Sitter, or anti-de Sitter)15 and
K6 is a Calabi–Yau manifold [22, 23, 153].16

Note also that, the action stemming out from (10.55), given by

L =

∫ {

1

2
∂aϕ∂

aϕ− κ2eϕ
}

d2u, (10.58)

and the associated wave equation

ϕττ − ϕσσ = −κ2eϕ, u0 = τ, u1 = σ, (10.59)

as the equation of motion, are jointly known to define the Liouville field theory [34, 48], which
is integrable [152] and of independent interest as a toy model.

15A manifold is maximally symmetric if it has the same number of symmetries as ordinary Euclidean space.
More precisely, a Riemannian manifold is maximally symmetric if it has 1

2
n(n+1) (n = dimension of the manifold)

linearly independent Killing vector fields which generate isometric flows on the manifold.
16A Calabi–Yau manifold is a compact Kähler manifold with vanishing first Chern class.
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11 The Born–Infeld geometric theory of electromagnetism

As a natural development of the topics covered in the previous section, it will be interesting to
present an introduction to the Born–Infeld theory [11, 12, 13, 14] formulated in the 1933–1934

and revived over the last 20 years due to its relevance in string theory.

11.1 Formalism

Recall that one of the major motivations for the introduction of the Born–Infeld electromagnetic

field theory [11, 12, 13, 14] is to overcome the infinity problem associated with a point charge
source in the original Maxwell theory. It is observed that, since the Einstein mechanics of special

relativity may be obtained from the Newton mechanics by replacing the classical action function
L = 1

2mv
2 by the relativistic expression

L = mc2
(

1−
√

1 − v2

c2

)

= b2
(

1 −
√

1 − 1

b2
mv2

)

, b2 = mc2, (11.1)

so that no physical particle of a positive rest mass m can move at a speed v greater than the
speed of light c, it will be acceptable to replace the action function of the Maxwell theory,

L =
1

2
(E2 −B2), (11.2)

where E and B are electric and magnetic fields, respectively, by a corresponding expression of

the form

L = b2
(

1 −
√

1 − 1

b2
(E2 −B2)

)

, (11.3)

where b > 0 is a suitable scaling parameter, often called the Born–Infeld parameter. It is clear
that (11.3) defines a nonlinear theory of electromagnetism and the Maxwell theory, (11.2), may

be recovered in the weak field limit E,B → 0. Note that the choice of sign in front of the
Lagrangian density (11.2) is the opposite of that of Born and Infeld [14] and is widely adopted

in contemporary literature. This convention will be observed throughout the notes.
Intrinsically, if (11.2) is replaced by L = −1

4FµνF
µν , then (11.3) takes the form

L = b2
(

1 −
√

1 +
1

2b2
FµνFµν

)

, (11.4)

where

Fµν = ∂µAν − ∂νAµ (11.5)

is the electromagnetic field strength curvature induced from a gauge vector potential Aµ. More

precisely, if we use
E = (E1, E2, E3), B = (B1, B2, B3) (11.6)

to denote the electric and magnetic fields, respectively, as earlier, then there holds the standard
identification

F 0i = −Ei, F ij = −εijkBk, i, j, k = 1, 2, 3, (11.7)
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which has the following matrix form,

(Fµν) =









0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0









. (11.8)

The dual of Fµν reads

∗Fµν = F̃µν =
1

2
εµναβFαβ . (11.9)

From (11.5), there holds again the Bianchi identity

∂µF̃
µν = 0. (11.10)

On the other hand, it is easy to find that the Euler–Lagrange equations of (11.4) are

∂µP
µν = 0, (11.11)

Pµν =
Fµν

√

1 + 1
2b2
FαβFαβ

. (11.12)

Corresponding to the electric field E and magnetic field B, we introduce the electric displacement

D and magnetic intensity H,

D = (D1, D2, D3), H = (H1, H2, H3), (11.13)

and make the identification

P 0i = −Di, P ij = −εijkHk, i, j, k = 1, 2, 3, (11.14)

which has the following matrix form,

(Pµν) =









0 −D1 −D2 −D3

D1 0 −H3 H2

D2 H3 0 −H1

D3 −H2 H1 0









. (11.15)

Inserting (11.8) into (11.10) and (11.15) into (11.11), we obtain the fundamental governing

equations of the Born–Infeld electromagnetic theory,

∂B

∂t
+ ∇× E = 0, ∇ ·B = 0, (11.16)

−∂D
∂t

+ ∇×H = 0, ∇ · D = 0, (11.17)

which look exactly like the vacuum Maxwell equations, except that, in view of the relations
(11.8), (11.12), and (11.15), the fields E,B and D,H are related nonlinearly,

D =
E

√

1 + 1
b2

(B2 − E2)
, (11.18)

H =
B

√

1 + 1
b2 (B2 − E2)

. (11.19)
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Hence, the Born–Infeld electromagnetism introduces E- and B-dependent dielectrics and per-

meability ‘coefficients’,
D = ε(E,B)E, B = µ(E,B)H. (11.20)

If there is an external current source, (jµ) = (ρ, j), the equation (11.11) will be replaced by

∂µP
µν = jν (11.21)

and equivalently, the equations in (11.17) become

−∂D
∂t

+ ∇×H = j, ∇ · D = ρ, (11.22)

We now examine the point charge problem.

Consider the electrostatic field generated from a point particle of electric charge q placed at
the origin. Then B = 0, H = 0, and the Born–Infeld equations become a single one,

∇ · D = 4πqδ(x), (11.23)

which can be solved to give us

D =
qx

|x|3 , (11.24)

which is singular at the origin. However, from (11.18), we have

D =
E

√

1 − 1
b2E

2
, (11.25)

which implies that

E =
D

√

1 + 1
b2D

2

=
qx

|x|
√

|x|4 +

(

q
b

)2
. (11.26)

In particular, the electric field E is globally bounded. It is interesting to see that, when |x| is
sufficiently large, E given in (11.26) approximates that given by the Coulomb law, a consequence

of the Maxwell equations.
As for the energy, we obtain from the Lagrange density (11.4) the energy-momentum tensor

T νµ = − F γνFγµ
√

1 + 1
2b2
FαβFαβ

− δνµL, (11.27)

which gives us in the electrostatic case the Hamiltonian energy density

H = T 0
0 = b2

(

1
√

1 − 1
b2

E2
− 1

)

= b2
(

√

1 +
1

b2
D2 − 1

)

= b2
(

√

1 +

(

q

b

)2 1

|x|4 − 1

)

. (11.28)
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From (11.28), it is seen that the total energy of a point electric charge is now finite,

E =

∫

R3

H dx <∞. (11.29)

Similarly, we can consider the magnetostatic field generated from a point magnetic charge g
placed at the origin of R3. In this case, D = 0, E = 0, and the Born–Infeld equations become

∇ · B = 4πgδ(x). (11.30)

From (11.30), we have as before,

B =
gx

|x|3 , (11.31)

H =
gx

|x|
√

|x|4 +

(

g
b

)2
. (11.32)

Thus H is a bounded vector field. In view of (11.27), the Hamiltonian density of a magnetostatic
field takes the form,

H = b2
(

√

1 +
1

b2
B2 − 1

)

. (11.33)

Inserting (11.31) into (11.33), we see that the total energy of a point magnetic charge is also
finite in the Born–Infeld theory.

We note that it is not hard to extend the above discussion to cover the situation of multiply
distributed point electric charges or magnetic monopoles.

11.2 The Born–Infeld theory and a generalized Bernstein problem

We now study sourceless static solutions. With E = ∇φ and B = ∇ × A, the equations of
motion of the Born–Infeld theory, (11.16) and (11.17), become

∇ ·
( ∇φ
√

1 + 1
b2

(|∇ ×A|2 − |∇φ|2)

)

= 0, (11.34)

∇×
( ∇×A
√

1 + 1
b2

(|∇ ×A|2 − |∇φ|2)

)

= 0. (11.35)

From (11.35), we see that there is a real scalar function ψ such that

∇× A
√

1 + 1
b2

(|∇ ×A|2 − |∇φ|2)
= ∇ψ, (11.36)

which leads us to the relation

|∇ × A|2 =

(

1 − 1

b2
|∇φ|2

) |∇ψ|2
(

1 − 1
b2
|∇ψ|2

) . (11.37)
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Inserting (11.37) into (11.36), we obtain

∇× A = ∇ψ

√



As a ‘warm-up question’, we ask whether the solutions of (11.42)–(11.43) of finite action,

A(f, g) <∞, are constant. See [126] for some further discussion.



Thus, (11.53) may also be recast into the form

∇ ·
(

g(|∇Ψ|)
|∇Ψ| ∇Ψ

)

= ρ. (11.55)

Use x to denote a point in R3. To study the electric confinement problem, we consider the
situation where two point charges of opposite signs, Q and −Q, are placed at the points x1 and

x2, so that the electric charge density is given by [73]

ρ(x) = Q(δ(x− x1)− δ(x− x2)). (11.56)

The ultimate goal is to establish that the potential energy of the solution of (11.53) or (11.55)
where ρ is given by (11.56) depends on the separation distance |x1 − x2| linearly, at least

asymptotically, provided that the function ε(E) or f(D) is suitably chosen.
In [2, 4], the dielectric function ε(E) is taken to be

ε(E) =

{

0, when E ≤ E0,

ε0 ln
(

E
E0

)

, when E > E0,
(11.57)

where ε0 > 0 and E0 > 0 are constants, and asymptotic analysis and numerical approximations
are carried out to show electric confinement. In [73], the function f(D) satisfies

lim
D→∞

ln f(D)

lnD
= 1. (11.58)

Another well-known confinement model [32, 33, 50] is called the MIT bag model, which is
purely based on linear electrostatics instead.
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